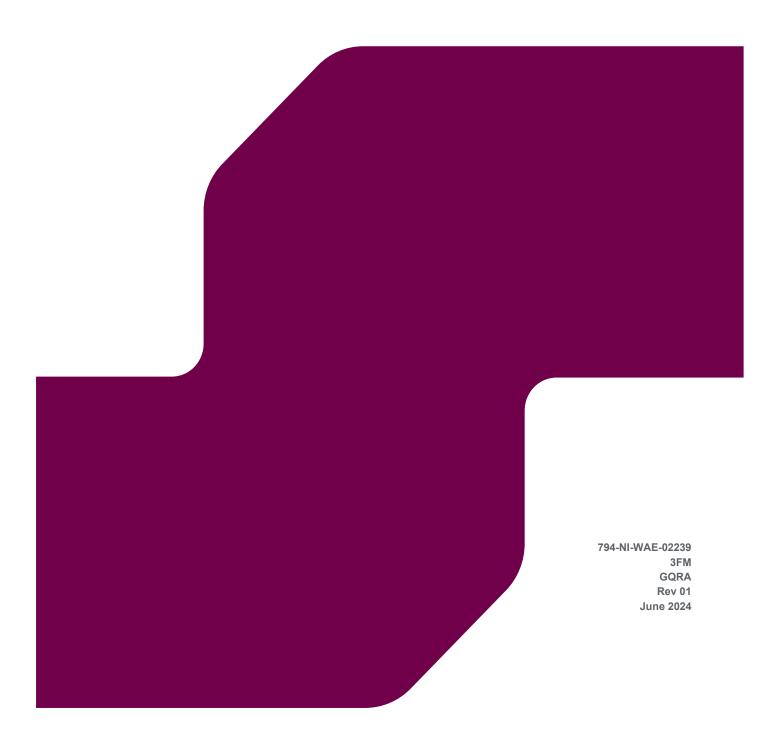


**Environmental Impact Assessment Report** 

## Appendix 8.2

Volume 3 Part 4










### **3FM - DUBLIN PORT**

### **Generic Quantitative Risk Assessment Report**





| Document Status |                     |                                 |                                 |                                 |                 |
|-----------------|---------------------|---------------------------------|---------------------------------|---------------------------------|-----------------|
| Version         | Purpose of document | Authored by                     | Reviewed by                     | Approved by                     | Review date     |
| Draft           | GQRA                | D. Telford, Senior<br>Scientist | J. McGrath,<br>Senior Associate | J. McGrath,<br>Senior Associate | October<br>2023 |
| Final           | GQRA                | D. Telford, Associate           | ,                               | J. McGrath,<br>Senior Associate | June 2024       |

| Approval for issue |            |
|--------------------|------------|
| Joseph McGrath     | 2024-06-27 |

This report was prepared by RPS Ireland Limited (NI) ('RPS') within the terms of its engagement and in direct response to a scope of services. This report is strictly limited to the purpose and the facts and matters stated in it and does not apply directly or indirectly and must not be used for any other application, purpose, use or matter. In preparing the report, RPS may have relied upon information provided to it at the time by other parties. RPS accepts no responsibility as to the accuracy or completeness of information provided by those parties at the time of preparing the report. The report does not take into account any changes in information that may have occurred since the publication of the report. If the information relied upon is subsequently determined to be false, inaccurate or incomplete then it is possible that the observations and conclusions expressed in the report may have changed. RPS does not warrant the contents of this report and shall not assume any responsibility or liability for loss whatsoever to any third party caused by, related to or arising out of any use or reliance on the report howsoever. No part of this report, its attachments or appendices may be reproduced by any process without the written consent of RPS. All enquiries should be directed to RPS.

Prepared by: Prepared for:

RPS Ireland Limited (NI)

**Dublin Port Company** 

Debra Telford Associate

Elmwood House, 74 Boucher Road Belfast, Co. Antrim BT12 6RZ



### **Contents**

| 1            | INTRODUCTION                                                                       |    |
|--------------|------------------------------------------------------------------------------------|----|
| 1.1          | Report objectives and scope                                                        | 1  |
| 1.2          | Previous reports                                                                   | 1  |
| 2            | SITE DESCRIPTION                                                                   | 2  |
| 2.1          | Introduction                                                                       | 2  |
| 2.1.1        | Study Area                                                                         |    |
| 3            | SUMMARY OF PRELIMINARY RISK ASSESSMENT                                             | 6  |
| 3.1          | On site sources                                                                    | 6  |
| 3.1.1        | Current Site Use                                                                   | 6  |
| 3.1.2        | Previous Land Use – Historical Development                                         | 6  |
| 3.2          | Off site sources                                                                   |    |
| 3.2.1        | Surrounding Land Use – Current                                                     |    |
| 3.2.2        | Surrounding Land Use – Historical                                                  |    |
| 3.3          | Environmental setting                                                              |    |
| 4            | INTRUSIVE GROUND INVESTIGATION METHODOLOGY & OBJECTIVES                            |    |
| 4.1          | Methodology                                                                        |    |
| 4.1.1        | Phase I - PRA                                                                      |    |
| 412          | Phase II - GQRA                                                                    |    |
| 4.2          | Objectives for Investigation                                                       |    |
| 4.3          | Sampling Strategy                                                                  |    |
| 4.3.1        | Dublin Port Company (DPC) Lands                                                    |    |
| 4.3.1        | Dublin City Council (DCC) Lands                                                    |    |
| 4.3.2<br>4.4 | ·                                                                                  |    |
|              | Analytical strategy  Observation of potential contaminants in soil and groundwater |    |
| 4.5          | ·                                                                                  |    |
| 4.6          | Problems encountered during investigation                                          |    |
| 4.6.1        | Access constraints                                                                 |    |
| 5            | ADDITIONAL GROUND INVESTIGATION 2024                                               |    |
| 5.1          | Methodology                                                                        |    |
| 5.2          | Sampling strategy                                                                  |    |
| 5.2.1        | Area L                                                                             |    |
| 5.2.2        | Area O additional boreholes                                                        |    |
| 5.3          | Analytical strategy                                                                |    |
| 5.4          | Observation of potential contaminants in soil and groundwater                      |    |
| 5.5          | Problems encountered during investigation                                          |    |
| 5.5.1        | Access constraints                                                                 |    |
| 6            | RISK ASSESSMENT METHODOLOGY                                                        |    |
| 6.1          | Soils risk assessment methodology                                                  |    |
| 6.1.1        | Contamination assessment methodology                                               |    |
| 6.1.2        | Human health risk assessment framework                                             |    |
| 6.1.3        | Published generic site assessment criteria                                         |    |
| 6.1.4        | Ground contamination assessment                                                    | 19 |
| 6.2          | Groundwater risk assessment methodology                                            | 19 |
| 6.2.1        | Published generic site assessment criteria                                         |    |
| 7            | ACTUAL GROUND CONDITIONS                                                           | 21 |
| 7.1          | Summary of ground conditions                                                       | 21 |
| 7.2          | Groundwater Strikes during investigation                                           | 22 |
| 7.3          | Groundwater monitoring                                                             | 26 |
| 7.4          | Hydrogeological units and groundwater flow                                         | 30 |
| 8            | GROUND CONTAMINATION                                                               |    |
| 8.1          | Introduction                                                                       | 31 |
| 8.2          | Summary of soil results                                                            | 31 |
|              |                                                                                    |    |



| 8.2.1            | Asbestos in Soils                                                      |    |
|------------------|------------------------------------------------------------------------|----|
| 9                | GROUNDWATER CONTAMINATION                                              |    |
| 9.1              | Introduction                                                           |    |
| 9.1.1<br>9.1.2   | 2023 Sampling                                                          |    |
| 9.1.2<br>9.2     | 2024 Sampling  Summary of groundwater & surface water chemical results |    |
| 9.2              | , ,                                                                    |    |
| 9.3<br><b>10</b> | Remedial Targets Methodology – Level 1 Leachability Soil Screening     |    |
| 10.1             | Introduction                                                           |    |
| 10.1             | Gas survey results                                                     |    |
| 10.2.1           | Area O                                                                 |    |
| 10.2.1           | Area L                                                                 |    |
| 10.2.2           | Maritime Village                                                       |    |
| 10.2.3           | Gas risk assessment.                                                   |    |
| 10.3             | Ground gas conceptual site model                                       |    |
| 10.4.1           | Sources                                                                |    |
| 10.4.1           | Pathways                                                               |    |
| 10.4.3           | Receptors                                                              |    |
| 10.5             | Calculation of Gas Screening Value                                     |    |
| 10.5.1           | Area O                                                                 |    |
| 10.5.2           | Area L                                                                 |    |
| 10.5.3           | Maritime Village                                                       | _  |
| 10.6             | Radon Gas                                                              |    |
| 11               | RISK ASSESSMENT                                                        |    |
| 11.1             | Overview of contaminant sources, pathways and receptors                |    |
| 11.1.1           | Sources – ground contamination                                         |    |
| 11.1.2           | Sources - groundwater and surface water contamination                  |    |
| 11.1.3           | Sources – ground borne gases (Carbon Dioxide and Methane)              |    |
| 11.1.4           | Off-site sources                                                       |    |
| 11.1.5           | Pathways                                                               |    |
| 11.1.6           | Receptors                                                              |    |
| 11.2             | Risk assessment and revised conceptual site model                      |    |
| 11.2.1           | Human Health                                                           | 55 |
| 11.2.2           | Risk to shallow groundwater                                            | 55 |
| 11.2.3           | Risk to bedrock aquifer                                                | 55 |
| 11.2.4           | Risk to adjacent water bodies                                          | 55 |
| 11.2.5           | Risk to buildings                                                      | 55 |
| 12               | CONCLUSIONS & RECOMMENDATIONS                                          | 63 |
| 12.1             | Conclusions                                                            | 63 |
| 12.2             | Recommendations                                                        | 63 |
|                  |                                                                        |    |
| Table            | S                                                                      |    |
| Table 3-1        | Preliminary conceptual site model                                      | 8  |
|                  | Exploratory location rationale                                         |    |
|                  | Exploratory hole summary DPC lands                                     |    |
| Table 4-3        | Exploratory hole summary DCC/third party lands                         | 19 |
|                  | Ground investigation locations and access constraint issues            |    |
| Table 5-1        | Exploratory location rationale                                         | 10 |



| Table 5-2 Exploratory hole summary Area L1                                                    | 2  |
|-----------------------------------------------------------------------------------------------|----|
| Table 5-3 Exploratory hole summary Area O1                                                    | 3  |
| Table 5-4 Ground investigation locations and access constraint issues                         | 6  |
| Table 7-1 Groundwater Strikes during Investigation2                                           | :3 |
| Table 7-2 Standing groundwater levels2                                                        | 7  |
| Table 8-1 Table Summary of asbestos in soils3                                                 | 2  |
| Table 9-1 Summary of Groundwater & Surface Water Exceedances 20233                            | 4  |
| Table 9-2 Summary of Groundwater & Surface Water Exceedances April 20243                      | 5  |
| Table 9-3 Summary of Groundwater & Surface Water Exceedances May 20243                        | 8  |
| Table 9-4 Exceedances of screening values within soil leachability tests 20234                | 2  |
| Table 9-5 Exceedances of screening values within soil leachability tests 20244                | .3 |
| Table 10-1 Significant gas concentrations in air4                                             | 6  |
| Table 11-1 Conceptual Site Model Summary – Roads & Transport Routes5                          | 6  |
|                                                                                               |    |
|                                                                                               |    |
| Figures                                                                                       |    |
| Figure 2.1 Site Location                                                                      | 2  |
| Figure 2.2: Existing Site Layout (colour scheme – yellow owned by DPC, green owned by others) | 3  |
|                                                                                               |    |

### **Appendices**

| Appendix A | Proposed Development Layout with Ground Investigation Locations |
|------------|-----------------------------------------------------------------|
| Appendix B | Causeway Geotech Ltd Ground Investigation Report 2021           |
| Appendix C | Borehole Cross Sections                                         |
| Appendix D | Soil screening table                                            |
| Appendix E | Groundwater screening table                                     |
| Appendix F | Soil Leachability screening table                               |
| Appendix G | Ground gas screening tables                                     |
|            |                                                                 |



### 1 INTRODUCTION

RPS was appointed by Dublin Port Company to undertake a ground contamination risk assessment for the proposed 3FM Project. The 3FM Project will include the development of particular areas of Dublin Port lands on the Poolbeg Peninsula providing additional port capacity, infrastructure and facilities including an overall road network to entirely remove port traffic from public roads in the vicinity of Dublin Port.

### 1.1 Report objectives and scope

- Summarise the ground investigation works undertaken by Causeway Geotech Ltd from November 2022 to February 2023, and additional investigation undertaken between March 2024 and June 2024.
- Undertake a quantitative human health and waters risk assessment to ascertain if contamination linkages and unacceptable risks are present as a result of the current and historic land use.
- Undertake a ground gas risk assessment.
- Propose remedial measures to address any unacceptable risks.

### 1.2 Previous reports

This report makes reference to, and builds upon, the information contained within the following documents:

 Report titled 'Dublin Port: 3FM Preliminary Risk Assessment (Desk Study) Report' by RPS dated June 2024.



### 2 SITE DESCRIPTION

### 2.1 Introduction

As shown on Figure 2.1, the proposed 3FM Project is located in the Poolbeg area of the peninsula which extends into Dublin Bay just south of the mouth of the River Liffey, approximately 4km east of Dublin city centre.

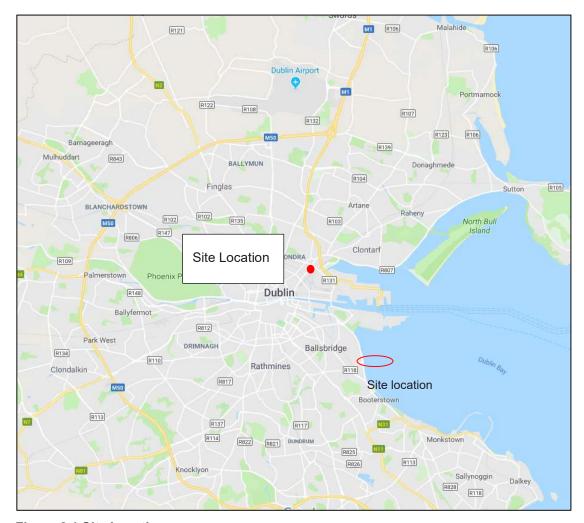



Figure 2.1 Site Location

The Site is located within the southern lands of Dublin Port in Dublin city, and forms part of an active port. The existing site layout is shown on Figure 2.2.

The site is spread over a number of active sites under the ownership of Dublin Port Company and third parties including Dublin City Council, ESB, Irish Water and NORA.



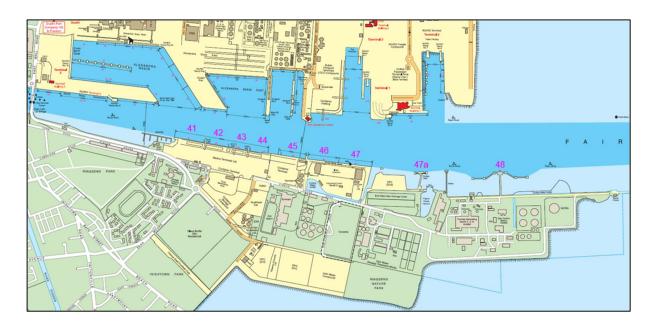



Figure 2.2: Existing Site Layout (colour scheme – yellow owned by DPC, green owned by others)

### 2.1.1 Study Area

The site can be characterised by different areas of use, as well as public realm and active travel projects on the Poolbeg Peninsula. The focal point of the Poolbeg Peninsula are the various industrial and port related facilities. Other uses include walkways, recreational facilities and public open space. Protected structures within the peninsula include buildings such as Pigeon House Hotel and Pigeon House Power Station. There are also various national monuments including the Great South Wall.

### Maritime Village – Poolbeg Yacht & Boat Club

The Poolbeg Yacht & Boat Club, Marina and Stella Maris Rowing Club comprise a key sporting and amenity centre which is in daily use by members of the clubs, visitors and the local community.

### Area K - Marine Terminals Ltd (MTL) Lo Lo Terminal

MTL operate a Lo-Lo container freight terminal. The terminal contains rail mounted gantry (RMG) cranes and rubber tyred gantry (RTG) mobile cranes. Containers are stored up to six high within the terminal.

### Area L

Area L is currently utilised by three DPC tenants;



- Irish Cement (cement and petroleum coke).
- Hammond Lane (scrap metal); and
- EcoCem (eco-cement production).

The quayside area, comprising Berth 46 and Berth 47, is shared between the three operators. Separate manifolds are set into the quayside to transfer molasses, vegetable oil and fuel to storage tanks from ships which also use these berths. Harbour Mobile Cranes and smaller mobile plant, including long reach excavators, serve the berths.

The landside area is being used for bulk storage of petroleum coke, cement and scrap metal, with warehouses and plant to process the metal and produce cement products.

#### Area O

The Port owned lands located on the southern side of the Poolbeg Peninsula comprise a brownfield / hardstand site which is currently being used for a range of activities including;

- Kilsaran Concrete Ltd plant which comprises a concrete batching plant and associated facilities.
- Bissett Engineering plant which is currently not operational; and
- Site compounds to facilitate engineering contractor's offices for works at Uisce Éireann's
  Ringsend WwTP in temporary site cabin facilities, with car parking, fencing and materials
  storage. Previously this was used as a construction compound for works at the Encyclis
  (formerly Covanta) Waste to Energy Facility.

### Roadways and Footways

There are a number of roads and footways which lie within the application boundary of the 3FM Project.

The existing road network is primarily owned by DCC, with the exception of White Bank Road and the eastern portion of South Bank Road which are owned by DPC. The network serves the various commercial sites on the Poolbeg Peninsula, as well as providing public access to the amenity areas, notably to the Great South Wall where Dublin City Council maintain a public carpark.

A corridor for a roadway through DPC's northern lands lies within the application boundary of the 3FM Project, to connect a proposed bridge crossing of the River Liffey to Alexandra Road, thereby removing the majority of port related traffic from East Wall Road.



### **Sludge Jetty/Turning Circle**

The sludge jetty was formerly used to load sewage sludge onto vessels for disposal at sea. This practice is now prohibited, and the sludge jetty is no longer used and has fallen into a state of disrepair.

The land adjacent to the sludge jetty where the turning circle will part encompass was previously infilled with construction and demolition waste under a Foreshore License authorisation.

### Area N

Area N is located offshore adjacent to the ESB Poolbeg generating station and the NORA Poolbegg oil storage facility and the Great South Wall.



### 3 SUMMARY OF PRELIMINARY RISK ASSESSMENT

RPS was appointed by Dublin Port Company to undertake a Preliminary Risk Assessment (Desk Study) Report for the study area. The RPS report titled 'Dublin Port: 3FM Preliminary Risk Assessment (Desk Study) Report' by RPS dated June 2024 should be read in conjunction with this report. A summary of findings from the Preliminary Risk Assessment are provided below.

### 3.1 On site sources

### 3.1.1 Current Site Use

Current industrial usage such as operational activities within Plot L including a petcoke storage area operated by Irish Cement, Hammond Lane Metal Recycling (scrap metal dealer), Ecocem Ireland Plant (cement manufacturer) and a number of fuel tanks are considered to be potential sources of contamination.

### 3.1.2 Previous Land Use – Historical Development

The study area is located predominantly within areas of reclamation, formally the foreshore. Made ground was used to reclaim the land in the early 1970s, consisting of hydraulic fill material including sands, silts, clays and gravel, as well as some brick, glass and cinders.

Area O formally operated as a landfill known as the Irishtown Tip Head. The Irishtown Tip Head commenced operations in 1948 in Ringsend. The filling operations moved sequentially eastwards before its eventual capping in 1978. Municipal waste and construction and demolition waste material were deposited at the landfill which was not a fully engineered landfill in line with modern best practice and standards.

The area of land adjacent to the sludge jetty where the turning circle will part encompass was previously infilled with construction and demolition waste under a Foreshore License authorisation in the early 2000s.

Due to the previous history of reclamation and landfilling and the various heavy industrial uses that have been present over the decades on the peninsula, it is expected that there is a potential for ground contamination to be present.

### 3.2 Off site sources

### 3.2.1 Surrounding Land Use – Current

The surrounding land use comprises extensive industrial landuse in the surrounding port areas including significant fuel storage, power stations and sub-stations and these may have the potential for ground contamination



### 3.2.2 Surrounding Land Use – Historical

Historical potentially contaminating activities are present in the area surrounding the site including the old Poolbeg Power Station, former Fabrizia site and the former Irish Glass Bottle site.

### 3.3 Environmental setting

A desk study of published material held on Geological Survey Ireland Map Viewer was undertaken to provide an initial overview of ground conditions at the site. The following describes the findings of this preliminary research.

The solid geology underlying the site is anticipated to be underlain by the Lucan Formation.

The drift geology beneath the site is expected to principally reflect the depositional process of the last glaciation when an extensive ice sheet that extended into the Irish Sea covered the region. Typically, during the ice advance boulder clays were deposited sub-glacially as lodgement till over the eroded rock head surface, whilst moraine deposits were laid down at the glacier margins. Subsequently, with the progressive retreat of the ice sheet from the region, fluvio-glacial deposits (sand, gravel and silt) were laid down by melt waters discharging from the front of the glacier. Recent deposition prior to reclamation of the site principally reflects marine erosional and depositional processes, which have modified the glacial deposits.

According to the GSI map for groundwater vulnerability, the site is partially mapped, the areas that are mapped have a low groundwater vulnerability indicating that the natural groundwater is unlikely to be easily contaminated by human activities.

An assessment carried out under the Water Framework Directive (WFD) 2013-2018 groundwater body (EPA, 2022) has concluded that the groundwater within the bedrock aquifer is presently of 'Good Status'. Groundwater Risk looks at the current water quality and trends and is used to highlight waterbodies that are at risk of deteriorating or being at less than Good status in the future. The site is categorised as being under review. During consultation with the GSI GeoIndex web viewer, it was found that there were no groundwater wells and springs in a 500m radius of the site.

The River Liffey is the dominant surface water feature that runs through the centre of Dublin, flowing from west to east before discharging into the Irish Sea. The transitional water quality status for The River Liffey from 2018 to 2020 under the Water Framework Directive (WFD), is described as being good and unpolluted. The Dodder River flows into the River Liffey just west of Tom Clarke Bridge. The South Dublin Bay Special Protection Area (SPA) is present southeast of the site.

An Industrial Emission licence (IEL) is held by The Hammond Lane Metal Company Limited which is located within Area L. The licence (P1002-01) is categorised as 'recovery, or a mix of



recovery and disposal, of a non-hazardous waste'. An IEL is also held c.330m south at Synergen Power Limited.

One Integrated Pollution Control license (IPC) is also within 500m of the site, located c.340m southeast of the site at Becbay Limited the former Irish Glass Bottle factory site (since 1994), categorised as being previously industrial in nature before being surrendered to state control in 2009. The EPA monitored the clean-up of the industrial contaminants across this 25-acre site by the Becbay owners prior to it being surrendered; concluding all environmental pollutants linked to the manufacturing legacy were cleared.

Following a review of available information, the following potential pollutant linkages were identified within the Preliminary Risk Assessment;

### Table 3-1 Preliminary conceptual site model

#### **POTENTIAL SOURCES**

#### Potential on-site sources:

- · Made ground, reduced quality soils and groundwater
- Former Landfill Soil gas and volatile vapours
- Potential Asbestos Containing Materials (ACM)

#### Potential off-site sources:

Current and historical surrounding land uses

#### **POTENTIAL PATHWAYS**

#### **Humans:**

- Dermal (skin) contact with contaminated soil, fugitive dust and the absorption of any contaminants through the skin into the body
- Inhalation of fugitive soil dust, asbestos fibres, gases or vapours
- · Ingestion of soil by hand to mouth activity

### **Environment:**

- Subsurface infiltration, leaching from sub-soils and groundwater flow
- Vertical migration of shallow potentially contaminated groundwater
- Shallow groundwater or leachate migration in lateral direction
- Buildings:
- Inhalation of gases or vapours

### **POTENTIAL RECEPTORS**

- Humans in form of future site users (commercial, and site workers during construction)
- Groundwater and River Liffey / South Dublin Bay Special Protection Area (SPA).
- · Buildings and services



# 4 INTRUSIVE GROUND INVESTIGATION METHODOLOGY & OBJECTIVES

### 4.1 Methodology

The contamination assessment comprised several main elements, carried out in a two phased basis as described below:

#### 4.1.1 Phase I - PRA

- Desk study (carried out by RPS)
- Site walkover (carried out by RPS)

The information gathered during the PRA (as detailed in the previous sections) was used to plan and focus the Phase II investigation. The Phase II investigation comprised the following:

### 4.1.2 Phase II - GQRA

- Ground investigation
- Chemical testing of soil samples
- Chemical testing of groundwater samples
- Ground borne gas survey

### 4.2 Objectives for Investigation

- To assess sub-soil and groundwater contamination and soil borne gas levels to enable a
  generic quantitative risk assessment (GQRA) to be undertaken to assess the potential
  risks to human health and environmental receptors.
- To summarise the findings of the chemical testing and based on the results; revise the Conceptual Model for the site.
- To provide sufficient evidence with regards to the sites suitability for the proposed end use.

### 4.3 Sampling Strategy

An intrusive geotechnical and geo-environmental ground investigation was undertaken at the site by Causeway Geotech Ltd between the 8<sup>th</sup> of November 2022 and the 10<sup>th</sup> of February 2023. The investigation was divided by land ownership into Dublin Port Company (DPC) lands and Dublin City Council (DCC) lands.



### 4.3.1 Dublin Port Company (DPC) Lands

The investigation undertaken on lands owned by DPC consisted of the following:

- Twenty boreholes
  - Five (5) light cable percussion boreholes
  - Five (5) boreholes by light cable percussion extended by rotary follow-on drilling
  - Ten (10) boreholes by dynamic (windowless) sampling
- The installation of thirteen (13) combined gas / shallow groundwater monitoring standpipes;
- Two (2) machine dug silt trenches
- Indirect CBR tests at two locations
- Four (4) road cores

The exploratory hole locations are shown in Appendix A. Details of the borehole logs, trial pit logs and monitoring installations are provided in the Causeway Geotech Ground Investigation Report in Appendix B.

A total of twenty (20) boreholes (BH101-BH103, BH105, BH110, BH112, BH116, BH117, BH119-BH131) were excavated to a maximum depth of 41.00m bgl by means of a CME-55 drill rig using a combination of hollow stem auger drilling, mud rotary drilling and percussion sampling techniques.

### Light cable percussion boreholes

A total of five (5) boreholes (BH119, BH121, BH122, BH130, BH131) were each excavated to a depth of 6.0m bgl by using either a Dando 2000 or Dando 3000 light cable percussion boring rigs. All boreholes were terminated at scheduled depth or on encountering virtual refusal on obstructions.

### Boreholes by combined percussion boring and rotary follow-on drilling

Five (5) boreholes (BH101, BH120 and BH123-BH125) were put down by a combination of light cable percussion boring and rotary follow-on drilling techniques using a Beretta T44 or Commachio 601 rotary drilling rig with core recovery in bedrock. Where the cable percussion boreholes refused rotary percussion methods were employed to advance the borehole to competent strata after which coring was carried out to completion. Symmetrix cased full-hole drilling was used, with SPTs carried out at standard intervals as required.

### Dynamic sampled boreholes

Ten (10) boreholes (BH102-103, BH105, BH108-110, BH112, BH116-117 and BH126-128) were put down to completion by light percussion boring techniques using a Dando Terrier or Premier 110 dynamic sampling rig.



### Standpipe installations

Combined gas / groundwater monitoring standpipes were installed in thirteen boreholes (BH102, BH103, BH105, BH112, BH120-BH128) per RPS instructions to target shallow groundwater and ground gas in the Made Ground strata. Groundwater monitoring standpipes were installed in boreholes BH120 and BH123 as per RPS instruction to target deeper groundwater within the underlying Sand strata. Each standpipe comprised a 50mm HDPE well casing and well screen sections with associated gravel filter pack, bentonite pellet seal, push fit base cap, geotextile filter sock, push fit gas bung, cement/bentonite grout seals and steel head cover.

Details of groundwater strikes, as encountered during boring operations, and presented on the exploratory hole logs together with details of the water levels as recorded upon completion of the boreholes.

#### Silt Trenches

Two (2) silt trenches (ST102 and ST104) were excavated by a combination of hand digging and mechanical excavation using a compact 3t tracked excavator fitted with a 600mm wide toothless bucket, to locate and identify buried services at the site.

#### **Road Cores**

Four (4) road cores (RC101-RC104) were carried out at locations to establish the pavement make-up. The road cores were taken using hand-held diamond coring equipment to facilitate the collection of representative soil samples for detailed geotechnical description.

DCP tests were conducted at two (2) locations (RC102 and RC104) using a Dynamic Cone Penetrometer. The DCP tests were undertaken in order that an assessment could be made of the strength of the soils present to a maximum depth of 1.0m bgl along the route of proposed roads and pavement areas.

### 4.3.2 Dublin City Council (DCC) Lands

The investigation undertaken on lands owned by DCC consisted of the following:

- Ten (10) boreholes
  - Six (6) light cable percussion boreholes
  - Three (3) boreholes by light cable percussion extended by rotary follow-on drilling
  - One (1) borehole by dynamic (windowless) sampling
- Two (2) machine dug silt trenches
- Indirect CBR tests at eighteen (18) locations
- Twenty (20) road cores



Details of the borehole logs, trial pit logs and monitoring installations are provided in the Causeway Geotech Ground Investigation Report in Appendix B.

### Light cable percussion boreholes

Six (6) boreholes (BH208-BH208D and BH212) were excavated to a depth of 6.0m bgl by using either a Dando 2000 or Dando 3000 light cable percussion boring rigs. All boreholes were terminated at scheduled depth or on encountering virtual refusal on obstructions.

### Boreholes by combined percussion boring and rotary follow-on drilling

Three (3) boreholes (BH215-BH217) were excavated by a combination of light cable percussion boring and rotary follow-on drilling techniques. In the case that cable percussion techniques had not been advanced in competent strata, rotary percussive methods were employed to advance the borehole to completion. Symmetrix cased full-hole drilling was used, with SPTs carried out at standard intervals as required.

### **Dynamic Sampled borehole**

One borehole (BH203) was put down to completion by light percussion boring techniques using a Premier110 dynamic sampling rig.

### **Slit Trenches**

Two (2) slit trenches (ST203 and ST204) were excavated by a combination of hand digging and mechanical excavation using a compact 3t tracked excavator fitted with a 600mm wide toothless bucket, to locate and identify buried services at the site.

#### **Road Cores**

A total of twenty (20) road cores were carried out at locations to establish the pavement makeup. The road cores were taken using hand-held diamond coring equipment to facilitate the collection of representative soil samples for detailed geotechnical description..

DCP tests were conducted at eighteen locations (RC202-RC207, RC209 and RC211-221) using a Dynamic Cone Penetrometer. The DCP tests were undertaken in order that an assessment could be made of the strength of the soils present to a maximum depth of 1.0m bgl along the route of proposed roads and pavement areas.

Boreholes were targeted to potential sources of contamination in the first instance based on historical building footprints identified in historical mapping, and then spread across the site taking the proposed development plan into account. The boreholes facilitated soil sampling, groundwater and ground gas monitoring and obtaining geotechnical information for design.



**Table 4-1 Exploratory location rationale** 

| Exploratory Hole | Rationale for location                                                                                                                                                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maritime Village |                                                                                                                                                                            |
| BH102            | Located within / along the maritime village. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for road design. |
| BH103            | Located within the area of MTL. To facilitate environmental soil, groundwater and ground gas sampling.                                                                     |
| BH130            | Located within the area of MTL. To facilitate design, aimed behind concrete caisson to confirm retained fill material.                                                     |
| BH131            | Located within the area of MTL. Aimed to core through concrete hardstanding, into caisson, confirming gravel (or other) fill, level of caisson base and underlying strata. |

| Exploratory Hole    | Rationale for location                                                                                                                                                                                                 |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Active Transport Ro | Active Transport Route / Pathway                                                                                                                                                                                       |  |  |  |
| BH101               | Located within the compound of Sea Truck Ferries. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for road design.                                        |  |  |  |
| BH105               | Located within MTL. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for road design.                                                                      |  |  |  |
| BH110               | Located along Pigeon House Road. Required for geotechnical information for road design. Required for geotechnical information for road design.                                                                         |  |  |  |
| BH112               | Located along South bank road / entrance to E D & F Man Liquid Products Ireland Limited. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for road design. |  |  |  |
| BH116               | Area known as 'John Noaln Transport.' To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for road design.                                                    |  |  |  |
| BH117               | Area known as 'John Noaln Transport.' To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for road design.                                                    |  |  |  |
| BH208               | To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for road design.                                                                                          |  |  |  |
| ST101               | Located within MTL. Geotechnical for road design/confirm existing road makeup/services.                                                                                                                                |  |  |  |
| ST102               | Located along Pigeon House Road. Geotechnical for road design/confirm existing road makeup/services.                                                                                                                   |  |  |  |
| ST104               | Area known as 'John Nolan Transport.' Geotechnical for road design/confirm existing road makeup/services.                                                                                                              |  |  |  |



| Exploratory Hole                 | Rationale for location                                                                                                    |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| Active Transport Route / Pathway |                                                                                                                           |  |  |
| RC101                            | Loctaed on the north side of Dublin Port along Alexandra Road. Geotechnical for road design/confirm existing road makeup. |  |  |
| RC102                            | Located along South bank road. Geotechnical for road design/confirm existing road makeup.                                 |  |  |
| RC103                            | Located along South bank road/Port park area. Geotechnical for road design/confirm existing road makeup.                  |  |  |
| RC104                            | Located along South bank road. Geotechnical for road design/confirm existing road makeup.                                 |  |  |
| RC208                            | Located along Pigeon House Road.                                                                                          |  |  |
| RC209                            | Located along Pigeon House Road.                                                                                          |  |  |
| RC210                            | Located along Pigeon House Road.                                                                                          |  |  |
| RC211                            | Located along Pigeon House Road.                                                                                          |  |  |
| RC212                            | Located along Pigeon House Road.                                                                                          |  |  |
| RC215                            | Located along Pigeon House Road.                                                                                          |  |  |
| RC216                            | Geotechnical for road design/confirm existing road makeup/services.                                                       |  |  |
| RC217                            | Geotechnical for road design/confirm existing road makeup/services.                                                       |  |  |
| RC218                            | Adjacent Ringsend Wastewater Treatment Works.                                                                             |  |  |
| RC219                            | Coastal path.                                                                                                             |  |  |
| RC220                            | Coastal path.                                                                                                             |  |  |
| RC221                            | Coastal path.                                                                                                             |  |  |

| Exploratory<br>Hole | Rationale for location                                                                                                                                                             |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area O              |                                                                                                                                                                                    |
| BH119               | Located within Murphy's Ringsend Offices. Required for geotechnical information for road design.                                                                                   |
| BH120               | Located within Murphy's Ringsend Offices. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for road and area O design. |



| Exploratory<br>Hole | Rationale for location                                                                                                                                                                 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area O              |                                                                                                                                                                                        |
| BH121               | Former landfill area located in Pool Beg Construction. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for area O design. |
| BH122               | Former landfill area. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for area O design.                                  |
| BH123               | Former landfill area. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for area O design.                                  |
| BH124               | Former landfill area. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for area O design.                                  |
| BH125               | Former landfill area. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for area O design.                                  |

| Exploratory<br>Hole | Rationale for location                                                                                                                                               |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Port Park           |                                                                                                                                                                      |
| BH126               | Former landfill area. To facilitate environmental soil, groundwater and ground gas sampling.                                                                         |
| BH126A              | Former landfill area. To facilitate environmental soil, groundwater and ground gas sampling.                                                                         |
| BH127               | Former landfill area currently occupied by Bissett Industrial contracting and D4 metal works. To facilitate environmental soil, groundwater and ground gas sampling. |
| BH128               | Former landfill area. To facilitate environmental soil, groundwater and ground gas sampling.                                                                         |

| Exploratory<br>Hole | Rationale for location                                                                                                        |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Shellybanks R       | oad                                                                                                                           |
| BH203               | To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for road design. |
| ST203               | Geotechnical for road design/confirm existing road makeup/services.                                                           |
| ST204               | Geotechnical for road design/confirm existing road makeup/services.                                                           |
| RC202               | Geotechnical for road design/confirm existing road makeup/services.                                                           |
| RC203               | Geotechnical for road design/confirm existing road makeup/services.                                                           |
| RC204               | Geotechnical for road design/confirm existing road makeup/services.                                                           |



| Exploratory<br>Hole | Rationale for location                                              |
|---------------------|---------------------------------------------------------------------|
| Shellybanks R       | oad                                                                 |
| RC205               | Geotechnical for road design/confirm existing road makeup/services. |
| RC206               | Geotechnical for road design/confirm existing road makeup/services. |
| RC208               | Geotechnical for road design/confirm existing road makeup/services. |

| Exploratory Hole | Rationale for location                              |
|------------------|-----------------------------------------------------|
| Area N           |                                                     |
| BH212            | Located adjacent NORA Poolbeg Oil Storage Terminal. |

| Exploratory Hole | Rationale for location                                                                                                                  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Turning Circle   |                                                                                                                                         |
| BH215            | To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for turning circle design. |
| BH216            | To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for turning circle design. |
| BH217            | To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for turning circle design. |



Table 4-2 Exploratory hole summary DPC lands

| Location | Proposed<br>Termination<br>Depth (m) | Actual<br>Terminati<br>on Depth<br>(m) | Observations/Problems<br>Encountered                         | Installation<br>Monitoring Details                                          |
|----------|--------------------------------------|----------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|
| BH101    | 30.0                                 | 30.0                                   | Target strata reached,<br>terminated in limestone<br>bedrock | No installation                                                             |
| BH102    | 5.0                                  | 3.0                                    | Terminated due to casing refusal at 2.50m                    | 0.0-0.5m plain pipe<br>0.5-2.40m slotted<br>pipe, to target made<br>ground  |
| BH103    | 5.0                                  | 4.0                                    | Terminated due to borehole collapse                          | 0.0-0.5 plain pipe<br>0.5-3.7m slotted pipe,<br>to target made ground       |
| BH105    | 5.0                                  | 2.50                                   | Terminated due to sampler refusal                            | 0.0-0.5 plain pipe<br>0.5-2.2m slotted pipe,<br>to target made ground       |
| BH110    | 5.0                                  | 4.00                                   | Terminated due to borehole collapse from 4.00m to 3.50m      | No installation                                                             |
| BH112    | 5.0                                  | 4.00                                   | Terminated due to borehole collapse                          | 0.0-0.5 plain pipe<br>0.5-3.4m slotted pipe,<br>to target made ground       |
| BH116    | 3.0                                  | 1.60                                   | Location terminated by client                                | No installation                                                             |
| BH117    | 3.0                                  | 1.60                                   | Terminated on refusal, four attempts to advance borehole     | No installation                                                             |
| BH119    | 3.0                                  | 3.50                                   | Terminated due to casing refusal                             | No installation                                                             |
| BH120    | 40.0 /<br>Bedrock                    | 40.50                                  | Terminated at scheduled depth                                | 0.0-6.5m plain pipe<br>6.5-20m slotted pipe,<br>to target water in<br>sands |
| BH121    | 40.0 /<br>Bedrock                    | 32.45                                  | Terminated at scheduled depth                                | 0.0-0.5m plain pipe<br>0.5-5.5m slotted pipe,<br>to target made ground      |



| Location | Proposed<br>Termination<br>Depth (m) | Actual<br>Terminati<br>on Depth<br>(m) | Observations/Problems<br>Encountered | Installation<br>Monitoring Details                                                  |
|----------|--------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------|
| BH122    | 40.0 /<br>Bedrock                    | 23.50                                  | Terminated at scheduled depth        | 0.0-0.5m plain pipe<br>0.5-5.0m slotted pipe,<br>to target made ground              |
| BH123    | 40.0 /<br>Bedrock                    | 41.00                                  | Terminated at scheduled depth        | 0.0-4.5m plain pipe<br>4.5-6.5m slotted pipe,<br>to target waters in<br>sand strata |
| BH124    | 40.0 /<br>Bedrock                    | 40.00                                  | Terminated at scheduled depth        | 0.0-0.5m plain pipe<br>0.5-1.5m slotted pipe,<br>to target made ground              |
| BH125    | 40.0 /<br>Bedrock                    | 36.5                                   | Terminated at scheduled depth        | 0.0-0.5m plain pipe<br>0.5-5.0m slotted pipe,<br>to target made ground              |
| BH126    | 5.00                                 | 1.50                                   | Terminated due to casing refusal     | No installation                                                                     |
| BH126A   | 5.00                                 | 1.50                                   | Terminated due to casing refusal     | 0.0-0.5m plain pipe<br>0.5-1.0m slotted pipe,<br>to target made ground              |
| BH127    | 5.00                                 | 3.0                                    | Terminated due to casing refusal     | 0.0-0.5m plain pipe<br>0.5-2.5m slotted pipe,<br>to target made ground              |
| BH128    | 5.00                                 | 2.60                                   | Terminated due to casing refusal     | 0.0-0.5m plain pipe<br>0.5-2.1m slotted pipe,<br>to target made ground              |
| BH130    | 25.00                                | 21.00                                  | Terminated at scheduled depth        | No installation                                                                     |
| BH131    | 25.0                                 | 17.00                                  | Terminated due to casing refusal     | No installation                                                                     |



Table 4-3 Exploratory hole summary DCC/third party lands

| Location | Proposed<br>Termination<br>Depth (m) | Actual<br>Terminati<br>on Depth<br>(m) | Observations/Problems<br>Encountered                 | Installation<br>Monitoring Details |
|----------|--------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------|
| BH203    | 5.00                                 | 0.60                                   | Terminated due to services present                   | No installation                    |
| BH208    | 5.00                                 | 0.90                                   | Terminated on concrete                               | No installation                    |
| BH208A   | 5.00                                 | 0.40                                   | Terminated at refusal on boulders / possible bedrock | No installation                    |
| BH208B   | 5.00                                 | 0.80                                   | Terminated at refusal on concrete                    | No installation                    |
| BH208C   | 5.00                                 | 0.80                                   | Terminated at refusal on concrete                    | No installation                    |
| BH208D   | 5.00                                 | 0.15                                   | Terminated at refusal on concrete                    | No installation                    |
| BH212    | 50.0 /<br>Bedrock                    | 10.20                                  | Terminated at scheduled depth                        | No installation                    |
| BH215    | 40.0 /<br>Bedrock                    | 40.00                                  | Terminated at scheduled depth                        | No installation                    |
| BH216    | 40.0 /<br>Bedrock                    | 40.50                                  | Terminated at scheduled depth                        | No installation                    |
| BH217    | 40.0 /<br>Bedrock                    | 41.00                                  | Terminated at scheduled depth                        | No installation                    |



### 4.4 Analytical strategy

Environmental soil samples were taken at regular intervals throughout the length of the excavation of each borehole. The protocol observed during the recovery of samples followed the guidance set out in BS 10175:2011 + A2:2017 The Code of Practice for the Investigation of Potentially Contaminated Sites.

A total of thirty-two (32) soil samples were sent to Chemtest for analysis. Samples were analysed for; Asbestos identification, moisture content, pH, Boron (hot water soluble), Sulphate (2:1 water soluble) as SO4, Total Sulphur, Sulphur (Elemental), Cyanide (total), Iron (total), Arsenic, Beryllium, Cadmium, Chromium (total), Copper, Mercury, Nickel, Lead, Selenium, Vanadium, Zinc, Chromium (hexavalent), Organic matter, Total Petroleum Hydrocarbons (TPH-CWG C5 – C35 aromatic-aliphatic split), speciated Polycyclic Aromatic Hydrocarbons (PAHs), Volatile Organic Compounds (VOCs), Semi-volatile Organic Compounds (SVOCs), speciated Poly Chlorinated Biphenyls (PCBs) and Phenols (speciated HPLC).

A total of five (5) soil samples were also analysed for Leachate Analysis. As per the EA Remedial Targets Methodology, the Level 1 screen examines the potential for contaminants to leach from soil to soil pore water.

Speciated TPH analysis was undertaken to provide a better understanding of the 'make up' of any hydrocarbon contamination in relation to the specific carbon banding, as suggested within the 'Total Petroleum Hydrocarbon Criteria Working Group' (TPH-CWG) literature and recommended by the Environment Agency document P5-080/TR3 'The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbon in Soil'.

Five (5) groundwater samples and three (3) surface water samples were collected and sent to Chemtest for a similar range of contaminants as listed above for the soil samples.

### 4.5 Observation of potential contaminants in soil and groundwater

The following olfactory evidence of contamination was noted by Causeway Geotech Ltd in a borehole log for a borehole located within Area O;

• BH126 at 0.40 – 1.50m bgl: Hydrocarbon odour within made ground

There is no further note of visual or olfactory evidence for remaining borehole and trial pit logs from the intrusive investigation.



### 4.6 Problems encountered during investigation

### 4.6.1 Access constraints

Despite engagement with stakeholders and port operators, access was refused to some of the proposed ground investigation locations for a number of reasons which are outlined in the table below. Later during the period of field monitoring works, access was not possible to a number of installed monitoring well and the locations affected are outlined in Section 6.3 of this report.

Table 4-4 Ground investigation locations and access constraint issues

|       | Location ID | Stakeholder / land ownership or operator | Access Constraint                                   |
|-------|-------------|------------------------------------------|-----------------------------------------------------|
| BH104 |             | Dublin Port Company / MTL                | No safe location due to proximity to working crane. |
| BH106 |             | Dublin Port Company / MTL                | No safe utility service clearance in this area.     |
| BH107 |             | Dublin Port Company / MTL                | No safe utility service clearance in this area.     |
| BH108 |             | Dublin Port Company / MTL                | No safe utility service clearance in this area.     |
| BH109 |             | Dublin Port Company / MTL                | No safe utility service clearance in this area.     |
| BH111 |             | Dublin Port Company / Rushfleet          | No access from site operator.                       |
| BH113 |             | Dublin Port Company                      | No safe utility service clearance from ESB Energy.  |
| BH114 |             | Dublin Port Company                      | No safe utility service clearance from ESB Energy.  |
| BH115 |             | Dublin Port Company / Rushfleet          | No access from site operator.                       |



| Location ID | Stakeholder / land ownership or operator | Access Constraint                                                                          |
|-------------|------------------------------------------|--------------------------------------------------------------------------------------------|
| BH118       | Dublin Port Company                      | No safe utility clearance from Gas Network's Ireland (GNI).                                |
| BH129       | Dublin Port Company                      | ESB supervision required, could not attend site during the programme of the investigation. |
| BH132       | Dublin Port Company / MTL                | No safe utility service clearance in proposed area of quay.                                |
| TP101       | Dublin Port Company                      | No safe utility clearance from ESB.                                                        |
| TP102       | Dublin Port Company                      | No safe clearance area due to Japanese knotweed and utility services.                      |
| TP103       | Dublin Port Company                      | ESB supervision required, could not attend site during the programme of the investigation. |
| ST101       | Dublin Port Company / MTL                | ESB supervision required, could not attend site during the programme of the investigation. |
| ST103       | Dublin Port Company                      | Access constraints due to traffic management requirements.                                 |



|       | Location ID | Stakeholder / land ownership or            | Access Constraint                                                                          |
|-------|-------------|--------------------------------------------|--------------------------------------------------------------------------------------------|
|       |             | operator                                   |                                                                                            |
| ST105 |             | Dublin Port Company                        | ESB supervision required, could not attend site during the programme of the investigation. |
| ST106 |             | Dublin Port Company                        | ESB supervision required, could not attend site during the programme of the investigation. |
| ST107 |             | Dublin Port Company                        | ESB supervision required, could not attend site during the programme of the investigation. |
| ST108 |             | Dublin Port Company / Ward & Burke         | Access constraints due to live traffic area providing access / egress to various sites     |
| ST109 |             | Dublin Port Company / Hegarty ar<br>Murphy | required, could not attend site during the programme of the investigation.                 |
| BH201 |             | Dublin City Council / Shellybanks Road     | Proximity to ESB underground cable                                                         |
| BH202 |             | Dublin City Council / Shellybanks Road     | Proximity to ESB underground cable                                                         |
| BH204 |             | Dublin City Council / Shellybanks Road     | No access to Covanta site                                                                  |
| BH205 |             | Dublin City Council                        | ESB supervision required / ESB could                                                       |



|       | Location ID | Stakeholder / land ownership or | Access Constraint                                                                    |
|-------|-------------|---------------------------------|--------------------------------------------------------------------------------------|
|       |             | operator                        |                                                                                      |
|       |             |                                 | not clear a safe<br>distance from<br>services.                                       |
| BH206 |             | Dublin City Council / ESB       | ESB supervision required / ESB could not clear a safe distance from services.        |
| BH207 |             | Dublin City Council             | ESB supervision required / ESB could not clear a safe distance from services.        |
| BH209 |             | Dublin Port Company             | No access approved during engagement with Dublin City Council Parks.                 |
| BH210 |             | Dublin Port Company             | No access approved during engagement with Dublin City Council Parks.                 |
| BH211 |             | Dublin Port Company             | No access approved during engagement with Dublin City Council Parks.                 |
| BH213 |             | Dublin Port Company             | No access approved during engagement with ESB & National Oil Reserves Agency (NORA). |
| BH214 |             | Dublin City Council             | No access approved during engagement                                                 |



|       | Location ID | Stakeholder / land ownership or         | Access Constraint                                                    |
|-------|-------------|-----------------------------------------|----------------------------------------------------------------------|
|       |             | operator                                |                                                                      |
|       |             |                                         | with ESB & National Oil Reserves Agency (NORA).                      |
| RC201 |             | Dublin City Council                     | No access approved.                                                  |
| ST201 |             | Dublin City Council                     | No safe utility clearance from ESB.                                  |
| ST202 |             | Dublin City Council / Shellybanks Road  | No access approved during engagement with Covanta.                   |
| ST205 |             | Dublin City Council / Shellybanks Road  | No access approved during engagement with ESB.                       |
| ST206 |             | Dublin City Council / Pigeon House Road | d No safe utility clearance from ESB.                                |
| ST207 |             | Dublin City Council / Shellybanks Road  | No safe utility clearance from ESB.                                  |
| ST208 |             | ESB                                     | No safe utility clearance from ESB.                                  |
| ST209 |             | Dublin City Council                     | No safe utility service clearance in this area.                      |
| ST210 |             | Dublin City Council                     | No safe utility service clearance in this area.                      |
| ST211 |             | Dublin City Council                     | No access approved during engagement with Dublin City Council Parks. |
| ST212 |             | Dublin City Council                     | No access approved during engagement                                 |



|       | Location ID | Stakeholder / land ownership or operator | Access Constraint                                                    |
|-------|-------------|------------------------------------------|----------------------------------------------------------------------|
|       |             |                                          | with Dublin City<br>Council Parks.                                   |
| ST213 |             | Dublin City Council                      | No access approved during engagement with Dublin City Council Parks. |
| ST214 |             | Dublin City Council                      | No access approved during engagement with Dublin City Council Parks. |
| ST215 |             | Dublin Port Company                      | No access approved during engagement with Dublin City Council Parks. |
| ST216 |             | Dublin Port Company                      | No access approved during engagement with Dublin City Council Parks. |
| ST217 |             | Dublin Port Company                      | No access approved during engagement with Dublin City Council Parks. |
| ST218 |             | Dublin Port Company                      | No access approved during engagement with Dublin City Council Parks. |
| ST219 |             | Dublin Port Company                      | No access approved during engagement with Dublin City Council Parks. |



|       | Location ID | Stakeholder / land ownership or operator | Access Constraint       |
|-------|-------------|------------------------------------------|-------------------------|
| TP201 |             | Dublin City Council / Pigeon House Road  | •                       |
|       |             |                                          | clearance in this area. |
| TP202 |             | Dublin City Council / Pigeon House Road  | d ESB supervision       |
|       |             |                                          | required, could not     |
|       |             |                                          | attend site during the  |
|       |             |                                          | programme of the        |
|       |             |                                          | investigation.          |
| TP203 |             | Dublin City Council                      | ESB supervision         |
|       |             |                                          | required, could not     |
|       |             |                                          | attend site during the  |
|       |             |                                          | programme of the        |
|       |             |                                          | investigation.          |



### 5 ADDITIONAL GROUND INVESTIGATION 2024

### 5.1 Methodology

As the scope of the 3FM project expanded, further ground investigation works were carried out between March 2024 and June 2024 to provide further information on ground conditions within Area O. Further information was also required from within Area L which was not originally included within the scope of works.

The same approach described in Chapter 4 of this report was adopted for the contamination assessment. Information obtained from Area L, and the additional information obtained from Area O between March 2024 and June 2024 have been included in the overall assessment.

### 5.2 Sampling strategy

An intrusive geotechnical and geo-environmental ground investigation was undertaken at the site by Causeway Geotech Ltd between the March 2024 and June 2024. The investigation was divided into Area L and Area O.

### 5.2.1 Area L

The investigation undertaken on lands owned by DPC consisted of the following:

- Thirteen (13) sonic drilled boreholes
- The installation of twelve (12) combined gas / shallow groundwater monitoring standpipes;
- Four (4) machine dug trial pits
- Insitu testing, including:
  - Indirect CBR tests at four (4) locations
  - Standard Penetration Tests
  - Photoionization Detection (PID) testing
- Ground Penetrating Radar (GPR) surveying

The exploratory hole locations are shown in Appendix A. Details of the borehole logs, trial pit logs and monitoring installations are provided in the Causeway Geotech Ground Investigation Report in Appendix B.

A total of thirteen (13) boreholes were put to their completion by sonic drilling techniques. The boreholes were completed using a Fraste CRS XL Duo and a Fraste XL Duo rubber-tracked sonic drilling rig.

Six of the boreholes were 'deep' boreholes and reached a maximum depth of 30.15m bgl (BH304, BH306, BH308, BH309, BH313 & BH314). Six (6) of the boreholes were 'shallow'



boreholes and reached a maximum target depth of 8.0m bgl (BH301-303, BH305, BH307, BH310 & BH311).

One (1) borehole was cancelled from the scope (BH312) due to health and safety and traffic management issues.

### Standpipe installations

Combined gas / groundwater monitoring standpipes were installed in twelve (12) boreholes (all boreholes excluding BH312 which was removed from the scope and BH314) per RPS instructions to target shallow groundwater and ground gas in the Made Ground strata and Sands & Gravels. Each standpipe comprised a 50mm HDPE well casing and well screen sections with associated gravel filter pack, bentonite pellet seal, push fit base cap, geotextile filter sock, push fit gas bung, cement/bentonite grout seals and steel head cover.

Details of groundwater strikes, as encountered during boring operations, and presented on the exploratory hole logs together with details of the water levels as recorded upon completion of the boreholes.

### **Trial Pits**

Four (4) trial pits (TP301-TP304) were excavated using a compact 3t tracked excavator fitted with a 600mm wide toothless bucket, to depths of up to 1.5m bgl.

### 5.2.2 Area O additional boreholes

The additional boreholes undertaken within Area O consisted of the following:

- Eight (8) boreholes
  - Three (3) light cable percussion boreholes
  - Five (5) sonic boreholes

Details of the borehole logs and monitoring installations are provided in the Causeway Geotech Ground Investigation Report in Appendix B.

### Light cable percussion boreholes

Three (3) boreholes (BH315-BH317) were excavated to a depth of 8.0m bgl by using a 200mm diameter Dando 2500 light cable percussion boring rig. All boreholes were terminated at scheduled depth.

#### Sonic boreholes

Five (5) boreholes (BH318-BH322) were put to their completion by sonic drilling techniques. The boreholes were completed using a Fraste CRS-XL Duo rubber-tracked sonic drilling rig.



**Table 5-1 Exploratory location rationale** 

| Exploratory Hole  Area L | Rationale for location                                                                                                                                                                                                                                                          |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BH301                    | Located in the north-west of Area L to target potential downgradient migration of hydrocarbons from adjacent bulk fuel tanks. To facilitate environmental soil, groundwater and ground gas sampling.                                                                            |
| BH302                    | Located on the western boundary of Area L, adjacent to location of former bulk fuel storage tank. To facilitate environmental soil, groundwater and ground gas sampling.                                                                                                        |
| BH303                    | Located within north-west of Area L in lands operated by Irish Cement and targeting above ground fuel storage tank. To facilitate environmental soil, groundwater and ground gas sampling.                                                                                      |
| BH304                    | Located in the north of Area L, between building occupied by Irish Cement and the petcoke storage bund. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for design.                                                |
| BH305                    | Located in the north of Area L, north of the petcoke storage bund. To facilitate environmental soil, groundwater and ground gas sampling.                                                                                                                                       |
| BH306                    | Located in the south of Area L within Hammond Lane Recycling to target above ground fuel storage tanks. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for design.                                                |
| BH307                    | Located centrally within Area L, within Hammond Lane Recycling. To facilitate environmental soil, groundwater and ground gas sampling.                                                                                                                                          |
| BH308                    | Located in the south of Area L, within Hammond Lane Recycling. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for design.                                                                                         |
| BH309                    | Located along the eastern boundary of the Hammond Lane Recycling within Area L. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for design.                                                                        |
| BH310                    | Located in the north of Area L, north of the petcoke storage bund. To facilitate environmental soil, groundwater and ground gas sampling.                                                                                                                                       |
| BH311                    | Located in the north-east of Area L, north of Ecocem. To facilitate environmental soil, groundwater and ground gas sampling.                                                                                                                                                    |
| BH312                    | Located in the south-east of Area L, to the south-east of Ecocem. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for design. Later removed from the scope due to health and safety and traffic management issues. |
| BH313                    | Located in the south-east of Area L, to the south-east of Ecocem. To facilitate environmental soil, groundwater and ground gas sampling. Required for geotechnical information for road design.                                                                                 |
| BH314                    | Located in the south-east of Area L. Required for geotechnical information for road design.                                                                                                                                                                                     |
| TP301                    | Located at the entrance to Hammond Lane Recycling within Area L. Required for geotechnical information for design.                                                                                                                                                              |
| TP302                    | Located in the north of Area L, between building occupied by Irish Cement and the petcoke storage bund. Required for geotechnical information for design.                                                                                                                       |



# GENERIC QUANTITATIVE RISK ASSESSMENT (GQRA)

| Exploratory Hole | Rationale for location                                                                                            |
|------------------|-------------------------------------------------------------------------------------------------------------------|
| Area L           |                                                                                                                   |
| TP303            | Located in the south of Area L. Required for geotechnical information for design.                                 |
| TP304            | Located centrally within Area L, within Hammond Lane Recycling. Required for geotechnical information for design. |

| Exploratory Hole | Rationale for location                                                                       |
|------------------|----------------------------------------------------------------------------------------------|
| Area O           |                                                                                              |
| BH315            | Located within Area O to facilitate environmental soil, groundwater and ground gas sampling. |
| BH316            | Located within Area O to facilitate environmental soil, groundwater and ground gas sampling. |
| BH317            | Located within Area O to facilitate environmental soil, groundwater and ground gas sampling. |
| BH318            | Located within Area O to facilitate environmental soil, groundwater and ground gas sampling. |
| BH319            | Located within Area O to facilitate environmental soil, groundwater and ground gas sampling. |
| BH320            | Located within Area O to facilitate environmental soil, groundwater and ground gas sampling. |
| BH321            | Located within Area O to facilitate environmental soil, groundwater and ground gas sampling. |
| BH322            | Located within Area O to facilitate environmental soil, groundwater and ground gas sampling. |



Table 5-2 Exploratory hole summary Area L

| Location | Proposed<br>Termination<br>Depth (m) | Actual<br>Termination<br>Depth (m) | Observations/Problems<br>Encountered          | Installation Monitoring<br>Details                                             |
|----------|--------------------------------------|------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------|
| BH301B   | 6.00                                 | 8.00                               | Target strata reached,<br>terminated in SANDS | 0.0-0.5m plain pipe<br>0.5-6.0m slotted pipe, to<br>target made ground         |
| BH302    | 6.00                                 | 7.00                               | Target strata reached,<br>terminated in SANDS | 0.0-0.5m plain pipe<br>0.5-5.5m slotted pipe, to<br>target made ground         |
| ВН303    | 6.00                                 | 8.00                               | Terminated at scheduled depth                 | 0.0-0.5m plain pipe<br>0.5-6.0m slotted pipe, to<br>target made ground         |
| BH304    | 30.00                                | 30.15                              | Target depth reached,<br>terminated in CLAY   | 0.0-2.8m plain pipe<br>2.8-6.5m slotted pipe, to<br>target made ground         |
| BH305    | 6.00                                 | 6.00                               | Target strata reached,<br>terminated in SANDS | 0.0-0.5m plain pipe<br>0.5-3.0m slotted pipe, to<br>target made ground         |
| BH306    | 30.00                                | 29.70                              | Terminated due to refusal                     | 0.0-0.5 plain pipe<br>0.5-2.5m slotted pipe, to<br>target made ground          |
| BH307    | 6.00                                 | 6.00                               | Target strata reached,<br>terminated in SANDS | 0.0-0.50m plain pipe<br>0.5-3.5m slotted pipe, to<br>target made ground        |
| ВН308    | 30.00                                | 30.00                              | Target depth reached,<br>terminated in CLAY   | 0.0-5.5m plain pipe<br>5.5-10.0m slotted pipe,<br>to target SANDS &<br>GRAVELS |
| ВН309    | 30.00                                | 30.15                              | Target depth reached,<br>terminated in CLAY   | 0.0-0.5m plain pipe<br>0.5-8.0m slotted pipe, to<br>target SANDS &<br>GRAVELS  |
| BH310    | 6.00                                 | 6.00                               | Terminated at scheduled depth                 | 0.0-0.5m plain pipe<br>0.5-5.5m slotted pipe, to<br>target made ground         |
| BH311    | 6.00                                 | 6.00                               | Target strata reached,<br>terminated in SANDS | 0.0-0.5m plain pipe<br>0.5-3.5m slotted pipe, to<br>target made ground         |



| Location | Proposed<br>Termination<br>Depth (m) | Actual<br>Termination<br>Depth (m) | Observations/Problems<br>Encountered                                    | Installation Monitoring<br>Details                                           |
|----------|--------------------------------------|------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|
| BH312    | 30.00                                | n/a                                | Borehole cancelled due to unsafe access / egress for vehicles and plant | n/a                                                                          |
| ВН313    | 30.00                                | 30.15                              | Terminated at scheduled depth                                           | 0.0-4.0 plain pipe<br>4.5-8.0m slotted pipe, to<br>target SANDS &<br>GRAVELS |
| BH314    | 30.00                                | 30.15                              | Terminated at scheduled depth                                           | No installation                                                              |

Table 5-3 Exploratory hole summary Area O

| Location | Proposed<br>Termination<br>Depth (m) | Actual<br>Terminati<br>on Depth<br>(m) | Observations/Problems<br>Encountered | Installation<br>Monitoring Details                                                                     |
|----------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|
| BH315    | 8.00                                 | 8.00                                   | Terminated at scheduled depth        | 0.0-0.5m plain pipe,<br>0.5-3.0m slotted pipe,<br>to target made ground                                |
| BH316    | 8.00                                 | 8.00                                   | Terminated at scheduled depth        | 0.0-0.5m plain pipe<br>0.5-4.0m slotted pipe,<br>to target made ground                                 |
| BH317    | 8.00                                 | 8.00                                   | Terminated at scheduled depth        | 0.0-0.5m plain pipe<br>0.5-4.7m slotted pipe,<br>to target made ground                                 |
| BH318    | 8.00                                 | 8.00                                   | Terminated at scheduled depth        | 0.0-0.5m plain pipe<br>0.5-4.5m slotted pipe,<br>to target made ground<br>including household<br>waste |
| BH319    | 8.00                                 | 8.00                                   | Terminated at scheduled depth        | 0.0-0.5m plain pipe<br>0.5-4.5m slotted pipe,<br>to target made ground<br>including household<br>waste |
| BH320    | 8.00                                 | 8.00                                   | Terminated at scheduled<br>depth     | 0.0-0.5m plain pipe<br>0.5-4.5m slotted pipe,<br>to target made ground<br>including household<br>waste |
| BH321    | 8.00                                 | 8.00                                   | Terminated at scheduled depth        | 0.0-0.5m plain pipe<br>0.5-4.5m slotted pipe,                                                          |



# GENERIC QUANTITATIVE RISK ASSESSMENT (GQRA)

| Location | Proposed<br>Termination<br>Depth (m) | Actual<br>Terminati<br>on Depth<br>(m) | Observations/Problems<br>Encountered | Installation<br>Monitoring Details                                                                     |
|----------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|
|          |                                      |                                        |                                      | to target made ground including household waste                                                        |
| BH322    | 8.00                                 | 8.00                                   | Terminated at scheduled<br>depth     | 0.0-0.5m plain pipe<br>0.5-4.5m slotted pipe,<br>to target made ground<br>including household<br>waste |



# 5.3 Analytical strategy

Environmental soil samples were taken at regular intervals throughout the length of the excavation of each borehole. The protocol observed during the recovery of samples followed the guidance set out in BS 10175:2011 + A2:2017 The Code of Practice for the Investigation of Potentially Contaminated Sites.

A total of fifty-six (56) soil samples were sent to DETS for analysis. Samples were analysed for; Asbestos identification, moisture content, pH, Boron (hot water soluble), Sulphate (2:1 water soluble) as SO4, Total Sulphur, Sulphur (Elemental), Cyanide (total), Iron (total), Arsenic, Beryllium, Cadmium, Chromium (total), Copper, Mercury, Nickel, Lead, Selenium, Vanadium, Zinc, Chromium (hexavalent), Organic matter, Total Petroleum Hydrocarbons (TPH-CWG C5 – C35 aromatic-aliphatic split), speciated Polycyclic Aromatic Hydrocarbons (PAHs), Volatile Organic Compounds (VOCs), Semi-volatile Organic Compounds (SVOCs), speciated Poly Chlorinated Biphenyls (PCBs) and Phenols (speciated HPLC).

A total of nine (9) soil samples were also analysed for soil leachability analysis. As per the EA Remedial Targets Methodology, the Level 1 screen examines the potential for contaminants to leach from soil to soil pore water.

Speciated TPH analysis was undertaken to provide a better understanding of the 'make up' of any hydrocarbon contamination in relation to the specific carbon banding, as suggested within the 'Total Petroleum Hydrocarbon Criteria Working Group' (TPH-CWG) literature and recommended by the Environment Agency document P5-080/TR3 'The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbon in Soil'.

Twenty (20) groundwater samples were collected and sent to DETS for a similar range of contaminants as listed above for the soil samples.

# 5.4 Observation of potential contaminants in soil and groundwater

No visual or olfactory evidence of contamination was noted by Causeway Geotech Ltd on the borehole logs, however, comments regarding hydrocarbon odours at the following locations were noted during conversations with RPS;

- Area L BH302: Mild hydrocarbon odour within made ground comprising construction & demolition material between 3.50 – 5.50mbgl.
- Area O BH316: Moderate strong hydrocarbon odour within made ground and household waste between 0.50 – 3.00mbgl.
- Area O BH318: Mild hydrocarbon smell within made ground and household waste.



# 5.5 Problems encountered during investigation

## 5.5.1 Access constraints

The approval for exploratory hole locations was discussed following a walkover with representatives from RPS and Dublin Port Company. The table below outlines access constraint issues encountered as part of the investigation.

Table 5-4 Ground investigation locations and access constraint issues

| ı     | Location ID | Stakeholder / land<br>ownership or operator | Access Constraint                                                                                        |
|-------|-------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------|
| BH312 |             | Ecocem Ireland                              | No safe location due to traffic management issues regarding safe access / egress for plant and vehicles. |



# 6 RISK ASSESSMENT METHODOLOGY

# 6.1 Soils risk assessment methodology

## 6.1.1 Contamination assessment methodology

In the absence of government guidance on contaminated land risk assessment within the Republic of Ireland, current guidance provided by the UK Environment Agency (EA) has been utilised to form the basis of this assessment.

## 6.1.2 Human health risk assessment framework

The Environment Agency has published guidance in relation to assessing the potential risk from contaminated land to human health. Science Report SR2 'Human Health Toxicological Assessment of Contaminants in Soil' and Science Report SR3 'Updated Technical Background to the CLEA Model' have replaced CLR 9 and 10 respectively and together with 'Land Contamination Risk Management' (LCRM) provide the most up to date framework for human health risk assessment within the UK.

CLR10 previously stated that 'the contamination is assumed to be at or within 1m of the surface' (CLR10 pg. 10). SR3 contains a brief discussion of contamination depth on p13 and although it does not specifically mention a depth of 1.0m it states that 'it is assumed that the pollution is at the surface or close to it' and 'whether or not soil contamination at greater depth or beneath hard standing poses a risk to health depends on the importance of the contact pathways (primarily ingestion and dermal contact) and the likelihood that such soils may be brought to the surface through activities such as gardening or building works'. For the purpose of this assessment therefore, it is considered that at depths greater than 1m, the probability of human exposure via the direct contact pathways are significantly reduced.

## 6.1.3 Published generic site assessment criteria

In order to assess the human health and environmental risks posed by potential contaminants within the underlying soils, RPS undertook an initial screen of the laboratory results using the 2015 LQM/CIEH Suitable 4 Use Levels (S4ULs) (Copyright Land Quality management Limited reproduced with permission; Publication Number S4UL3474. All Rights Reserved) as trigger values. Where contamination results are recorded above these S4ULs, further assessment of the risks or remedial action may be needed.

These LQM/CIEH S4ULs replace the second edition of the LQM/CIEH Generic Assessment Criteria (GAC) published in 2009. Differences in modelling assumptions and added land uses



and substances create the difference between these S4ULs and the previous GAC. These values are provided for 6 land use classifications:

- Residential with homegrown produce
- Residential without homegrown produce
- Allotments
- Commercial
- Public open space near residential housing
- Public open space Park

The provisional Category 4 Screening Levels (pC4SLs) developed by Defra provide the same added land uses as the S4ULs but are based on a different toxicological benchmark. The pC4SLs are based on a 'low level of toxicological concern' (LLTC) whereas the S4ULs remain based on the 'minimal' or 'tolerable' risk level outlined in SR2 to ensure a fully conservative approach is being taken.

These values have been adopted within this investigation as they provide the most up to date trigger values that are based on appropriate and rationale assumptions. Similarly to the previous GAC, the S4ULs are provided for 1%, 2.5% and 6% soil organic matter (SOM). In the absence of complete analysis of SOM at the site, generic values derived for a SOM value of 1% have been utilised in the risk assessment where possible to ensure the most conservative approach is taken.

For pollutants with no relevant S4ULs, assessment criteria were provided by the following publications:

- Soil Guideline Values (SGVs)
- The Soil Generic Assessment Criteria (GAC) for Human Health Risk Assessment –
   CL:AIRE December 2009

In light of the publication of SR2 and SR3 the Environment Agency published SGVs for Benzene, Toluene, Ethylbenzene, Xylene, Selenium, Mercury, Arsenic, Cadmium, Phenol, Nickel and Sum of PCDDs, PCDFs and dioxin-like PCBs for the following standard land use scenarios assuming a Sandy Loam soil and Soil Organic Matter (SOM) content of 6%:

- Residential
- Allotments
- Commercial

CL:AIRE in association with The Environmental Industries Commission (EIC) and Association of Geotechnical and Geo-environmental Specialists (AGS) published a set of Generic Assessment Criteria in 2009 for previously unpublished contaminants which are intended to



complement the SGVs derived by the Environment Agency. The GACs have been derived predominantly for VOCs and SVOCs using CLEA v1.06 for a number of different Soil Organic Matter contents (1%, 2.5% and 6%).

The current development proposals are predominantly in keeping with a commercial end use, with the exception of Port Park and Wildflower Meadow, Coastal Park, and the extension to Irishtown Nature Park which will comprise soft landscaping and public realm. Consequently, all soil samples have been screened against generic values derived for public open space near residential end use to provide a conservative assessment with the consideration of more sensitive public use in these areas. A secondary screen has been undertaken using commercial end use values which are considered more appropriate where end use activities are proposed to be solely commercial.

#### 6.1.4 Ground contamination assessment

The soil laboratory analytical results are contained within Appendix B and screening tables are contained within Appendix D. Within these tables, those cells with no value recorded indicate that the samples were not scheduled for that particular suite of analysis. All samples were screened against the generic site assessment criteria discussed above.

# 6.2 Groundwater risk assessment methodology

#### 6.2.1 Published generic site assessment criteria

The groundwater chemical analysis results were initially screened against threshold values listed by:

- Guidelines for Drinking-water Quality, World Health Organization, 4th edition, 2011 (WHO).
- 2. European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016 (S.I. No. 366 of 2016)
- 3. European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2015 (S.I. No. 386 of 2015)
- 4. Interim Guideline Values provided by 'Towards setting guideline values for the protection of groundwater in Ireland', Environmental Protection Agency, January 2003
- 5. European Communities (Drinking Water) Regulations 2014 (S.I. No. 122 of 2014)
- 6. SoBRA GAC for Assessing Vapour Risks to Human Health from Volatile Contaminants in Groundwater Commercial GAC (SoBRA).

The annual average environmental quality standards (AA-EQS) for other surface waters, and groundwater from the European Union Environmental Objectives (Amendment) Regulations 2015/2016 have been used as screening values for the purposes of the risk assessment. Groundwater will not be used for drinking water and therefore drinking water threshold values



## GENERIC QUANTITATIVE RISK ASSESSMENT (GQRA)

(1 and 5) have not been used in this assessment. Interim Guideline Values have been superseded by the EQS values and exceedances of IGVs have been highlighted for comparison purposes only. Groundwater chemistry results used as part of the site assessment are included in Appendix B and screening tables are contained within Appendix E.



# 7 ACTUAL GROUND CONDITIONS

This section summarises the ground conditions encountered during the investigation based on the exploratory hole logs provided by Causeway Geotech Ltd during the 2023 and 2024 investigations and observations made by RPS. The logs are contained within the Causeway Geotech Ltd Ground Investigation report in Appendix B. A number of geological cross sections have been prepared and are shown in Appendix C.

# 7.1 Summary of ground conditions

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Paved surface: Bitmac, concrete and paving stones was encountered at ground level at almost every location across the site ranging in thickness from 60-200mm primarily, and 500mm at BH203. At some locations, paved surfacing was underlain by a second concrete/bitmac layer.
- Topsoil: encountered in 150mm thickness in BH112.
- Made Ground (sub-base): majority of locations which had a paved surface were underlain by granular fill of varying thicknesses.
- Made Ground (fill): reworked sandy gravelly clay/silt fill or sandy clayey gravel or gravelly clayey sand fill with varying amounts of concrete, red brick, timber, steel and glass fragments as well as varying amounts of wire, plastic, cloth, and ash was encountered across the site to a maximum depth of 15.80m in BH130. It should be noted that this location is through an existing caisson, and aside from this the maximum depth was 6.50m in BH120 in the south of the site, which is a former landfill area.
- Marine beach deposits: typically, medium dense to dense sands and gravels interspersed with layers of sandy gravelly clay frequently with shell fragments encountered across the site to a maximum depth of 20.10m in BH120 generally overlying Port Clay.
- **Port Clay:** Firm to stiff sandy silty clay often with laminations of silty sand encountered across the site to a maximum depth of 36.5m in BH217.
- Glacial till/Fluvioglacial deposits: very stiff sandy gravelly clay or very dense sandy clayey gravel generally encountered beneath Port Clay and overlying bedrock, encountered greatest in extent in the south of the site in BH124 to a depth of 40.00m.
- **Bedrock (Limestone and Mudstone):** Medium strong to strong limestone or mudstone was encountered at depths ranging from 24.50m in BH101 to 39.05 in BH217.



Made ground was identified at all ground investigation locations. A review of ground conditions found that the depth of made ground was found to be deeper in the north of the study area due to hard engineering structures such as caissons e.g. 15.80m bgl at BH130. Made ground was encountered within Area O to a maximum depth of 6.50m bgl at BH120, ranging in composition from grey slightly sandy, slightly silty, angular fine to coarse GRAVEL, to firm to stiff grey slightly sandy gravelly CLAY with low cobble content and fragments of plastic, concrete and red brick. Sand is fine to coarse. Gravel is subangular fine to coarse. This was subsequently followed by made ground comprising loose to medium dense grey very sandy silty subangular fine to coarse GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are subrounded.

Beneath the Made Ground layer at the site, raised marine deposits were encountered comprising medium, dense, slightly gravelly, silty, fine to coarse SAND, interchanging with medium dense, grey, very sandy, slightly silty, rounded, fine GRAVEL to a maximum depth of 20.10 bgl at BH120. This stratum is a result of the reclamation of land during the development of the wider port.

Firm to stiff, grey, sandy, silty CLAY which is known locally as Port Clay was encountered in deeper boreholes to a maximum depth of 36.50m bgl at BH217.

A GRAVEL layer was encountered at some locations above bedrock, comprising dense, dark grey, slightly sandy, slightly clayey, subangular gravel of dark grey limestone with low cobble content.

Bedrock was encountered in some of the deeper boreholes comprising MUDSTONE of very stiff, brown, and light brownish-grey, slightly gravelly clay (highly to completely weathered) e.g. BH124 (40m bgl); and medium, strong, locally moderately weak, thickly laminated to thinly bedded dark grey LIMESTONE e.g. BH125 (36.50m bgl).

Borehole cross sections within Area O are provided as Appendix C.

# 7.2 Groundwater Strikes during investigation

During the ground investigation undertaken in 2023 and 2024, groundwater was encountered during excavation at a number of the exploratory locations. Groundwater strikes are summarised in Table 7.1.



**Table 7-1 Groundwater Strikes during Investigation** 

| Exploratory<br>Hole            | Groundwater                                               | Strata                                                                                                                                                                                                                  |
|--------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPAR Bridge                    |                                                           |                                                                                                                                                                                                                         |
| BH101                          | Water strike at 6.50m<br>(rose to 6.20m after 20<br>mins) | . Medium dense becoming dense very sandy                                                                                                                                                                                |
|                                | Water strike at 8.30m (rose to 1.90m after 20 mins)       | slightly silty subangular fine to medium GRAVEL. Sand is fine to coarse.                                                                                                                                                |
|                                | Water strike at 9.70m                                     |                                                                                                                                                                                                                         |
| Maritime<br>Village            |                                                           |                                                                                                                                                                                                                         |
| BH102                          | Water strike at 2.40m                                     | MADE GROUND: Firm becoming stiff greyish brown slightly sandy gravelly SILT with fragments of red brick, concrete, metal and timber. Sand is fine to coarse. Gravel is angular fine to coarse.                          |
| BH130                          | Water strike at 4.40m<br>(rose to 3.00m after 20<br>mins) | MADE GROUND: Medium dense locally dense brown fine to coarse SAND and subangular fine to coarse GRAVEL with low cobble content and                                                                                      |
|                                | Water strike at 8.60m<br>(rose to 2.10m after 20<br>mins) | fragments of red brick. Cobbles are subangular.                                                                                                                                                                         |
| BH131                          | Water strike at 6.30m<br>(rose to 1.70m after 20<br>mins) | MADE GROUND: Medium dense greyish brown sandy slightly silty subangular fine to coarse GRAVEL with low cobble content and fragments of red brick and concrete. Cobbles are subrounded.                                  |
| Roads /<br>Transport<br>Routes |                                                           |                                                                                                                                                                                                                         |
| BH112                          | Water strike at 4.00m<br>(rose to 3.50m in 20<br>mins)    | MADE GROUND: Loose dark greyish black very sandy silty angular fine to coarse GRAVEL with abundant fragments of red brick, concrete, glass and rootlets. Gravel is angular fine to medium. (Contamination encountered). |



| Exploratory<br>Hole<br>Area O | Groundwater                                               | Strata                                                                                                                                                                                                     |
|-------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BH119                         | Water strike at 0.25m                                     | MADE GROUND: Light grey sandy very silty angular fine to coarse GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are angular                                                                |
| BH120                         | Water strike 5.00m (rose to 4.30m after 20 mins)          | MADE GROUND: Loose to medium dense grey very sandy silty subangular fine to coarse GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are subrounded.                                         |
| BH121                         | Water strike at 3.10m<br>(rose to 2.60m after<br>20 mins) | MADE GROUND: Medium dense greyish black sandy silty subrounded fine to coarse GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are subrounded.                                              |
| BH122                         | Slow seepage at<br>0.35m                                  | MADE GROUND: Grey very sandy silty subangular fine to coarse GRAVEL with high cobble content. Sand is fine to coarse. Cobbles are subangular.                                                              |
|                               | Water strike at 4.30m<br>(rose to 3.90m after 20<br>mins) | MADE GROUND: Firm to stiff grey sandy gravelly SILT with fragments of red brick, concrete, glass and wood. Sand is fine to coarse. Gravel is subangular fine to coarse.                                    |
|                               | Water strike at 9.50m<br>(rose to 3.60 after 20<br>mins)  | Medium dense grey gravelly fine to coarse SAND. Gravel is subrounded fine to coarse.                                                                                                                       |
| BH123                         | Slow seepage at 0.30m                                     | MADE GROUND: Dark greyish black very sandy slightly silty subangular fine to coarse GRAVEL with high cobble content and cobbles sized fragments of red brick. Sand is fine to coarse. Cobbles are angular. |
|                               | Slow seepage at 4.30m                                     | Medium dense greyish gravelly fine to coarse SAND with shell fragments. Gravel is subangular to subrounded fine to coarse.                                                                                 |
| BH124                         | Seepage at 0.80m                                          | MADE GROUND: Grey very sandy very clayey subrounded fine to coarse GRAVEL with high cobble content and cobbles sized fragments of red brick. Sand is fine to coarse. Cobbles are subangular.               |
| BH125                         | Slow seepage at 4.70m                                     | MADE GROUND: Stiff dark greyish black sandy gravelly SILT with fragments of wood,                                                                                                                          |



| Exploratory<br>Hole                       | Groundwater                                                 | Strata                                                                                                                                                                                                                                                 |
|-------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                                                             | plastic and cloth. Sand is fine to coarse. Gravel is subrounded fine to coarse.                                                                                                                                                                        |
| BH315                                     | Strike at 1.50m                                             | MADE GROUND: Greyish black gravelly silty fine to coarse SAND with medium cobble content and brick fragments                                                                                                                                           |
| BH316                                     | Strike at 4.00m (rose to 2.00m after 20 mins)               | MADE GROUND: Soft greyish black very gravelly silty CLAY with fragments of glass and wood, newpaper, and household waste. Gravel is subangular fine to coarse.                                                                                         |
| BH317                                     | Strike at 3.40m                                             | MADE GROUND: Firm black sandy gravelly silty CLAY with fragments of brick, glass, wood, and household waste. Sand is fine to coarse. Gravel is subangular fine to coarse.                                                                              |
| BH320                                     | Strike at 3.60m                                             | MADE GROUND: Firm to stiff brown sandy CLAY with fragments of glass, paper and wood. Sand is fine to coarse.                                                                                                                                           |
| BH322                                     | Strike at 3.30m                                             | MADE GROUND: Soft dark brownish black slightly sandy gravelly CLAY with low cobble content and fragments of concrete, brick, plastic, rubber and household waste. Sand is fine to coarse. Gravel is subangular fine to coarse. Cobbles are subangular. |
| Port Park                                 |                                                             |                                                                                                                                                                                                                                                        |
| BH127                                     | Water strike at 3.00m<br>(rose to 2.50m after 20<br>mins)   | MADE GROUND: Medium dense grey very sandy silty subangular fine to coarse GRAVEL. Sand is fine to coarse.                                                                                                                                              |
| BH128                                     | Slow flow at 1.50m Seepage at 2.00m                         | MADE GROUND: Very stiff grey sandy gravelly CLAY with fragments of timber and glass. Sand is fine to coarse. Gravel is subangular fine to coarse.                                                                                                      |
| Area N                                    |                                                             |                                                                                                                                                                                                                                                        |
| BH212                                     | Sea water ingress at<br>1.85m                               | MADE GROUND: Light slightly gravelly slightly silty fine to coarse SAND. Gravel is rounded fine to medium.                                                                                                                                             |
|                                           | Water strike at 3.00m<br>(rose to 1.50m after 10<br>mins)   | Medium dense brown fine to coarse SAND and subrounded fine to coarse GRAVEL with shell fragments.                                                                                                                                                      |
| 47A Hardstand<br>Area / Turning<br>Circle |                                                             |                                                                                                                                                                                                                                                        |
| BH215                                     | Strong seepage at<br>4.30m (rose to 2.10m<br>after 20 mins) | MADE GROUND: Dense grey slightly sandy angular to subangular fine to coarse GRAVEL with medium cobble content. Sand is fine to coarse. Cobbles are angular.                                                                                            |



| Exploratory<br>Hole | Groundwater                                                  | Strata                                                                                                         |
|---------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| BH216               | Strong seepage at<br>13.00m (rose to 1.60m<br>after 20 mins) | Medium dense brownish grey very sandy slightly sitly subangular fine to coarse GRAVEL. Sand is fine to coarse. |
| BH217               | Water strike at 7.65m                                        | Soft grey slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is subrounded fine to medium.           |
| Area L              |                                                              |                                                                                                                |
| BH305               | Strike at 4.80m                                              | Grey fine to coarse SAND and fine to coarse subangular GRAVEL with cobbles and boulders are subangular.        |
| BH309               | Strike at 3.20m                                              | Medium dense grey fine to medium SAND.                                                                         |
| BH313               | Strike at 6.00m                                              | Medium dense (locally dense) brown SAND and GRAVEL with occasional cobbles and boulders.                       |
| BH314               | Strike at 5.00m                                              | Loose becoming medium dense brown gravelly fine to coarse SAND with low cobble content and shell fragments.    |

# 7.3 Groundwater monitoring

Standing groundwater levels within all installed 2023 GI boreholes were monitored on a number of occasions between 15th February 2023 and 14<sup>th</sup> April 2023, using an acoustic dipmeter. The results of the monitoring are presented in Table 7.2.



Table 7-2 Standing groundwater levels

|                    | G           | roundwater | Levels        | (mOD)         |            |            |
|--------------------|-------------|------------|---------------|---------------|------------|------------|
| Borehole<br>ID     | 15.02.2023  | 16.02.2023 | 17.02.2023    | 23.03.2023    | 07.04.2023 | 14.04.2023 |
| Maritime \         | /illage     |            |               |               |            |            |
| BH102<br>3.05 mOD  | -           | -          | DRY           | DRY           | DRY        | DRY        |
| BH103<br>3.52 mOD  |             | N          | o Access du   | ing monitorir | ıg         |            |
| BH105<br>3.55 mOD  |             | N          | lo access dur | ing monitorin | g          |            |
| Roads / Tr         | ansport rou | te         |               |               |            |            |
| BH112<br>4.23 mOD  | DRY         | ı          | -             | 0.98 mOD      | DRY        | DRY        |
| Area O             |             |            |               |               |            |            |
| BH120<br>5.13 mOD  | ı           | 0.48 mOD   | -             | 0.23 mOD      | 0.68 mOD   | 0.49 mOD   |
| BH121<br>4.81 mOD  | ı           | 0.61mOD    | -             | 0.56 mOD      | 0.66 mOD   | 0.71 mOD   |
| BH122<br>4.72 mOD  | ı           | ı          | -             | -             | No Access  | No Access  |
| BH123<br>4.58 mOD  | 0.45 mOD    | -          | -             | 0.67 mOD      | 0.49 mOD   | 0.83 mOD   |
| BH124<br>4.75 mOD  | -           | -          | -             | -             | 3.28 mOD   | 3.77mOD    |
| BH125<br>4.94 mOD  | 0.42 mOD    | -          | -             | 0.54 mOD      | 0.48 mOD   | 0.52 mOD   |
| Port Park          |             |            |               |               |            |            |
| BH126A<br>4.89 mOD | DRY         | -          | -             | DRY           | DRY        | No Access  |



| Borehole          | G          | iroundwater | Levels     | (mOD)      |            |            |
|-------------------|------------|-------------|------------|------------|------------|------------|
| ID                | 15.02.2023 | 16.02.2023  | 17.02.2023 | 23.03.2023 | 07.04.2023 | 14.04.2023 |
| BH127<br>4.65 mOD | DRY        | -           | -          | DRY        | DRY        | No Access  |
| BH128<br>4.71 mOD | 3.11 mOD   | -           | -          | 3.76 mOD   | 3.07 mOD   | No Access  |

| Screened across groundwater within MADE GROUND |
|------------------------------------------------|
| Screened across groundwater within GRAVELS     |
| Screened across groundwater within SANDS       |

Standing groundwater levels within all installed boreholes within Area L were monitored on six occasions between 25th April 2024 and Tuesday 18th June 2024, using an acoustic dip-meter. The results of the monitoring are presented in Table 7.3.

Table 7.3 Standing groundwater levels within Area L

| Borehole           |          | Grour    | ndwater   | Level     | s (mOD    | ))        |
|--------------------|----------|----------|-----------|-----------|-----------|-----------|
| ID                 | 25.04.24 | 08.05.24 | 06.06.24  | 13.06.24  | 14.06.24  | 18.06.24  |
| BH301B<br>3.12 mOD | 1.20mOD  | 0.36mOD  | 0.58mOD   | 0.27mOD   | 0.39mOD   | 0.30mOD   |
| BH302<br>3.56 mOD  | 1.57mOD  | 1.41mOD  | 1.71mOD   | 1.19mOD   | 1.71mOD   | 1.13mOD   |
| BH303<br>3.73 mOD  | 0.99mOD  | DRY      | DRY       | DRY       | DRY       | DRY       |
| BH304<br>3.49 mOD  | 0.30mOD  | 0.26mOD  | 0.30mOD   | 0.35mOD   | 0.24mOD   | 0.45mOD   |
| BH305<br>3.41 mOD  | 1.10mOD  | DRY      | No Access | No Access | No Access | No Access |
| BH306<br>3.79 mOD  | 1.21mOD  | 1.14mOD  | 1.17mOD   | DRY       | 1.27mOD   | DRY       |



| Borehole          |           | Groun        | ıdwater   | Level     | s (mOD    | ))        |
|-------------------|-----------|--------------|-----------|-----------|-----------|-----------|
| ID                | 25.04.24  | 08.05.24     | 06.06.24  | 13.06.24  | 14.06.24  | 18.06.24  |
| BH307<br>3.62 mOD | DRY       | 0.67mOD      | DRY       | DRY       | No Access | DRY       |
| BH308<br>3.76 mOD | 0.77mOD   | 0.11mOD      | 0.84mOD   | 0.21mOD   | 0.89mOD   | 0.56mOD   |
| BH309<br>3.92 mOD | 0.61mOD   | 0.36mOD      | 0.64mOD   | 0.36mOD   | No Access | 0.52mOD   |
| BH310<br>3.47 mOD | No Access | No<br>Access | 0.02mOD   | 0.03mOD   | No Access | 0.07mOD   |
| BH311<br>3.44 mOD | No Access | No Access    | No Access | No Access | No Access | No Access |
| BH313<br>3.86 mOD | 0.88mOD   | 0.81mOD      | 0.89mOD   | 0.14mOD   | -0.04mOD  | 0.16mOD   |
| BH314<br>3.97 mOD | No Access | 0.57mOD      | 0.70mOD   | -         | 0.07mOD   | -         |

| Screened across groundwater within MADE GROUND |
|------------------------------------------------|
| Screened across groundwater within GRAVELS     |
| Screened across groundwater within<br>SANDS    |



# 7.4 Hydrogeological units and groundwater flow

Two boreholes (BH103 & BH105) were not accessible during the monitoring. Groundwater was encountered in a total of twenty-seven (27) boreholes during the ground investigation in the form of groundwater strikes during the drilling process. Water strikes were observed during drilling noted within sands and gravels underlying made ground.

The monitoring data indicates that perched shallow groundwater within boreholes installed within the made ground strata across the study area was generally encountered between 0.03mOD and 3.76mOD. A review of the monitoring data suggests the perched groundwater is discontinuous and on a number of occasions some wells were noted to be dry.

Monitoring data from BH123 and BH120 within Area O which were installed into sands and gravels suggests the direction of groundwater flow is broadly eastern towards Dublin Bay.

Monitoring data from BH308, BH309, and BH313 within Area L which were installed into sand and gravel response zones suggests that a shallow groundwater body is present and is flowing in a broadly northern direction towards the River Liffey.

Overall, the changes in groundwater levels between monitoring rounds suggests there is a tidal influence at a number of borehole locations.



# 8 GROUND CONTAMINATION

## 8.1 Introduction

The results of the laboratory analysis were used to carry out a generic quantitative risk assessment (GQRA) using the methodology outlined in Section 5. The soil results have been screened against the latest available LQM/CIEH S4ULs and CL:AIRE GAC for commercial end use. Soil laboratory analytical results from boreholes within the proposed Port Park area (BH315, BH316, BH317, BH126, BH127 and BH128) have been screened against a public open space near residential end use.

Samples were analysed for the following chemical parameters:

- Heavy metals;
- Speciated total petroleum hydrocarbons (TPHs);
- Speciated polycyclic aromatic hydrocarbons (PAHs);
- Speciated polychlorinated biphenyls (PCBs);
- Phenols
- Volatile & semi volatile organic compounds (VOCs & SVOCs);
- Inorganics;
- Asbestos screen.

The screening table for the soil laboratory test results is presented in Appendix D. Within these tables, those cells with no recorded values indicate that the samples were not scheduled for that particular suite of analysis.

# 8.2 Summary of soil results

All soil samples were found to be below the generic assessment criteria for commercial end use. One soil sample from BH308 is on the threshold for the commercial end use of Benzo(a)pyrene in Area L and recorded a concentration of 35 mg/kg (S4UL Commercial is 35 mg/kg). All soil samples from the proposed Port Park area recorded concentrations below the public open space near residential end use screening values.

The laboratory analytical certificates for soil results are included in Appendix B.

#### 8.2.1 Asbestos in Soils

A total of thirty-two (32) environmental soil samples were initially screened for the presence of asbestos during the Causeway Geotech Ltd investigation between the 8<sup>th</sup> of November 2022 and the 10<sup>th</sup> of February 2023. A further fifty-six (56) environmental soil samples were



screened for the presence of asbestos during the Causeway Geotech Ltd investigation between the 19<sup>th</sup> of March and 6<sup>th</sup> June 2024. Asbestos containing materials (ACM) were identified in nine (9) of the samples. Table 8.1 below provides a summary of asbestos identified in soils.

Table 8-1 Table Summary of asbestos in soils

| Investigation Location    | Depth (m bgl) | Asbestos Identification | Asbestos           |
|---------------------------|---------------|-------------------------|--------------------|
|                           |               |                         | Quantification (%) |
| BH119 (Area O)            | 1.00          | Amosite                 | <0.004             |
| BH120 (Area O)            | 0.50          | Chrysotile              | <0.002             |
| BH112 (Road north of Area | 1.50          | Chrysotile              | 0.004              |
| O)                        |               |                         |                    |
| BH116 (Road)              | 0.50          | Chrysotile              | 0.004              |
| BH317 (Port Park)         | 0.50          | Chrysotile              | Not quantified     |
| BH320 (Area O)            | 0.50          | Chrysotile              | Not quantified     |
| BH322 (Area O)            | 0.50          | Chrysotile              | Not quantified     |
| BH322 (Area O)            | 3.00          | Chrysotile              | Not quantified     |
| BH305 (Area L)            | 2.00          | Chrysotile/Amosite      | Not quantified     |



# 9 GROUNDWATER CONTAMINATION

## 9.1 Introduction

A groundwater screening table for the groundwater and surface water samples is presented in Appendix E with laboratory analytical certificates contained within Appendix B. The results have been screened against the generic site assessment criteria discussed in Section 5.

## 9.1.1 2023 Sampling

One round of groundwater and surface water sampling and analysis was undertaken on 7th March 2023. Five (5) groundwater samples were obtained for laboratory analysis, four of which were from shallow boreholes installed into made ground (BH120, BH121, BH125 & BH128), and one from a borehole installed within the natural sand strata (BH123).

Three (3) surface water samples were also collected for laboratory analysis from the adjacent River Liffey and Dublin Bay (SW01 – SW03). Sample SW01 was taken from the River Liffey adjacent to the Poolbeg Yacht Club. SW02 is considered to be representative of 'mid-stream' and was taken from the River Liffey adjacent to an area of vacant land known as the '47A hardstand'. Sample SW03 is considered to be representative of 'downstream' and was obtained from Dublin Bay i.e. where the River Liffey discharges into to Irish Sea, from the Great South Wall, prior to reaching Poolbeg Lighthouse.

## 9.1.2 2024 Sampling

#### Round 1 - April 2024

A round of groundwater sampling and analysis from eight (8) boreholes within Area O was undertaken on the 8<sup>th</sup> April 2024. Seven (7) of the samples were obtained from boreholes installed within the made ground strata (BH315, BH316, BH317, BH318, BH319, BH320 and BH322). One (1) sample was obtained from a borehole installed within the sand (BH321).

A round of groundwater sampling and analysis from six (6) boreholes within Area L was undertaken on the 25<sup>th</sup> April 2024. Four (4) of the samples were obtained from boreholes installed in the made ground strata (BH301B, BH302, BH313, BH314). Two (2) of the samples were obtained from boreholes installed in the natural sands (BH308, BH309).

## Round 2 - May 2024

A further round of groundwater sampling and analysis from eight (8) boreholes within Area O was undertaken on the 8<sup>th</sup> May 2024. Six (6) of the samples were obtained from boreholes installed within the made ground strata (BH315, BH316, BH317, BH319, BH320 and BH322). One (1) sample was obtained from a borehole installed within the sand (BH321).



A further round of groundwater sampling and analysis was undertaken between 8th and 9th May 2024 targeting the boreholes in Area L.

The Samples were analysed for the following chemical parameters:

- Heavy metals;
- Speciated total petroleum hydrocarbons (TPHs);
- Speciated polycyclic aromatic hydrocarbons (PAHs);
- Phenols
- Volatile & semi volatile organic compounds (VOCs & SVOCS);
- Inorganics

# 9.2 Summary of groundwater & surface water chemical results

Table 9.1 summaries the exceedances identified in groundwater and surface water samples taken during the initial 2023 investigation. Table 9.2 summaries the exceedances identified in groundwater samples taken during the first round of sampling undertaken in April 2024. The second round of sampling undertaken in May 2024 is summarised in table 9.3, any exceedances identified are included herein.

Table 9-1 Summary of Groundwater & Surface Water Exceedances 2023

| Contaminant    | Screening Value <sup>4</sup>                                         | Exceeding Concentrations                 | Locations<br>Exceeding           |
|----------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------|
| Surface Waters |                                                                      |                                          |                                  |
| Lead           | 1.30 µg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) | 4.10 μg/l                                | SW01                             |
| Area O         |                                                                      |                                          |                                  |
| Nickel         | 8.60 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  | 23 μg/l<br>12 μg/l<br>23 μg/l<br>21 μg/l | BH120<br>BH121<br>BH123<br>BH125 |
| Port Park      |                                                                      |                                          |                                  |
| Zinc           | 0.2 μg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  | 2.3 μg/l                                 | BH128                            |

\_

<sup>&</sup>lt;sup>4</sup> AA = Annual Average, MAC = Maximum Allowable Concentration.



| Contaminant                                                                 | Screening Value <sup>4</sup>                                        |  | Exceeding Concentrations               | Locations<br>Exceeding |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------|--|----------------------------------------|------------------------|
| Lead                                                                        | 1.30 µg/l AA-EQS (EU<br>Environmental Object<br>Surface Waters)     |  | 180 μg/l                               | BH128                  |
| Nickel                                                                      | 8.60 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) |  | 44 μg/l                                | BH128                  |
| Zinc                                                                        | 75 µg/l (EU Environm<br>Objectives, Groundwa                        |  | 820 µg/l                               | BH128                  |
| EU Environmental Object<br>Waters) (Amendment) R<br>EQS other surface water | egulations 2015 AA-                                                 |  | ronmental Objectiv<br>water) (Amendmer |                        |

Table 9-2 Summary of Groundwater & Surface Water Exceedances April 2024

| Contaminant  Area O Round 1 –  April 2024 | Screening Value <sup>5</sup>                                           | Exceeding<br>Concentrations                                | Locations<br>Exceeding                    |
|-------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|
| Nickel                                    | 8.60 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)    | 13 μg/l<br>14 μg/l                                         | BH318<br>BH320                            |
| Zinc                                      | 75 μg/l (EU Environmental<br>Objectives, Groundwater)                  | 89 μg/l<br>130 μg/l<br>100 μg/l                            | BH319<br>BH320<br>BH321                   |
| TPH (Ali & Alo)                           | 7.5 µg/l (EU Environmental<br>Objectives, Groundwater)                 | 190 μg/l<br>35 μg/l<br>18 μg/l<br>240 μg/l<br>94 μg/l      | BH318<br>BH319<br>BH320<br>BH321<br>BH322 |
| Anthracene                                | 0.1 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 63 μg/l<br>6.70 μg/l<br>190 μg/l<br>5.10 μg/l<br>3.70 μg/l | BH318<br>BH319<br>BH320<br>BH321<br>BH322 |
| Benzo(a)pyrene                            | 0.00017 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) | 1 μg/l<br>1 μg/l<br>11 μg/l<br>29 μg/l                     | BH318<br>BH320<br>BH321<br>BH322          |

 $<sup>^{\</sup>rm 5}$  AA = Annual Average, MAC = Maximum Allowable Concentration.



| Contaminant                    | Screening Value <sup>5</sup>                                           | Exceeding<br>Concentrations                              | Locations<br>Exceeding                    |
|--------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|
| Fluoranthene                   | 0.0063 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  | 750 μg/l<br>47 μg/l<br>890 μg/l<br>32 μg/l<br>37 μg/l    | BH318<br>BH319<br>BH320<br>BH321<br>BH322 |
| Naphthalene                    | 2 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)       | 660 μg/l<br>4.1 μg/l<br>130 μg/l<br>3.1 μg/l<br>2.1 μg/l | BH318<br>BH319<br>BH320<br>BH321<br>BH322 |
| 1,2,4 Trichlorobenzene         | 0.4 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 5 μg/l<br>5 μg/l<br>5 μg/l<br>5 μg/l<br>1 μg/l           | BH318<br>BH319<br>BH320<br>BH321<br>BH322 |
| bis(2-Ethylhexyl)<br>phthalate | 1.3 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 5 μg/l<br>5 μg/l<br>5 μg/l<br>5 μg/l                     | BH318<br>BH319<br>BH320<br>BH321          |
| Port Park                      |                                                                        |                                                          |                                           |
| Nickel                         | 8.60 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)    | 8.5μg/l<br>9.6 μg/l                                      | BH316<br>BH317                            |
| Zinc                           | 75 μg/l (EU Environmental<br>Objectives, Groundwater)                  | 130 µg/l                                                 | BH316                                     |
| TPH (Ali & Alo)                | 7.5 µg/l (EU Environmental<br>Objectives, Groundwater)                 | 170 μg/l<br>1,400 μg/l<br>450 μg/l                       | BH315<br>BH316<br>BH317                   |
| Anthracene                     | 0.1 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 5.10 μg/l<br>2.70 μg/l<br>73 μg/l                        | BH315<br>BH316<br>BH317                   |
| Benzo(a)pyrene                 | 0.00017 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) | 15 μg/l<br>8.2 μg/l                                      | BH315<br>BH316                            |
| Fluoranthene                   | 0.0063 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  | 27 μg/l<br>31 μg/l<br>730 μg/l                           | BH315<br>BH316<br>BH317                   |



| Contaminant                         | Screening Value <sup>5</sup>                                           | Exceeding<br>Concentrations                                           | Locations<br>Exceeding                              |
|-------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|
| Naphthalene                         | 2 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)       | 25 μg/l<br>5.00 μg/l<br>33 μg/l                                       | BH315<br>BH316<br>BH317                             |
| 1,2,4 Trichlorobenzene              | 0.4 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 5 μg/l<br>5 μg/l<br>5 μg/l                                            | BH315<br>BH316<br>BH317                             |
| bis(2-Ethylhexyl) phthalate  Area L | 1.3 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 5 μg/l<br>15 μg/l<br>5 μg/l                                           | BH315<br>BH316<br>BH317                             |
| Cadmium                             | 0.20 μg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)   | 0.35 μg/l<br>0.66 μg/l<br>0.25 μg/l                                   | BH304<br>BH309<br>BH313                             |
| Lead                                | 1.30 µg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)   | 2.7 μg/l                                                              | BH308                                               |
| Nickel                              | 8.60 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)    | 13 μg/l<br>25 μg/l                                                    | BH304<br>BH309                                      |
| Zinc                                | 75 μg/l (EU Environmental<br>Objectives, Groundwater)                  | 96 μg/l                                                               | BH308                                               |
| TPH (Ali & Alo)                     | 7.5 μg/l (EU Environmental<br>Objectives, Groundwater)                 | 66 μg/l<br>10 μg/l<br>210 μg/l<br>6,900 μg/l<br>5,400 μg/l<br>53 μg/l | BH301A<br>BH302<br>BH304<br>BH308<br>BH309<br>BH313 |
| Anthracene                          | 0.1 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 0.57 μg/l                                                             | BH302                                               |
| Benzo(a)pyrene                      | 0.00017 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) | 0.32 μg/l<br>9.50 μg/l<br>4.00 μg/l                                   | BH301A<br>BH302<br>BH304                            |
| Fluoranthene                        | 0.0063 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  | 0.29 μg/l<br>10 μg/l<br>5 μg/l<br>0.03 μg/l                           | BH301A<br>BH302<br>BH304<br>BH309                   |



| Contaminant                                                                                           | Screening Value <sup>5</sup>                                       |       | Exceeding Concentrations               | Locations<br>Exceeding |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------|----------------------------------------|------------------------|
| Naphthalene                                                                                           | 2 μg/ AA-EQS (EU<br>Environmental Object<br>Surface Waters)        | ives, | 5.00 μg/l<br>5.00 μg/l                 | BH304<br>BH308         |
| 1,2,4 Trichlorobenzene                                                                                | 0.4 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) |       | 2 μg/l<br>2 μg/l                       | BH301A<br>BH302        |
| bis(2-Ethylhexyl)<br>phthalate                                                                        | 1.3 µg/ AA-EQS (EU<br>Environmental Object<br>Surface Waters)      | ives, | 10 μg/l<br>10 μg/l                     | BH304<br>BH309         |
| EU Environmental Objectives (Surface Waters) (Amendment) Regulations 2015 AA-EQS other surface waters |                                                                    |       | ronmental Objectiv<br>water) (Amendmer |                        |

Table 9-3 Summary of Groundwater & Surface Water Exceedances May 2024

| Contaminant  Area O Round 2 – May 2024 | Screening Value <sup>6</sup>                                           | Exceeding<br>Concentrations                   | Locations<br>Exceeding           |
|----------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|
| Nickel                                 | 8.60 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)    | 12 μg/l<br>9.6 μg/l                           | BH319<br>BH322                   |
| TPH (Ali & Alo)                        | 7.5 µg/l (EU Environmental<br>Objectives, Groundwater)                 | 10 μg/l<br>1200 μg/l<br>77 μg/l<br>10 μg/l    | BH319<br>BH320<br>BH321<br>BH322 |
| Anthracene                             | 0.1 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 0.33 µg/l<br>0.97 µg/l<br>0.69 µg/l           | BH319<br>BH320<br>BH321          |
| Benzo(a)pyrene                         | 0.00017 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) | 0.85 μg/l<br>1.7 μg/l                         | BH319<br>BH321                   |
| Fluoranthene                           | 0.0063 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  | 1.4 μg/l<br>2.8 μg/l<br>3.0 μg/l<br>0.05 μg/l | BH319<br>BH320<br>BH321<br>BH322 |
| 1,2,4 Trichlorobenzene                 | 0.4 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 1 μg/l<br>1 μg/l<br>1 μg/l                    | BH319<br>BH320<br>BH321          |

<sup>&</sup>lt;sup>6</sup> AA = Annual Average, MAC = Maximum Allowable Concentration.



| Contaminant                    | Screening Value <sup>6</sup>                                           | Exceeding<br>Concentrations        | Locations<br>Exceeding   |
|--------------------------------|------------------------------------------------------------------------|------------------------------------|--------------------------|
|                                |                                                                        | 1 μg/l                             | BH322                    |
| bis(2-Ethylhexyl)<br>phthalate | 1.3 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 5 µg/l                             | BH322                    |
| Port Park                      |                                                                        |                                    |                          |
| Zinc                           | 75 μg/l (EU Environmental<br>Objectives, Groundwater)                  | 81 µg/l                            | BH316                    |
| TPH (Ali & Alo)                | 7.5 µg/l (EU Environmental<br>Objectives, Groundwater)                 | 2100 µg/l<br>3600 µg/l<br>980 µg/l | BH315<br>BH316<br>BH317  |
| Anthracene                     | 0.1 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 35 μg/l<br>41 μg/l<br>3.2 μg/l     | BH315<br>BH316<br>BH317  |
| Benzo(a)pyrene                 | 0.00017 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) | 77 μg/l<br>130 μg/l<br>5.5 μg/l    | BH315<br>BH316<br>BH317  |
| Fluoranthene                   | 0.0063 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  | 380 µg/l<br>280 µg/l<br>16 µg/l    | BH315<br>BH316<br>BH317  |
| Naphthalene                    | 2 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)       | 15 μg/l<br>44 μg/l                 | BH315<br>BH316           |
| 1,2,4 Trichlorobenzene         | 0.4 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     | 1 μg/l<br>1 μg/l<br>1 μg/l         | BH315<br>BH316<br>BH317  |
| Area L                         |                                                                        |                                    |                          |
| Cadmium                        | 0.20 µg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)   | 0.6 µg/l                           | BH314                    |
| Lead                           | 1.30 µg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)   | 2.4 μg/l                           | BH314                    |
| Nickel                         | 8.60 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)    | 13 μg/l                            | BH309                    |
| Zinc                           | 75 μg/l (EU Environmental<br>Objectives, Groundwater)                  | 100 μg/l                           | BH308                    |
| TPH (Ali & Alo)                | 7.5 µg/l (EU Environmental<br>Objectives, Groundwater)                 | 10 µg/l<br>10 µg/l<br>56,000 µg/l  | BH301B<br>BH302<br>BH308 |



| Contaminant                                                                                                                                                                  | Screening Value <sup>6</sup>                                           |  | Exceeding<br>Concentrations<br>790 μg/l<br>10 μg/l<br>10 μg/l           | Locations<br>Exceeding<br>BH309<br>BH313<br>BH314   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|-------------------------------------------------------------------------|-----------------------------------------------------|
| Anthracene                                                                                                                                                                   | 0.1 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)     |  | 0.21 μg/l<br>3.60 μg/l<br>100 μg/l<br>5.00 μg/l                         | BH301B<br>BH302<br>BH308<br>BH309                   |
| Benzo(a)pyrene                                                                                                                                                               | 0.00017 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) |  | 1.20 µg/l<br>32 µg/l<br><100 µg/l<br>8.4 µg/l<br>0.41 µg/l<br>0.23 µg/l | BH301B<br>BH302<br>BH308<br>BH309<br>BH313<br>BH314 |
| Fluoranthene                                                                                                                                                                 | 0.0063 µg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  |  | 1.90 μg/l<br>32 μg/l<br>100 μg/l<br>21 μg/l<br>0.50 μg/l<br>0.28 μg/l   | BH301B<br>BH302<br>BH308<br>BH309<br>BH313<br>BH314 |
| Naphthalene                                                                                                                                                                  | 2 μg/ AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)       |  | 500 μg/l<br>6.80 μg/l                                                   | BH308<br>BH309                                      |
| EU Environmental Objectives (Surface Waters) (Amendment) Regulations 2015 AA-EQS other surface waters  EU Environmental Objectives (Groundwater) (Amendment) Regulation 2016 |                                                                        |  |                                                                         |                                                     |

As groundwater in the vicinity of the site is not used as a potable water supply, no risk to human health exists through ingestion and as such, drinking water standards are not considered as part of the assessment.

A number of heavy metals including cadmium, lead and nickel were found to exceed the EU Environmental Objectives (Surface Waters) (Amendment) Regulations 2015 AA-EQS for other surface waters. Zinc at BH128 was found to exceed the EU Environmental Objectives (Groundwater) (Amendment) Regulations 2016. Furthermore, zinc at BH308 (Area L) and BH316, BH319, BH320 and BH321 (Area O) was found exceed the EU Environmental Objectives (Groundwater) (Amendment) Regulations 2016.



Elevated concentrations of phosphate and boron above the EU Environmental Objectives (Surface Waters) (Amendment) Regulations 2015 AA-EQS for other surface waters was observed in all 3 no. surface water samples. Elevated concentrations of lead were observed in surface water sample SW01 but was not noted in further downstream samples.

A number of samples across all monitoring rounds recorded elevated concentrations of PAHs and Hydrocarbons.

The groundwater and surface water results are discussed further in Section 10.0

# 9.3 Remedial Targets Methodology – Level 1 Leachability Soil Screening

A total of five (5) no. soil samples obtained from boreholes during the initial ground investigation were sent for soil leachability analysis. A further three (3) no. soil samples obtained from boreholes within Area L during the 2024 ground investigation (26<sup>th</sup> March – 17<sup>th</sup> April) were sent for soil leachability analysis. Furthermore, within the latest ground investigation 2024 a further four (4) no. soil samples were obtained within Area O for further leachability analysis. The laboratory certificates are included in Appendix B with a screening table summarising the results in Appendix F. The results were screened against the EU Environmental Objectives Regulations for surface waters and groundwater (Amendment) Regulations. Where there were no available EU Environmental Objective values available, the EPA Interim Guideline Values, 2003 were used.

As per the EA Remedial Targets Methodology, the Level 1 screen examines the potential for contaminants to leach from soil to soil pore water. The compliance point utilised is the soil pore space and as such, is the most conservative compliance point as it does not take into account attenuation and dilution within the aquifer.

The results indicate that soil leachability contamination is confined to samples obtained from the made ground strata within Area O. Elevated concentrations of heavy metals including arsenic, lead and manganese were observed. Elevated total TPH concentrations were noted within BH123 at 4.0m bgl where the PID reading on site was relatively low and recorded as 11.40ppm. A number of PAH exceedances were also noted above the screening values.

The contamination identified within Area L and Area O are all confined to the made ground present throughout the site, as similar to the previous site investigation. Elevated concentrations of heavy metals, such as aluminium (Area L within BH304) and lead exceedances within Area L and Area O were identified. Furthermore, as observed in the previous site investigation, elevated total TPH concentrations were noted within all samples obtained in Area L and Area O. However, the PID readings taken on site during the investigations remained consistently low with a high of 0.50ppm at BH304 at 2.00m bgl being the highest reading of the samples within Area L. A high of 2.70ppm was recorded at BH318



at sample depth 4.00m bgl within Area O. As consistent with previous investigations of site, a number of PAH exceedances were noted above the screening values.

Table 9-4 Exceedances of screening values within soil leachability tests 2023

| Contaminant<br>Area O                                                                                 | Screening Value <sup>7</sup>                                              | Exceeding<br>Concentrations                        | Locations Exceeding                                                                          |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|
| Arsenic                                                                                               | 7.50 µg/l (EU<br>Environmental<br>Objectives,<br>Groundwater)             | 8.7 µg/l                                           | BH123 at 4.0m bgl                                                                            |
| Lead                                                                                                  | 1.30 µg/I AA-EQS (EU<br>Environmental<br>Objectives, Surface<br>Waters)   | 1.50 μg/l<br>2.70 μg/l<br>4.70 μg/l<br>6.50 μg/l   | BH125 at 1.00m bgl<br>BH123 at 4.05m bgl<br>BH122 at 4.70m bgl<br>BH318 at 4.00-4.10m<br>bgl |
| Total TPH (aliphatic & aromatic)                                                                      | 7.50 µg/l (EU<br>Environmental<br>Objectives,<br>Groundwater)             | 320 μg/l                                           | BH123 at 2.00m bgl                                                                           |
| Anthracene                                                                                            | 0.10 μg/l AA-EQS<br>(EU Environmental<br>Objectives, Surface<br>Waters)   | 1.70 μg/l                                          | BH125 at 1.00m bgl                                                                           |
| Fluoranthene                                                                                          | 0.0063 µg/l AA-EQS<br>(EU Environmental<br>Objectives, Surface<br>Waters) | 3.40 µg/l                                          | BH125 at 1.00m bgl                                                                           |
| EU Environmental Objectives (Surface Waters) (Amendment) Regulations 2019 AA-EQS other surface waters |                                                                           | EU Environmental Ob<br>(Groundwater) (Amer<br>2016 | -                                                                                            |

 $<sup>^{7}</sup>$  AA = Annual Average, MAC = Maximum Allowable Concentration.



Table 9-5 Exceedances of screening values within soil leachability tests 2024

| Contaminant                            | Screening Value <sup>10</sup>                                           | Exceeding<br>Concentrations | Locations<br>Exceeding                                   |
|----------------------------------------|-------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------|
| Area O                                 |                                                                         |                             |                                                          |
| Lead                                   | 1.30 μg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)    | 6.50 μg/l                   | BH318 at 4.00-4.10m<br>bgl                               |
| Total TPH<br>(aliphatic &<br>aromatic) | 7.50 µg/l (EU Environmental<br>Objectives, Groundwater)                 | 10 μg/l<br>10 μg/l          | BH318 at 4.00-4.10m<br>bgl<br>BH319 at 2.00-2.10m<br>bgl |
| Benzo(a)pyrene                         | 0.00017 μg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) | 0.04 μg/l                   | BH319 at 2.00-2.10m bgl                                  |
| Fluoranthene                           | 0.0063 μg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  | 0.01 μg/l<br>0.15 μg/l      | BH318 at 4.00-4.10m<br>bgl<br>BH319 at 2.00-2.10m<br>bgl |
| Port Park                              |                                                                         |                             |                                                          |
| Lead                                   | 1.30 µg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)    | 8.40 µg/l                   | BH316 at 4.00-4.10m<br>bgl                               |
| Total TPH (aliphatic<br>& aromatic)    | 7.50 µg/l (EU Environmental<br>Objectives, Groundwater)                 | 10 μg/l<br>10 μg/l          | BH315 at 3.00-3.10m<br>bgl<br>BH316 at 4.00-4.10m<br>bgl |
| Benzo(a)pyrene                         | 0.00017 μg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) | 0.03 μg/l                   | BH316 at 4.00-4.10m<br>bgl                               |
| Fluoranthene                           | 0.0063 μg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  | 0.06 μg/l<br>0.01 μg/l      | BH315 at 3.00-3.10m<br>bgl<br>BH316 at 4.00-4.10m<br>bgl |

<sup>&</sup>lt;sup>10</sup> AA = Annual Average, MAC = Maximum Allowable Concentration.



| Contaminant                                                                                           | Screening Value <sup>10</sup>                                           | Exceeding<br>Concentrations                          | Locations<br>Exceeding                                                                                      |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Area L                                                                                                |                                                                         |                                                      |                                                                                                             |
| Lead                                                                                                  | 1.30 µg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)    | 1.50 µg/l                                            | BH304 at 2.00m bgl                                                                                          |
| Total TPH (aliphatic<br>& aromatic)                                                                   | 7.50 µg/l (EU Environmental Objectives, Groundwater)                    | 10 μg/l<br>10 μg/l<br>10 μg/l<br>10 μg/l<br>10 μg/l  | BH308 at 2.00m bgl<br>BH301B at 2.00m bgl<br>BH306 at 2.00m bgl<br>BH304 at 2.00m bgl<br>BH313 at 1.00m bgl |
| Benzo(a)pyrene                                                                                        | 0.00017 μg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters) | 0.07 μg/l                                            | BH301B at 2.00m bgl                                                                                         |
| Fluoranthene                                                                                          | 0.0063 μg/l AA-EQS (EU<br>Environmental Objectives,<br>Surface Waters)  | 0.09 µg/l<br>0.03 µg/l                               | BH301B at 2.00m bgl<br>BH306 at 2.00m bgl                                                                   |
| EU Environmental Objectives (Surface Waters) (Amendment) Regulations 2019 AA-EQS other surface waters |                                                                         | EU Environment<br>(Groundwater) (<br>Regulations 201 | Amendment)                                                                                                  |



# 10 GROUND BORNE GAS SURVEY

## 10.1 Introduction

The principal components of ground borne gas are Methane and Carbon dioxide, but other gases such as Hydrogen sulphide and Carbon monoxide can also be present. Ground borne gas can present a hazard to end users of a site and can enter buildings, thus presenting a toxic, asphyxiation or explosion hazard.

Guidance on gas risk assessment is set-out in the following documentation:

- The Local Authority Guide to Ground Gas (Chartered Institute of Environmental Health, September 2008)
- CIRIA Report C665 Assessing risks posed by hazardous ground gases to buildings (CIRIA, 2007)
- Guidance on investigation for ground gas Permanent gases and Volatile Organic Compounds (VOCs) (British Standard 8576, 2013)

# 10.2 Gas survey results

The gas results from four rounds of monitoring undertaken between April 2023 and March 2023 have been used to assess the gas condition on the site. The maximum recorded gas volumes (Methane and Carbon dioxide) and flow rate results recorded at each borehole location are summarised in Appendix G.

The gas results from four rounds of monitoring undertaken throughout June 2024, have been used to assess the gas conditions within Area L. The maximum recorded gas volumes (Methane and Carbon dioxide) and flow rate results recorded at each borehole location are summarised in Appendix G.

## 10.2.1 Area O

The lowest atmospheric pressure throughout the monitoring period was recorded as 994mb on 16<sup>th</sup> March 2023. The maximum recorded concentration (volume gas/volume air) within boreholes was 59.4 vol/vol% for Methane in BH120 and 16.4 vol/vol% for Carbon Dioxide in BH125. The maximum flow rate was recorded as 10.8 litres / hour in BH120.

Negative flow rates were also recorded within some boreholes during the first round of monitoring, which may be represent falling groundwater levels or a tidal influence.



#### 10.2.2 Area L

The lowest atmospheric pressure throughout the 2024 Area L monitoring period was 991mb, recorded on the 14th of June 2024. The maximum recorded concentration (volume gas/volume air) within boreholes was 0.2 vol/vol% for Methane in BH302 and 6.3 vol/vol% for carbon dioxide in BH308. The maximum flow rate recorded was 0.2 litres / hour.

## 10.2.3 Maritime Village

BH102 provided the only location in which access was available to carry out four rounds of gas monitoring. The lowest atmospheric pressure throughout the monitoring period was recorded as 994mb on the first round on monitoring. The maximum recorded concentration (volume gas/volume air) within the borehole, which was installed within made ground was 0.3 vol/vol% for Carbon Dioxide and 0.1 vol/vol% for Methane. The maximum flow rate was recorded as 0.1 litres / hour.

#### 10.3 Gas risk assessment

Methane and Carbon dioxide are classified as hazardous gases. Table 10.1 summarises the toxic and explosive effects and specified exposure or trigger limits for these gases.

Table 10-1 Significant gas concentrations in air

| Gas            | Concentration | Exposure limits                                               |
|----------------|---------------|---------------------------------------------------------------|
|                | <1%           | Building Regulations Limit                                    |
|                | 0.25%         | Ventilation required in tunnels and other confined spaces     |
| Methane        | 5%            | Potentially explosive when mixed with air (LEL)               |
| -              | 30%           | Potentially explosive when mixed with air (UEL), Asphyxiation |
| Carbon dioxide | 0.5%          | 8 hour exposure limit (OEL)                                   |
|                | 1.5%          | 10 min exposure limit (OEL) and Building Regulations Limit    |
|                | >3%           | Breathing difficulties                                        |
|                | >5%           | Asphyxiation                                                  |

Guidance on gas risk assessment and the design of gas protection measures is set-out in the following documentation:



- DOE Waste Management Paper 27
- UK Building Regulations (1991)
- CARD Geotechnics Research Report (1999)
- CIRIA Report 149 (1995)
- NHBC and RSK Group 10627-R01 (2007)
- CIRIA Report C665 (2007)
- Local Authority Guide to Ground Gas (2008)
- British Standards 8576 (2013)

CIRIA report C665 represents the current best practice guidance. It outlines a holistic approach to gas risk assessment, which takes account of the following factors:

- Nature of source and migration pathway
- Borehole flow rate and surface emission rate
- Frequency and distribution of elevated gas concentrations
- Nature of the proposed development
- Confidence and reliability of results

The most important aspect relating to the classification of a site's gas regime is governed by the concentration of the gas and how quickly it is coming out of the ground. This is reflected by the limiting volume flow rate of the gas, which is calculated as the gas concentration (expressed as a volumetric fraction) multiplied by the borehole flow rate. The limiting borehole gas volume flow has been renamed as the gas screening value (GSV) in CIRIA C665.

This GSV is applied to six characteristic situations, the threshold criteria for which are listed in Appendix G - Table 2.

# 10.4 Ground gas conceptual site model

#### 10.4.1 Sources

A review of ground gas monitoring data highlights that elevated levels of methane and carbon dioxide are present within the made ground strata and underlying sands and gravels. Borehole logs have been reviewed to determine any potential hydrocarbon and / or organic indicators as a source of ground gas.

#### Area O

The borehole log for BH125, which had the most elevated concentrations of methane during the ground gas monitoring, notes fragments of tar within made ground between 0 - 1.70m bgl. Fragments of wood and plastic are also noted within made ground between 1.70 - 5.00m bgl. A handheld photo-ionisation detector (PID) was used to determine any volatile vapours



present from soil samples obtained during the site investigation. The PID readings from soil sampled at BH125 within made ground ranged from 1.70ppm – 30.30ppm. This area is known to be an area historically used as a landfill, with the borehole logs also highlighting some organic materials and as such it is likely that the composition of made ground is the source of elevated ground gases within Area O.

Two (2) boreholes were installed within sands and gravels underlying made ground, BH120 and BH123. Both boreholes are located within Area O. Ground monitoring data from BH120 indicated elevated methane and flow rates. A review of the borehole log for BH120 did not determine any potential organic indicators within the gravel response zone. PID readings from soil obtained within the gravel strata ranged from 0.10 - 0.80ppm. These PID readings are considered very low in the context of this risk assessment, suggesting there is no volatile source of ground gas within this strata. Rising and falling pressure within response zones within the sands may be the source of elevated results.

#### Area L

Three (3) boreholes within Area L were installed within sands and gravels underlying the made ground; BH308, BH309 and BH313. The highest concentration of carbon dioxide was recorded within Area L at BH308. Methane concentrations remained consistently low at 0.1 vol/vol% at the three (3) locations.

The PRA report produced for the 3FM Project, identified that this area of Dublin Port has been historically developed by reclaiming mud flats. It is recognised that sedimentary soils such as estuarine alluvium often contain organic matter which may biodegrade over time. The sand and gravel strata which underlies the made ground, may comprise gas stored within soils and groundwater. The made ground present across Area L is also a likely source of elevated ground gas concentrations.

#### **Maritime Village**

Ground gas levels from the borehole (BH102) at the proposed Maritime Village site recorded low levels of ground gas.

# 10.4.2 Pathways

The predominant mechanism for migration of gases from made ground is diffusive flow, with no driving pressure. Gas present within the soil pore structure will diffuse through the soils forming a continuum between a source and ground level i.e. proposed commercial development. The majority of gas will remain trapped in the soil pores, sorbed to soil particles, or, if applicable, dissolved in groundwater.

#### Area O



Normal surface applied ground treatment techniques are proposed within Area O where elevated ground gases have been observed. Compaction of soil pore structure may result in a build-up of gases during and post construction. The proposal of buildings situated within Area O may create a subsequent pathway for ground gas within made ground via service entries into the buildings. There is no piling requirement within Area O and as such, no preferential pathway is being created for gas migration from within the sands into proposed buildings.

#### 10.4.3 Receptors

Proposals detail commercial end use and as such site operators / users within buildings are considered to be receptors. Buildings are proposed within Area L and O.

# 10.5 Calculation of Gas Screening Value

#### 10.5.1 Area O

The maximum gas concentration (59.4 vol/vol% for Methane at BH120) and flow rate (10.8 litres/hour at BH120) was used to calculate a GSV, which was calculated as 6.42 l/hr which is categorised as Characteristic Situation 4.

#### 10.5.2 Area L

The maximum gas concentration in Area L (6.3 vol/vol% for carbon dioxide at BH308) and flow rate (0.2 litres / hour at BH310) was used to calculate a GSV. The GSV value was calculated as 0.0126 l/hr, however the carbon dioxide concentrations were >5% on 3 no. occasions which would result in a Characteristic Situation 2 classification.

#### 10.5.3 Maritime Village

As the only borehole accessible throughout the gas monitoring, BH102 which was installed within made ground maximum gas concentration (0.3 vol/vol% for Carbon Dioxide) and flow rate (0.1 litres/hour at) was used to calculate a GSV representative of this area. This was calculated as 0.0003 l/hr which is a Characteristic Situation 1, and ground gas protection measures will not be required.

#### 10.6 Radon Gas

According to the EPA Radon Risk Map of Ireland, the study area falls outside of mapped radon risk areas, likely due to the site being developed on reclaimed land. It is therefore anticipated that the study area is in an area of low radon potential.



# 11 RISK ASSESSMENT

Using the methodology outlined in the previous sections, the laboratory analytical results were used to carry out a quantitative risk assessment of the risk to human health and environmental receptors.

# 11.1 Overview of contaminant sources, pathways and receptors

# 11.1.1 Sources – ground contamination

#### **Roads / Transport Routes**

#### <u>Asbestos</u>

Chrysotile asbestos was identified within 2 no. samples obtained from locations proposed as roads / transport routes; BH112 at 1.50m bgl, BH116 at 0.50m bgl. Both of these samples were quantified and the asbestos in soil composition was found to be 0.004%. As these samples were obtained from areas of proposed road surfacing, there is no significant risk to future site users, however, there is an exposure risk associated with construction workers.

#### **Maritime Village**

No soil sources of contamination were identified.

#### Area O

#### <u>Asbestos</u>

Chrysotile asbestos was identified within five (5) soil samples within Area O obtained between 0.50m-3.00m bgl, with quantifications between 0.002-0.004%. Five (5) samples were obtained from BH119, BH120, BH320, BH322 at 0.50m & BH322 at 3.00m. Amosite asbestos was identified within 1 no. soil sample obtained at 1.00m (BH119). Given the proposed hardstanding within the road network, Area O, it is anticipated that the risk to future site users from asbestos fibres is low. However, there is a potential risk to workers during construction from activities such as excavations, which may disturb and release asbestos fibres in soil.

#### Area L

#### <u>Asbestos</u>

One (1) soil sample obtained from Area L returned a positive asbestos identification. A sample obtained from BH305 at 2.00m bgl comprised chrysotile amosite asbestos fibres. Given the depth at which the asbestos was detected, and the proposed hardstanding, there is no significant risk posed to future site users. However, this asbestos may pose a risk to construction workers.



#### **Port Park**

#### **Asbestos**

One (1) soil sample obtained from Area Port Park returned a positive asbestos identification. A sample obtained from BH317 at 0.50m comprised chrysotile fibres. Given the shallow depth at which this asbestos was identified and the proposed soft landscaping in this area, asbestos in soils are considered a source of contamination at this location.

#### 11.1.2 Sources - groundwater and surface water contamination

#### Area O & Port Park

#### **Heavy Metals**

Concentrations of cadmium (BH128), lead (BH128 & SW01), and nickel (BH120, BH121, BH123, BH125, BH128) exceeded the EU Environmental Objectives values for surface water receptors, however, notably, these issues did not appear to be significant within the surface water samples obtained during the investigation. The concentration of zinc in groundwater sampled from BH128 exceeded the EU Environmental Objectives for groundwater. The source of these metals is likely to be the made ground/waste material beneath the site.

#### Total Petroleum Hydrocarbons

The concentrations of total petroleum hydrocarbons in groundwater samples obtained from the 2023 boreholes in Area O were all found to be below the Groundwater Amendment Regulations 2016 threshold value of 7.5 mg/kg.

Groundwater samples obtained from subsequent boreholes put down across Area O and Port Park as part of the 2024 site investigation works showed elevated concentrations of total petroleum hydrocarbons above the Groundwater Amendment Regulations.

#### Polycyclic Aromatic Hydrocarbons

The concentrations of PAHs in groundwater samples obtained from the 2023 boreholes in Area O were all found to be below the EQS values. The samples obtained in 2024 all recorded exceedances for a number of PAHs including Anthracene, Benzo(a)pyrene, Fluoranthene and Napthalene.

The source of the elevated Hydrocarbons and PAHs is likely to be the made ground/waste material beneath the site.

#### Area L

#### **Heavy Metals**

Groundwater samples were obtained from Area L on two (2) occasions; 25<sup>th</sup> April and 8-9<sup>th</sup> May 2024. Concentrations of heavy metals within Area L were found to be in excess of the



appropriate screening values. Notably, there is a decrease in the concentrations of particular heavy metals such as Barium, Cadmium, and Manganese during the second round of sampling. Other parameters such as Boron increase in concentration during the second round of sampling. Overall, the concentrations of metals are generally higher in samples obtained from the natural sands and slightly lower within the made ground.

#### Total Petroleum Hydrocarbons

Groundwater samples obtained from both monitoring rounds showed elevated concentrations of total petroleum hydrocarbons above the Groundwater Amendment Regulations. In particular, a highly elevated concentration of 56,000 ug/L was noted in the sample from BH308 on 9th May.

#### Polycyclic Aromatic Hydrocarbons

The samples obtained from both monitoring rounds recorded exceedances for a number of PAHs including Anthracene, Benzo(a)pyrene, Fluoranthene and Napthalene.

The source of the elevated Hydrocarbons and PAHs is likely to be the made ground/waste material beneath the site. With regard to the elevated Hydrocarbons at BH308, it is noted that this borehole is located within the Hammond Lane metal recycling facility. Is it likely that a spill or leak of fuel or oil has occurred within the vicinity of the borehole.

#### **Leachability Analysis**

A number of heavy metal parameters were found to exceed threshold screening values. The concentration of arsenic within groundwater sampled from BH123 exceeded the EU Environmental Objectives Regulations derived to be protective of groundwater. Concentrations of lead at BH122, BH123 and BH125 were found to be above the threshold screening value for EU Environmental Objectives Regulations for surface waters. Manganese concentrations within groundwater sampled from BH120 & BH122 exceed the EPA interim Guideline Values.

The concentration of total TPH at BH123 was found to exceed the EU Environmental Objectives Regulations derived to be protective of groundwater. It is noted that elevated concentrations of hydrocarbons were not observed within the groundwater sampled from BH128 which was installed within sands underlying made ground. A number of PAH parameters including anthracene (BH125), fluoranthene (BH125), and naphthalene (BH120 & BH125), were found to exceed the EU Environmental Objectives Regulations derived to be protective of surface waters. A review of the borehole logs confirm the presence of tar within the top 1.70m of made ground at BH125 which is the likely source of PAH contamination. The concentrations of total PAH at BH122, BH123 & BH125 also exceeded the EU Environmental Objectives derived to be protective of groundwater. It is however, noted, that elevated PAH



concentrations were not observed in shallow groundwater sampled from this location, or within surface water samples.

# 11.1.3 Sources – ground borne gases (Carbon Dioxide and Methane)

The monitoring results indicate that the gas regime is classified as a Characteristic Situation 4 for Area O and a Characteristic Situation 2 for Area L in accordance with CIRIA C665. As such, ground gas protection measures will be required within buildings proposed for these areas. The source of these elevated ground gases is the made ground and waste material encountered beneath Area O and L.

#### 11.1.4 Off-site sources

There is the potential for contaminated ground water and ground gas to migrate on to the site from off-site due to the historical industrial use of Dublin Port, and a number of present-day industrial uses.

# 11.1.5 Pathways

- A pathway with impacts to human health for construction workers through the inhalation
  of asbestos fibres is considered to be active where proposals require breaking ground /
  earthworks. Construction workers will require PPE / RPE to mitigate risks when disturbing
  the ground. An active pathway has been determined for long-term site users of Port Park
  within the vicinity of BH317 where asbestos was identified within shallow soils at 0.50m
  bgl where soft landscaping is proposed.
- A pathway for the migration of ground gas from made ground within Area O and L into the proposed development and the subsequent inhalation of indoor gases is considered to be active on the site.
- A pathway for the leaching of contaminants from made ground material to shallow groundwater is considered to be active on the site.
- Groundwater within the site will not be used as a potable source of water, therefore, the
  ingestion pathway for contamination to human health from groundwater is not deemed to
  be active.
- A pathway for vertical migration of contaminants in groundwater towards the bedrock aquifer is not considered to be active due to the presence of a significant thickness (10m or more in more) of firm to very stiff clay which provides low permeability cover.
- A pathway for the horizontal migration of contaminants on site within groundwater via shallow groundwater within made ground and within underlying sands / gravels to the adjacent River Liffey is considered to be active.



#### 11.1.6 Receptors

#### **End-users**

The proposed development predominantly comprises commercial use. All soil samples were found to be below the generic assessment criteria for a commercial end use site. As such, no risk to commercial end users was identified from the investigation.

A public realm (Port Park) is proposed in the south-east corner of the site with some soft landscaping. Soil sampled from BH126, BH127 and BH128 situated within the proposed Port Park area returned concentrations below the relevant public open space near residential end use screening criteria. Asbestos in shallow soils at BH317 within the proposed soft landscaping area of Port Park is considered to pose a risk to future site users who may over time be exposed to disturbed fibres within soils.

Construction workers involved in site clearance, excavation, earthmoving and material handling operations may be exposed to the inhalation of soil and dust particles and asbestos.

#### Shallow groundwater

Shallow groundwater perched within made ground and shallow groundwater within sands and gravels underlying the made ground exceeded a number of contaminant concentrations for heavy metal parameters, hydrocarbons and PAHs. Shallow groundwater on site is not considered to be an exploitable source of groundwater.

#### **Bedrock aquifer**

The deeper bedrock aquifer in the underlying Limestone and Mudstone is very unlikely to be impacted by the site due to the presence of a significant thickness (c.10m) of firm to very stiff clay anticipated to prevent the vertical migration of contaminants towards the bedrock aquifer.

#### Surface water - River Liffey

The River Liffey samples appear to be of generally good surface water quality.

#### **Buildings**

Ground gas monitoring has characterised Area O as Characteristic Situation 4 and Area L as Characteristic Situation 2 meaning gas protection measures will be required.

# 11.2 Risk assessment and revised conceptual site model

The revised site conceptual model is illustrated in Table 11.1 and the risks to receptors are summarised below.



#### 11.2.1 Human Health

The risk to site end users from identified contamination will be minimal due to the emplacement of hard-standing and proposed building footprints across the majority of the site. A potential risk is present to construction workers with regards to asbestos fibres within Area O (BH119, BH120, BH317, BH320, BH322 at 0.50m & BH322 at 3.00m), proposed roads (BH112 and BH116) and Area L (BH305) where earthworks or breaking ground is required during the construction phase. Risks to construction workers within these areas should be mitigated using PPE & RPE and appropriate work methods.

Asbestos in shallow soils at BH317 within the proposed soft landscaping area of Port Park is considered to pose a risk to future site users who may over time be exposed to disturbed fibres within soils.

It is anticipated that future site users may be at risk of ground gas ingress within the proposed buildings in the Area O and L due to a ground gas classification of Characteristic Situation, which results in the requirement for ground gas protection measures.

#### 11.2.2 Risk to shallow groundwater

Shallow groundwater on site is not considered to be a controlled water and does not represent an exploitable source of groundwater.

#### 11.2.3 Risk to bedrock aquifer

The deeper bedrock aquifer is very unlikely to be impacted by the site due to the presence of a significant thickness (c.10m) of firm to very stiff clay anticipated to prevent vertical migration of contaminants towards the bedrock aquifer.

#### 11.2.4 Risk to adjacent water bodies

Whilst the shallow groundwater has been impacted by heavy metals, PAHs and Hydrocarbons the surface water sampling and analysis appears to demonstrate that this is not impacting upon the quality of River Liffey. However, a source-pathway-receptor linkage is present from contaminated shallow groundwater to the River Liffey and a risk is present for this groundwater to impact upon the quality of the River Liffey.

#### 11.2.5 Risk to buildings

Ground gas monitoring has recorded elevated ground gas levels meaning gas protection measures will be required within proposed buildings in Area O and L.



Table 11-1 Conceptual Site Model Summary – Roads & Transport Routes

| Source            | Pathway(s)                                                  | Receptors(s)         | Relevant Source – Pathway – Receptor linkage (SPR)                                                                                                                                                                                        | Mitigation measures & Recommendations                                     |
|-------------------|-------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| On-site sources   |                                                             |                      |                                                                                                                                                                                                                                           |                                                                           |
| Asbestos in soils | Inhalation of fugitive<br>dusts and / or<br>asbestos fibres | Construction workers | Disturbance of asbestos fibres during any excavations to facilitate roads or laying of services which may result in the inhalation of fugitive dusts and / or asbestos fibres. Direct contact with contaminated soils during excavations. | asbestos fibres have<br>been identified, ensure<br>the use of appropriate |
|                   |                                                             |                      | Where proposals outline the presence of hardstanding, the relevant SPR linkage is removed.                                                                                                                                                | PPE / RPE and employ dust suppression methods during excavations.         |



Table 11.2 - Conceptual Site Model Summary - Maritime Village

| Source                             | Pathway(s)                                  | Receptors(s)         | Relevant Source – Pathway – Receptor linkage (SPR) | Mitigation measures & Recommendations   |
|------------------------------------|---------------------------------------------|----------------------|----------------------------------------------------|-----------------------------------------|
| On-site sources                    |                                             |                      |                                                    |                                         |
| No contamination source identified | Direct contact including dermal,            | Construction workers | No SPR linkage identified.                         | No specific remedial measures required. |
|                                    | absorption and inhalation of fugitive dusts | Site end users       |                                                    |                                         |



Table 11.3 Conceptual Site Model Summary - Area O

| Source                              | Pathway(s)                                                  | Receptors(s)                                                      | Relevant Source – Pathway – Receptor linkage (SPR)                                                                                                                                                                                        | Mitigation measures & Recommendations                                                                                           |
|-------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| On-site sources                     |                                                             |                                                                   |                                                                                                                                                                                                                                           |                                                                                                                                 |
| Made ground/waste<br>material       | Leaching into shallow groundwater                           | Shallow and deeper<br>groundwater, River<br>Liffey and Dublin Bay | Shallow groundwater on site is not considered to be a controlled water and does not represent an exploitable source of groundwater. SPR linkage may be present with potential to impact upon quality of River Liffey.                     | Monitoring of groundwater and surface water quality is recommended during construction and ground compaction works.             |
| Asbestos in soil                    | Direct contact including dermal and absorption.             | Construction workers                                              | Disturbance of asbestos fibres during any excavations to facilitate roads or laying of services which may result in the inhalation of fugitive dusts and / or asbestos fibres. Direct contact with contaminated soils during excavations. | Ensure construction workers are aware that asbestos fibres and elevated PAH concentrations have                                 |
|                                     | Inhalation of fugitive<br>dusts and / or<br>asbestos fibres |                                                                   | Where proposals outline the presence of hardstanding, the relevant SPR linkage is removed.                                                                                                                                                | been identified, ensure<br>the use of appropriate<br>PPE / RPE and employ<br>dust suppression<br>methods during<br>excavations. |
| Contaminants in shallow groundwater | Vertical and<br>Horizontal migration                        | Deeper groundwater,<br>River Liffey                               | Shallow groundwater on site is not considered to be a controlled water and does not represent an exploitable source of groundwater. SPR linkage may be present with potential to impact upon quality of River Liffey.                     | Monitoring of groundwater and surface water quality is recommended during construction and ground compaction works.             |



| Source                                                | Pathway(s)                    | Receptors(s)                                   | Relevant Source – Pathway – Receptor linkage (SPR)                                                                                                                          | Mitigation measures & Recommendations                                                                               |
|-------------------------------------------------------|-------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                                                       | Vertical migration            | Bedrock aquifer<br>(Limestone and<br>Mudstone) | The deeper bedrock aquifer is very unlikely to be impacted due to the presence of a significant thickness (c.10m) of firm to very stiff clay overlying the bedrock aquifer. | Monitoring of groundwater and surface water quality is recommended during construction and ground compaction works. |
| Ground borne gases<br>(Carbon dioxide and<br>Methane) | Migration to indoor air       | Humans in the form of future site users        | The gas regime within Area O has been classified as Characteristic Situation 4.                                                                                             | Ground gas protection measures will be required.                                                                    |
| ,                                                     | Migration via service entries | Buildings & infrastructure                     |                                                                                                                                                                             |                                                                                                                     |

**Table 11.4 Conceptual Site Model Summary - Port Park** 

| Source          | Pathway(s)                    | Receptors(s)                        | Relevant Source – Pathway – Receptor linkage (SPR)                                                                                                                                              | Mitigation measures & Recommendations                                                                   |
|-----------------|-------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| On-site sources |                               |                                     |                                                                                                                                                                                                 |                                                                                                         |
|                 | Inhalation of asbestos fibres | Construction workers Site end users | Disturbance of asbestos fibres during any earthworks which may result in the inhalation of asbestos fibres.                                                                                     | Ensure construction workers are aware that asbestos fibres have                                         |
|                 |                               | one one adore                       | Where proposals outline the presence of hardstanding, the relevant SPR linkage is removed.                                                                                                      | been identified and<br>appropriate PPE / RPE<br>are used during<br>earthworks and employ                |
|                 |                               |                                     | Where soft landscaping is required in the vicinity of BH317 such as the proposed wildflower meadow, there is a potential risk of disturbance of asbestos containing soils by future site users. | dust suppression methods.                                                                               |
|                 |                               |                                     | descence containing come sy natal conto descret.                                                                                                                                                | Remedial measures<br>required to address risk<br>from asbestos in Port<br>Park in vicinity of<br>BH317. |



Table 11.5 Conceptual Site Model Summary - Area L

| Source                              | Pathway(s)                                                  | Receptors(s)                                                      | Relevant Source – Pathway – Receptor linkage (SPR)                                                                                                                                                                                        | Mitigation measures & Recommendations                                                                                      |
|-------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| On-site sources                     |                                                             |                                                                   |                                                                                                                                                                                                                                           |                                                                                                                            |
| Made ground/waste<br>material       | Leaching into shallow groundwater                           | Shallow and deeper<br>groundwater, River<br>Liffey and Dublin Bay | Shallow groundwater on site is not considered to be a controlled water and does not represent an exploitable source of groundwater. SPR linkage may be present with potential to impact upon quality of River Liffey.                     | Monitoring of groundwater and surface water quality is recommended during construction.                                    |
| Asbestos in soils                   | Direct contact including dermal and absorption.             |                                                                   | Disturbance of asbestos fibres during any excavations to facilitate roads or laying of services which may result in the inhalation of fugitive dusts and / or asbestos fibres. Direct contact with contaminated soils during excavations. | Ensure construction<br>workers are aware that<br>asbestos fibres have<br>been identified, ensure<br>the use of appropriate |
|                                     | Inhalation of fugitive<br>dusts and / or<br>asbestos fibres |                                                                   | Where proposals outline the presence of hardstanding, the relevant SPR linkage is removed.                                                                                                                                                | PPE / RPE and employ dust suppression methods during excavations.                                                          |
| Contaminants in shallow groundwater | Vertical and<br>Horizontal migration                        | Deeper groundwater,<br>River Liffey                               | Shallow groundwater on site is not considered to be a controlled water and does not represent an exploitable source of groundwater. SPR linkage may be present with potential to impact upon quality of River Liffey.                     | Monitoring of groundwater and surface water quality is recommended during construction.                                    |
|                                     | Vertical migration                                          | Bedrock aquifer<br>(Limestone and<br>Mudstone)                    | The deeper bedrock aquifer is very unlikely to be impacted due to the presence of a significant thickness (c.10m) of firm to very stiff clay overlying the bedrock aquifer.                                                               | Monitoring of groundwater and surface water quality is recommended during construction.                                    |



| Source                                                | Pathway(s)                    | Receptors(s)                            | Relevant Source – Pathway – Receptor linkage (SPR)                              | Mitigation measures & Recommendations            |
|-------------------------------------------------------|-------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|
| Ground borne gases<br>(Carbon dioxide and<br>Methane) | Migration to indoor air       | Humans in the form of future site users | The gas regime within Area L has been classified as Characteristic Situation 2. | Ground gas protection measures will be required. |
| ,                                                     | Migration via service entries | Buildings & infrastructure              |                                                                                 | ·                                                |



# 12 CONCLUSIONS & RECOMMENDATIONS

# 12.1 Conclusions

- Asbestos fibres have been identified within shallow sub soils at BH112, BH116, BH119, BH120, BH317, BH320 & BH322. There is the potential for asbestos fibres to be released during any earth works at these locations. Construction workers should employ appropriate use of PPE / RPE and dust suppression methods to mitigate risks from asbestos fibres during the construction phase. There is a potential risk of disturbance of asbestos in shallow soils within the proposed Port Park & wildflower meadow and as such, remedial measures will be required.
- Shallow groundwater samples recorded elevated concentrations of heavy metals, PAHs and TPH which are likely leaching from the made ground.
- Area O classified as a Characteristic Situation 4 and gas protection measures will be required.
- Area L classified as a Characteristic Situation 2 and gas protection measures will be required.

# 12.2 Recommendations

 A Detailed Remedial Strategy should be produced which will outline how the above risks will be mitigated.



# **Appendix A**

Proposed Development Layout with Ground Investigation

Locations





# **Appendix B**

**Causeway Geotech Ltd Ground Investigation Reports** 



# **3FM Planning Design GI Lot A DPC Lands – Ground Investigation**

Client: Dublin Port Company (DPC)

Client's Representative: RPS

Report No.: 22-1041A

Date: October 2023

Status: Final for Issue





# **CONTENTS**

# **Document Control Sheet**

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

| 1 | AUT                                                  | HORITY                                                                                                                                 | 5              |
|---|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2 | SCOI                                                 | PE                                                                                                                                     | 5              |
| 3 | DESC                                                 | CRIPTION OF SITE                                                                                                                       | 5              |
| 4 | 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8 | OPERATIONS                                                                                                                             |                |
| 5 | 5.1<br>5.2                                           | Groundwater and ground gas monitoring  ORATORY WORK  Geotechnical laboratory testing of soils  Geotechnical laboratory testing of rock | 11<br>11       |
| 6 | 5.3<br>GRO<br>6.1<br>6.2<br>6.3                      | Environmental laboratory testing of soils                                                                                              | 12<br>12<br>12 |
| 7 | REF                                                  | ERENCES                                                                                                                                | 14             |





#### **APPENDICES**

Appendix A Site and exploratory hole location plans

Appendix B Borehole logs

Appendix C Core photographs

Appendix D Slit trench logs and drawings

Appendix E Slit trench photographs

Appendix F Indirect in-situ CBR test results

Appendix G Pavement cores

Appendix I Geotechnical laboratory test results

Appendix I Environmental laboratory test results

Appendix J SPT hammer energy measurement report

Appendix K Groundwater and gas monitoring





# **Document Control Sheet**

| Report No.:                      |         | 22-1041A                               |  |                                              |                                 |  |
|----------------------------------|---------|----------------------------------------|--|----------------------------------------------|---------------------------------|--|
| Project Title:                   |         | 3FM Planning Design GI Lot A DPC Lands |  |                                              |                                 |  |
| Client:                          |         | Dublin Port Company (DPC)              |  |                                              |                                 |  |
| Client's Representative:         |         | RPS                                    |  |                                              |                                 |  |
| Revision:                        | A02     | Status: Final for Issue   Issue Date:  |  | Issue Date:                                  | 2 <sup>nd</sup> October<br>2023 |  |
| Prepared by:                     |         | Reviewed by:                           |  | Approved by:                                 |                                 |  |
| Radiel White                     |         | Fra Ross.                              |  | Jan Or UMO 7.                                |                                 |  |
| Rachel White<br>B.A. (Mod.) Geos | science | Sean Ross<br>BSc MSc PGeo MIEI         |  | Darren O'Mahony<br>BSc MSc MIEI EurGeol PGeo |                                 |  |

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015+A1:2020, Code of practice for ground investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9





# METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Ground Investigation.

| Abbreviations use            | ed on exploratory hole logs                                                                                                                                                                                                                                 |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U                            | Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).                                                                                                                                                                                 |
| UT                           | Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).                                                                                                                                                                                  |
| P                            | Nominal 100mm diameter undisturbed piston sample.                                                                                                                                                                                                           |
| В                            | Bulk disturbed sample.                                                                                                                                                                                                                                      |
| LB                           | Large bulk disturbed sample.                                                                                                                                                                                                                                |
| D                            | Small disturbed sample.                                                                                                                                                                                                                                     |
| С                            | Core sub-sample (displayed in the Field Records column on the logs).                                                                                                                                                                                        |
| L                            | Liner sample from dynamic sampled borehole.                                                                                                                                                                                                                 |
| W                            | Water sample.                                                                                                                                                                                                                                               |
| ES / EW                      | Soil sample for environmental testing / Water sample for environmental testing.                                                                                                                                                                             |
| SPT (s)                      | Standard penetration test using a split spoon sampler (small disturbed sample obtained).                                                                                                                                                                    |
| SPT (c)                      | Standard penetration test using 60 degree solid cone.                                                                                                                                                                                                       |
| (x,x/x,x,x,x)                | Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.                                                                      |
| (Y for Z/Y for Z)            | Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).                                                                                    |
| N=X                          | SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).                                                                                                                                                  |
| HVP / HVR                    | In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.                                                                                                                                                          |
| V<br>VR                      | Shear vane test (borehole). Shear strength stated in kPa. V: undisturbed vane shear strength VR: remoulded vane shear strength                                                                                                                              |
| Soil consistency description | In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).                    |
| dd-mm-yyyy                   | Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.                                                                                                             |
| $\bigvee$                    | Water strike: initial depth of strike.                                                                                                                                                                                                                      |
| <b>—</b>                     | Water strike: depth water rose to.                                                                                                                                                                                                                          |
| Abbreviations relatin        | g to rock core – reference Clause 36.4.4 of BS 5930: 2015+A1:2020                                                                                                                                                                                           |
| TCR (%)                      | Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.                                                                                                                                         |
| SCR (%)                      | Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures. |
| RQD (%)                      | Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.                                                                                                                                    |
| FI                           | Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.                                                                                                                            |
| NI                           | Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.                                                                                                                                     |
| AZCL                         | Assessed zone of core loss: The estimated depth range where core was not recovered.                                                                                                                                                                         |
| DIF                          | Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.                                                                                                                                                            |
| (xxx/xxx/xxx)                | Spacing between discontinuities (minimum/average/maximum) measured in millimetres.                                                                                                                                                                          |





# 3FM Planning Design GI Lot A DPC Lands

#### 1 **AUTHORITY**

On the instructions of RPS, ("the Client's Representative"), acting on the behalf of Dublin Port Company (DPC) ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information for input to the design and construction of a proposed development of the southern port lands.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the ground investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

#### 2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, trial pits, slit trenches, pavement cores, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

#### 3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on Dublin Port Company owned lands in Dublin Port north of the Liffey and in southern port areas south of the River Liffey in Poolbeg/Ringsend, Dublin. Works were conducted along Alexandra Road, within the P&O Ferry Terminal, within Stella Maris Rowing Club, within MTL's compound, within Nolan's compound, along South Bank Road, and within contractor's compounds off South Bank Road across mostly hardstanding areas. Elevations vary across the site.





#### 4 SITE OPERATIONS

#### 4.1 Summary of site works

Site operations, which were conducted between the 8<sup>th</sup> of November 2022 and the 8<sup>th</sup> of February 2023, comprised:

- Twenty-one boreholes
  - five light cable percussion boreholes
  - five boreholes by light cable percussive extended by rotary follow-on drilling
  - eleven boreholes by dynamic (windowless) sampling
- a standpipe installation in thirteen boreholes
- two machine dug slit trenches
- indirect CBR tests at two locations; and
- four pavement cores.

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, and as shown on the exploratory hole location plan in Appendix A.

#### 4.2 Boreholes

A total of twenty-one boreholes were put down in a minimum diameter of 150mm through soils and rock strata to their completion depths by a combination of methods, including light percussion boring, light cable percussion boring and rotary drilling.

The borehole logs state the methodology and plant used for each location, as well as the appropriate depth ranges.

A summary of the boreholes, subdivided by category in accordance with the methods employed for their completion, is presented in the following sub-sections.

# 4.2.1 Light cable percussion boreholes

Five boreholes (BH119, BH121, BH122,BH130, BH131) were put down to completion in minimum 200mm diameter using either a Dando 2000 or Dando 3000 light cable percussion boring rigs. All boreholes were terminated at scheduled depth or on encountering virtual refusal on obstructions.

Hand or machine dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.





Disturbed (bulk and small bag) samples were taken within the encountered strata. Undisturbed (U100) samples were taken where appropriate and as directed within fine soils. Environmental samples were taken at standard intervals, as directed by the Client's Representative.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals using the split spoon sampler ( $SPT_{(s)}$ ) or solid cone attachment ( $SPT_{(c)}$ ). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix J.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

#### 4.2.2 Boreholes by combined percussion boring and rotary follow-on drilling

Five boreholes (BH101, BH120 and BH123-BH125) were put down by a combination of light cable percussion boring (Dando 200 and 3000 rigs) and rotary follow-on drilling techniques using a Beretta T44 or Commachio 601 rotary drilling rig with core recovery in overburden and bedrock. Where the cable percussion borehole had not been advanced onto bedrock, rotary percussive methods were employed to advance the borehole to competent strata after which coring was carried out to completion. Symmetrix cased full-hole drilling was used, with SPTs carried out at standard intervals as required.

Hand dug or machine dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Undisturbed (U100) samples were taken where appropriate and as directed within fine soils. Environmental samples were taken at standard intervals, as directed by the Client's Representative.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals throughout the overburden using the split spoon sampler ( $SPT_{(s)}$ ) or solid cone attachment ( $SPT_{(c)}$ ). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix J.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.





Where water was added to assist with boring, a note has been added to the log to account for same.

Where coring was carried out, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using an SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930: 2015+A1:2020: Code of practice for ground investigations*.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

#### 4.2.3 Dynamic sampled boreholes

Eleven boreholes (BH102-103, BH105, BH110, BH112, BH116-117 and BH126-128) were put down to completion by light percussion boring techniques using a Dando Terrier or Premier 110 dynamic sampling rig. The boreholes were put down initially in 150mm diameter, reducing in diameter with depth as required, down to 50mm by use of the smallest sampler.

Hand dug or machine dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down clear of services or subsurface obstructions. The boreholes were taken to depths ranging between 1.50m and 4.00m where they were terminated on encountering virtual refusal on obstructions.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by the Client's Representative.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals using the split spoon sampler ( $SPT_{(s)}$ ) or solid cone attachment ( $SPT_{(c)}$ ). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix J.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded. Details of the water strikes are presented on the individual borehole logs.

Appendix B presents the borehole logs.

#### 4.3 Standpipe installations

A groundwater monitoring standpipe was installed in thirteen boreholes as listed below in Table 1.



Table 1. Summary of standpipe installations

| GI Ref | Tymo | Response Zone |
|--------|------|---------------|
| GI KEI | Type | (mbgl)        |
| BH102  | 50mm | 0.50-2.40     |
| BH103  | 50mm | 0.50-3.70     |
| BH105  | 50mm | 0.50-2.20     |
| BH112  | 50mm | 0.50-3.40     |
| BH120  | 50mm | 6.50-20.00    |
| BH121  | 50mm | 0.50-5.50     |
| BH122  | 50mm | 0.50-5.00     |
| BH123  | 50mm | 4.50-6.50     |
| BH124  | 50mm | 0.50-1.50     |
| BH125  | 50mm | 0.50-5.00     |
| BH126A | 50mm | 0.50-1.50     |
| BH127  | 50mm | 0.50-2.50     |
| BH128  | 50mm | 0.50-2.10     |

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.

#### 4.4 Slit trenches

Two slit trenches (ST102 and ST104) were excavated by a combination of hand digging and mechanical excavation using a compact 3t tracked excavator fitted with a 600mm wide toothless bucket, to locate and identify buried services at the site.

Drawing of the trenches and the locations of services encountered during excavation are shown along with the slit trench logs in Appendix D, with photographs presented in Appendix E.

#### 4.5 PID tests

PID (Photo ionizing detection) testing was undertaken on small, disturbed samples recovered from all boreholes using a hand-held PID meter, to determine if any volatile organic compound contamination was present in the overburden.

Results of the PID tests are presented on the individual borehole logs in Appendix B.

#### 4.6 Indirect CBR tests (DCP)

An indirect CBR test was conducted at two locations (RC102 and RC104) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, and is discussed in Highways England CS229 (2020) which refers to the methodology described in TRL Overseas Road Note 18 (1999).





Concrete over bitmac

The test results are presented in Appendix F in the form of plots of the variation with depth of the penetration per blow. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, which is taken from TRRL Overseas Road Note 8 (1990), *A user's manual for a program to analyse dynamic cone penetrometer data*.

Log CBR = 2.48-1.057 Log (mm/blow)

The frequently elevated CBR values are a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

#### 4.7 Pavement cores

Four cores (RC101-RC104) were carried out at locations as directed by the Client's Representative to establish the pavement make-up. The cores were taken using hand-held diamond coring equipment. Core thicknesses and compositions are outlined in Table 2.

LocationThickness (mm)CompositionRC101198ConcreteRC102400BitmacRC103120Bitmac

**Table 2: Pavement core thickness and composition** 

300

Photographs of the pavement cores are presented in Appendix G.

RC104

#### 4.8 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R10 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole location plan presented in Appendix A shows these as-built positions.

#### 4.9 Groundwater and ground gas monitoring

Following completion of site works, groundwater and ground gas monitoring was conducted over five rounds. Ground water monitoring was carried out using a water interface probe. Ground gas measurements were carried out using a GA5000 gas meter.

The monitoring records are presented in Appendix K.





#### 5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described, and their descriptions incorporated into the borehole logs.

# 5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **compressibility:** one dimensional consolidation (oedometer).
- **shear strength** (total stress): unconsolidated undrained triaxial tests.
- **direct shear:** shear box tests.
- compaction related: California bearing ratio tests.
- **soil chemistry:** pH and water soluble sulphate content.

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).* 

The test results are presented in Appendix H.

# 5.2 Geotechnical laboratory testing of rock

Laboratory testing of rock sub-samples comprised:

- point load index
- unconfined compressive strength (UCS) tests

| Test             | Test carried out in accordance with                                       |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| Point load index | ISRM Suggested Methods (1985) Suggested method for determining point-load |  |  |  |  |  |
|                  | strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp. 53–60      |  |  |  |  |  |
| Uniaxial         | ISRM Suggested Methods (1981) Suggested method for determining            |  |  |  |  |  |
| compression      | deformability of rock materials in uniaxial compression, Part 2           |  |  |  |  |  |
| strength tests   | and                                                                       |  |  |  |  |  |
|                  | ISRM (2007) Ulusay R, Hudson JA (eds) The complete ISRM suggested methods |  |  |  |  |  |
|                  | for rock characterization, testing and monitoring, 2007                   |  |  |  |  |  |





The test results are presented in Appendix H.

# 5.3 Environmental laboratory testing of soils

Environmental testing, as specified by the Client's Representative was conducted on selected environmental soil samples by Chemtest at its laboratory in Newmarket, Suffolk.

Testing was carried out according to RPS Soil Testing Suites A, B, C, D and E, testing for a range of determinants, including:

- Metals
- Speciated total petroleum hydrocarbons (TPH)
- Speciated polycyclic aromatic hydrocarbons (PAH)
- BTEX compounds
- Volatile Organic Compounds (VOCs)
- Semi-Volatile Organic Compounds (SVOCs)
- Polychlorinated biphenyls (PCBs)
- Phenols
- Organic matter
- Total Organic Carbon (TOC)
- Cyanides
- Asbestos screen
- Sulphate and sulphide
- Sulphur
- Calcium
- pH

Results of environmental laboratory testing are presented in Appendix I.

#### **6 GROUND CONDITIONS**

#### 6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise urban sediments. These deposits are underlain by dark limestones and shales of the Lucan Formation.

#### 6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

• Paved surface: Bitmac, concrete and paving stones was encountered at ground level at almost every





location across the site ranging in thickness from 60-200mm. At some locations, paved surfacing was underlain by a second concrete/bitmac layer.

- **Topsoil:** encountered in 150mm thickness in BH112.
- Made Ground (sub-base): majority of locations which had a paved surface were underlain by granular fill of varying thicknesses.
- Made Ground (fill): reworked sandy gravelly clay/silt fill or sandy clayey gravel or gravelly clayey sand fill with varying amounts of concrete, red brick, timber, steel and glass fragments as well as varying amounts of wire, plastic, cloth, and ash was encountered across the site to a maximum depth of 15.80m in BH130. It should be noted that this location is through an existing caisson, and aside from this the maximum depth was 6.50m in BH120 in the south of the site, which is a former landfill area.
- **Marine beach deposits:** typically, medium dense to dense sands and gravels interspersed with layers of sandy gravelly clay frequently with shell fragments encountered across the site to a maximum depth of 20.10m in BH120 generally overlying Port Clay.
- **Port Clay:** Firm to stiff sandy silty clay often with laminations of silty sand encountered across the site to a maximum depth of 34.80m in BH120.
- **Glacial till/Fluvioglacial deposits:** very stiff sandy gravelly clay or very dense sandy clayey gravel generally encountered beneath Port Clay and overlying bedrock, encountered greatest in extent in the south of the site in BH124 to a depth of 40.00m.
- **Bedrock (Limestone and Mudstone):** Medium strong to strong limestone or mudstone was encountered at depths ranging from 24.50m in BH101 to 38.25m in BH124.

#### 6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater was encountered during the ground investigation as water strikes seen in Table 2 below.

Table 2. Groundwater strikes encountered during the ground investigation.

| Location | Depth (mbgl) | Comments                                      |
|----------|--------------|-----------------------------------------------|
| BH101    | 6.50         | Water rose from 6.50 to 6.20m over 20 minutes |
|          | 8.30         | Water rose from 8.30 to 1.90 over 20 minutes  |
|          | 9.70         |                                               |
| BH102    | 2.40         |                                               |
| BH112    | 4.00         | Water rose from 4.00 to 3.50 over 20 minutes  |





| BH119 | 0.25 |                                                |
|-------|------|------------------------------------------------|
| BH120 | 5.00 | Water rose from 5.00 to 4.30 over 20 minutes   |
| BH121 | 3.10 | Water rose from 3.10 to 2.60 over 20 minutes   |
| BH122 | 0.35 |                                                |
|       | 4.30 | Water rose from 4.30 to 3.90m over 20 minutes  |
|       | 9.50 | Water rose from 9.50m to 3.60m over 20 minutes |
| BH123 | 0.30 |                                                |
|       | 4.30 |                                                |
| BH124 | 0.80 |                                                |
| BH125 | 4.70 |                                                |
| BH127 | 3.00 | Water rose from 3.00 to 2.50 over 20 minutes   |
| BH128 | 1.50 |                                                |
|       | 2.00 |                                                |
| BH130 | 4.40 | Water rose from 4.40m to 3.00m over 20 minutes |
|       | 8.60 | Water rose from 8.60 to 2.10 over 20 minutes   |
| BH131 | 6.30 | Water rose from 6.30 to 1.70 over 20 minutes   |

Groundwater was not noted during drilling at several of the borehole locations. However, it should be noted that the casing used in supporting the borehole walls during drilling may have sealed out additional groundwater strikes and the possibility of encountering groundwater during excavation works should not be ruled out.

It should be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

Seasonal variation should be factored into design, and continued monitoring of the installed standpipes will give an indication of the seasonal variation in groundwater level.

Details of further groundwater monitoring, as well as results of gas monitoring, are presented in Appendix K.

#### 7 REFERENCES

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland.

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS 5930: 2015+A1:2020: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.





BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS EN ISO 14689-1:2018: Geotechnical investigation and testing. Identification and classification of rock. Identification and description.

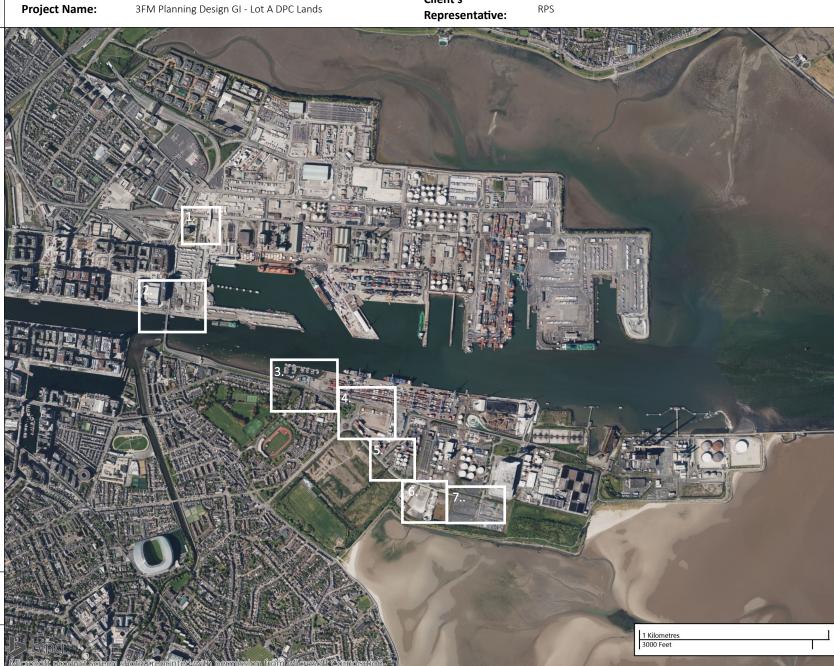
BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.



# APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLANS






Client: Dublin Port Company (DPC)

Client's

Representative:

RPS

Legend Key



Title:

Site Location Plan

Last Revised: Scale: 03/04/2023 1:20000



Client: Dublin Port Company (DPC)

**Project Name:** 

3FM Planning Design GI - Lot A DPC Lands

Client's

Representative: RPS

# Legend Key

Locations By Type - CP

Locations By Type - CP+RC

Locations By Type - DS

Locations By Type - IP

Locations By Type - PC

Locations By Type - TP



Title:

Exploratory Hole Location Plan - 1

**Last Revised: Scale:** 19/04/2023 1:500



Client: Dublin Port Company (DPC)

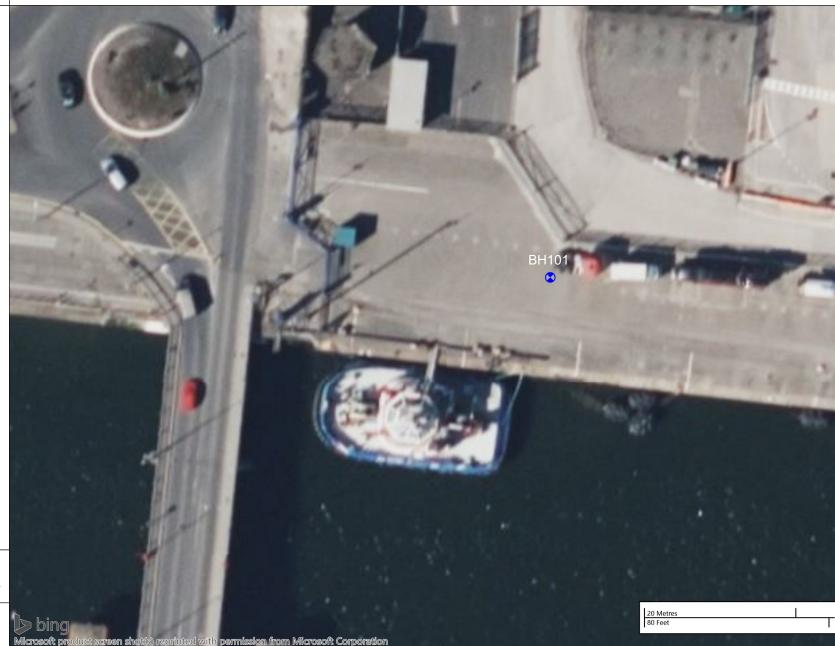
**Project Name:** 

3FM Planning Design GI - Lot A DPC Lands

Client's

Representative: RPS

# Legend Key


← Locations By Type - CP

Locations By Type - CP+RC

Locations By Type - DS

Locations By Type - PC

Locations By Type - TP



Title:

Exploratory Hole Location Plan - 2

**Last Revised: Scale:** 14/04/2023 1:500



Client: Dublin Port Company (DPC)

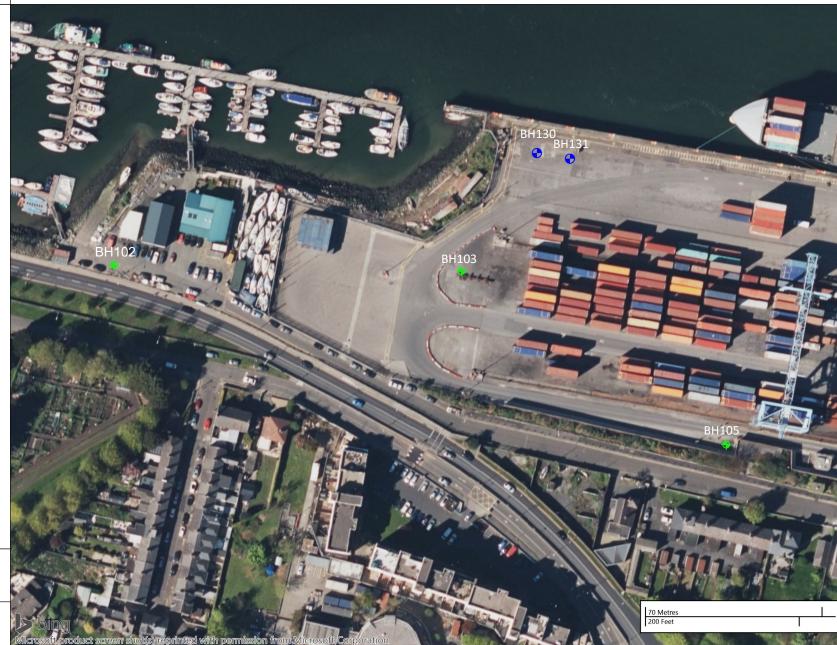
**Project Name:** 

3FM Planning Design GI - Lot A DPC Lands

Representative: RPS

Client's

# Legend Key


← Locations By Type - CP

Locations By Type - CP+RC

Locations By Type - DS

Locations By Type - PC

Locations By Type - TP



Title:

Exploratory Hole Location Plan - 3

**Last Revised: Scale:** 14/04/2023 1:1500



Client: Dublin Port Company (DPC)

**Project Name:** 

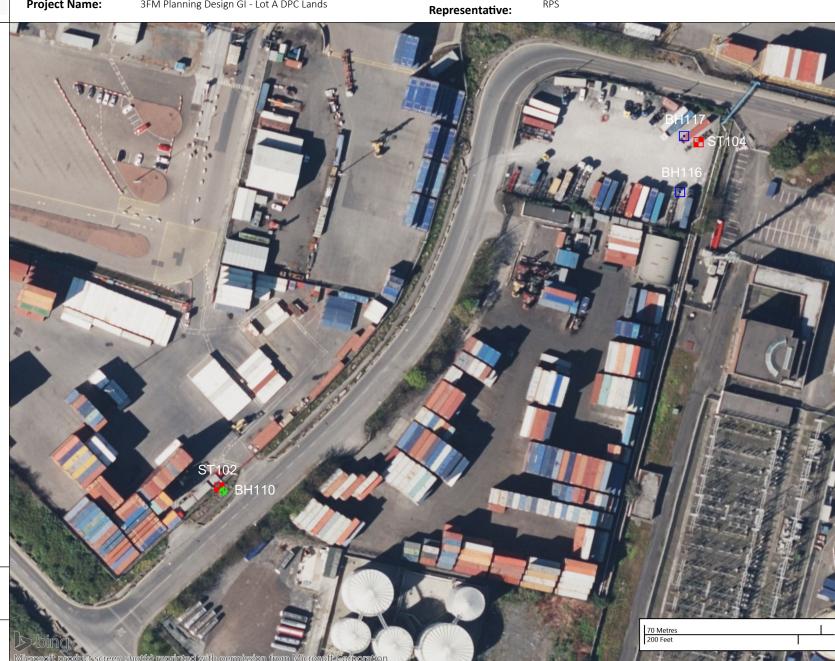
3FM Planning Design GI - Lot A DPC Lands

RPS

Client's

# Legend Key

Locations By Type - CP


Locations By Type - CP+RC

Locations By Type - DS

Locations By Type - IP

Locations By Type - PC

Locations By Type - TP



Title:

Exploratory Hole Location Plan - 4

Last Revised: Scale: 14/04/2023 1:1500



Client: Dublin Port Company (DPC)

**Project Name:** 

3FM Planning Design GI - Lot A DPC Lands

Client's

RPS Representative:

# Legend Key

Locations By Type - CP

Locations By Type - CP+RC

Locations By Type - DS

Locations By Type - PC

Locations By Type - TP



Title:

Exploratory Hole Location Plan - 5

Last Revised: Scale:

14/04/2023

1:1000



Client: Dublin Port Company (DPC)

**Project Name:** 

3FM Planning Design GI - Lot A DPC Lands

Client's

RPS Representative:

# Legend Key

Locations By Type - CP

Locations By Type - CP+RC

Locations By Type - DS

Locations By Type - IP

Locations By Type - PC

Locations By Type - TP



Title:

Exploratory Hole Location Plan - 6

Last Revised: Scale:

14/04/2023 1:1000



Client: Dublin Port Company (DPC)

**Project Name:** 

3FM Planning Design GI - Lot A DPC Lands

Client's

Representative: RPS

# Legend Key

← Locations By Type - CP

Locations By Type - CP+RC

Locations By Type - DS

Locations By Type - IP

Locations By Type - PC

Locations By Type - TP



Title:

Exploratory Hole Location Plan - 7

**Last Revised: Scale:** 14/04/2023 1:1500



APPENDIX B
BOREHOLE LOGS



|                                                                                                           |                                 | CAUSEW                                                                                                | <b>AY</b><br>ECH                          |                                  |                          | oject No.<br>2- <b>1041A</b> | Project<br>Client:<br>Client's |                                                                                                                                                                         | nning Desig<br>ort Compar                                                                               |                                                                                     | PC Lands                 | 5               |       | orehole   |                   |
|-----------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|--------------------------|------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------|-----------------|-------|-----------|-------------------|
| Metho<br>Inspection<br>Cable Percu<br>Rotary Dri<br>Rotary Co                                             | n Pit<br>ussion<br>illing       | Plant Used 3t Excavator Dando 3000 Beretta T44 Beretta T44                                            | Top (m)<br>0.00<br>1.50<br>15.50<br>16.50 | 1.50<br>15.50<br>16.50<br>30.00  | 718                      | 8076.10 E<br>4394.29 N       | Final De                       | •                                                                                                                                                                       |                                                                                                         | 23/11/2022 25/11/2022                                                               | Driller:                 | CC+GT CMc+RS    | :     | Scale: 1: | 50                |
| Depth<br>(m)                                                                                              | Sample /<br>Tests               |                                                                                                       | 10.50                                     | Casing Wa<br>Depth Dep<br>(m) (n |                          |                              | Legend                         |                                                                                                                                                                         | Desc                                                                                                    | cription                                                                            |                          |                 | Water | Backfill  | Т                 |
| 0.50<br>0.50<br>1.00<br>1.00<br>1.50<br>1.50 - 2.00<br>1.50                                               | ES2<br>ES3<br>B9                | PID = 4.00ppm  PID = 0.00ppm  PID = 0.00ppm                                                           |                                           |                                  | 3.6<br>3.6<br>3.4<br>3.3 | 4 0.30<br>4 0.40<br>4 0.40   |                                | MADE GROUND: Co MADE GROUND: Br CONCRETE MADE GROUND: St fine to coarse. Grav MADE GROUND: Br low cobble content coarse. Cobbles are  MADE GROUND: M coarse GRAVEL. Sar | own silty fine iff grey slightly el is angular fi own gravelly v and shell frage rounded. edium dense b | to coarse SAND.  sandy slightly g ne to medium. rery silty fine to ments. Gravel is | coarse SAN<br>rounded fi | D with<br>ne to |       |           | 1.0               |
| 2.00<br>2.00 - 2.45<br>2.50<br>2.50<br>2.70 - 3.60<br>3.00<br>3.00<br>3.00 - 3.45                         | ES5 B11 D12 ES6 SPT (C)         | N=14 (2,3/3,3,4,4) Ham<br>0197<br>PID = 0.60ppm<br>PID = 0.30ppm<br>N=14 (3,3/4,4,3,3) Ham<br>0197    |                                           |                                  | 1.0                      |                              |                                | MADE GROUND: Fi<br>Gravel is subangula<br>Firm grey sandy silt                                                                                                          | r to subrounde                                                                                          | ed fine to coarse                                                                   |                          |                 | _     |           | 3.0               |
| 3.00<br>3.50<br>3.50<br>3.50<br>4.00<br>4.00 - 4.45<br>4.00<br>4.50<br>5.00<br>5.00 - 6.00<br>5.00 - 5.45 | ES7 B13 D14 SPT (C) ES8 D15 B16 | PID = 0.10ppm  PID = 0.20ppm  N=13 (2,3/3,3,3,4) Ham 0197  PID = 0.10ppm  N=10 (1,1/2,2,3,3) Ham 0197 |                                           |                                  |                          |                              |                                | content. Sand is fin                                                                                                                                                    |                                                                                                         |                                                                                     |                          | , 655.6         |       |           | 4.0<br>4.5<br>5.0 |
| 6.50<br>6.50 - 6.95<br>7.00 - 8.00                                                                        | D17<br>SPT (C)<br>B18           | N=11 (1,2/2,3,3,3) Ham<br>0197<br>Seepage at 6.50m                                                    | nmer SN =                                 | 6.50 6.2                         | -2.7                     | 6.50                         |                                | Medium dense bec<br>fine to medium GRA                                                                                                                                  |                                                                                                         |                                                                                     | ly silty suba            | angular         |       |           | 7.0               |
| 8.00<br>8.00 - 8.45<br>8.50 - 9.50                                                                        | D19<br>SPT (C)<br>B20           | N=28 (4,5/6,7,7,8) Ham<br>0197<br>Water strike at 8.30m                                               | nmer SN =                                 | 8.45 3.:                         | 10                       | v.l                          |                                |                                                                                                                                                                         |                                                                                                         |                                                                                     |                          |                 |       |           | 8.0<br>8.5<br>9.0 |
|                                                                                                           | Water                           | r Strikes                                                                                             |                                           | Chisell                          | ling Det                 | ails                         | Remarks                        | <u> </u>                                                                                                                                                                |                                                                                                         |                                                                                     |                          |                 | 1     |           | _                 |
| 6.50<br>8.30<br>9.70<br>Casing De                                                                         | 6.50<br>etails<br>iam (mm       | n) Time (min) Rose to (r<br>20 6.20<br>20 1.90<br>Water Added                                         | 5.70                                      | m) T                             | Го (m)<br>6.50           | Time (hh:mm) 01:00           |                                | n pit machine excavat                                                                                                                                                   | ed to 1.50m.                                                                                            |                                                                                     |                          |                 |       |           |                   |
| 12.00<br>15.00                                                                                            | 250<br>200                      |                                                                                                       |                                           | Barrel<br>K6L                    |                          | <b>Ish Type</b><br>Water     |                                | tion Reason                                                                                                                                                             | ı.                                                                                                      |                                                                                     |                          | <b>Last Up</b>  |       |           | <u>-</u>          |

|                                                       |                                                            | AUSI                                            | <b>EW</b>    | /A<br>EC | Y<br>H                   |                        |                       |                    | ect No.<br>.041A   | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS                                                                                                                                                              | Borehole ID<br>BH101                           |
|-------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|--------------|----------|--------------------------|------------------------|-----------------------|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Metho                                                 |                                                            | Plant Us                                        |              |          | (m)                      |                        |                       | Coord              | dinates            | Final Depth: 30.00 m Start Date: 23/11/2022 Driller: CC+GT                                                                                                                                                                                                                | Sheet 2 of 4                                   |
| Inspection<br>Cable Percu<br>Rotary Dril<br>Rotary Co | ission<br>Iling                                            | 3t Excava<br>Dando 30<br>Beretta T<br>Beretta T | 000<br>-44   | 1.<br>15 | .00<br>.50<br>.50<br>.50 | 15.                    | .50                   |                    | 76.10 E<br>94.29 N | Elevation: 3.74 mOD End Date: 25/11/2022 Logger: CMc+RS                                                                                                                                                                                                                   | Scale: 1:50  DRAFT                             |
| Depth<br>(m)                                          | Sample /<br>Tests                                          | Field                                           | Records      |          |                          | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD       | Depth<br>(m)       | Legend Description                                                                                                                                                                                                                                                        | N Backfill                                     |
| 9.50<br>9.50 - 9.95<br>10.30 - 12.00                  |                                                            | N=30 (3,4/5,6,5<br>= 0197<br>Water strike at    |              | ımme     | er SN                    | 9.50                   | 5.40                  | -6.56              | 10.30              |                                                                                                                                                                                                                                                                           | 9.5                                            |
| 11.00                                                 | D23                                                        | N=19 (2,3/4,4,4,0)                              | 5,6) Han     | nmer     | SN =                     | 11.0                   | 7.60                  | 0.50               | 10.30              | Medium dense dark greyish black sandy silty rounded fine to medium GRAVEL. Sand is fine to coarse.                                                                                                                                                                        | 11.0                                           |
| 12.50<br>12.50 - 12.95                                | 0 - 12.95 SPT (C) N=17 (2,4/4,4,4,5) Hammer SN = 12.5 0197 |                                                 |              |          |                          |                        | 6.60                  |                    |                    |                                                                                                                                                                                                                                                                           | 12.5                                           |
| 13.10 - 14.10                                         |                                                            |                                                 |              |          |                          |                        |                       |                    |                    |                                                                                                                                                                                                                                                                           | 13.0                                           |
| 14.00<br>14.00 - 14.45                                |                                                            | N=20 (3,4/3,4,<br>0197                          | 6,7) Han     | nmer     | SN =                     | 14.0                   | 8.20                  | -10.36<br>-11.26   | 14.10              | Medium dense grey sandy silty rounded fine to coarse GRAVEL with low cobble content.  Stiff dark greyish black sandy gravelly CLAY. Sand is fine to coarse.                                                                                                               | 14.0 —<br>14.5 —<br>15.0 —                     |
|                                                       | 40mm/                                                      | Hammer SN                                       | 00 0         | 0        |                          | 16.5                   | 9.00                  | -12.76             | 16.50              | Gravel is subrounded fine to coarse.  Very stiff dark brownish grey slightly gravelly slightly sandy CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of various lithologies. Cobbles are subangular of limestone. | 15.5 —<br>16.0 —<br>16.5 —<br>17.0 —<br>17.0 — |
| 18.00                                                 |                                                            | Т                                               | CR SCR       | RQD      | FI                       |                        |                       |                    |                    |                                                                                                                                                                                                                                                                           | 18.0 —<br>18.5 —                               |
| Christian Ja                                          |                                                            | Strikes                                         | 050 1. /     | m\ -     |                          |                        |                       | g Details          |                    | Remarks                                                                                                                                                                                                                                                                   |                                                |
| 6.50<br>8.30<br>9.70                                  | 6.50                                                       | 7) Time (min) R<br>20<br>20<br>20<br>Water A    | 6.20<br>1.90 | m) F     | From (<br>5.70           |                        | To (                  |                    | 01:00              | Inspection pit machine excavated to 1.50m.                                                                                                                                                                                                                                |                                                |
|                                                       | am (mm<br>250<br>200                                       |                                                 | To (m)       |          | <b>Core</b>              | <b>Barr</b><br>K6L     | rel                   | <b>Flush</b><br>Wa |                    | Termination Reason  Last Up Terminated at scheduled depth. 12/06                                                                                                                                                                                                          |                                                |

|                                         |                           | AUS                             |              |            |           |     |                        | 22-        | ect No.<br>1041A    | Project<br>Client:<br>Client's |                                                                                      | nning Desig           |                         | PC Land          | s                     |       | orehole                       | 1                                                                  |
|-----------------------------------------|---------------------------|---------------------------------|--------------|------------|-----------|-----|------------------------|------------|---------------------|--------------------------------|--------------------------------------------------------------------------------------|-----------------------|-------------------------|------------------|-----------------------|-------|-------------------------------|--------------------------------------------------------------------|
| Inspectio<br>Cable Perci<br>Rotary Dr   | n Pit<br>ussion<br>illing | 9t Excar<br>Dando<br>Beretta    | vato<br>3000 | r<br>)     | 0.<br>1.  |     | 1.50<br>15.50<br>16.50 | 7180       | 76.10 E             | Final De                       |                                                                                      |                       | 23/11/2022              |                  | CC+GT<br>: CMc+RS     |       | heet 3 o<br>Scale: 1:<br>DRAF | 50                                                                 |
| Rotary Co                               |                           | Beretta<br>Field Records        |              | SCR        | 16<br>RQD | .50 | Casing W Depth (m)     |            | Depth               | Legend                         |                                                                                      | ļ                     | cription                | - 00 -           | -1                    | Water | Backfill                      |                                                                    |
| (m)                                     | Jampies /                 | rieiu necolus                   | ick          | Jen        | nqb       | "   | (m) (                  | mOD        | (m)                 | Legenu                         | Very stiff dark brow                                                                 |                       |                         | ntly sandy       | CLAY with             | - Ma  | Dackiiii                      | _                                                                  |
| 19.50<br>19.50 - 21.00                  | C2                        |                                 | 100          | 0          | 0         | N/A |                        |            | (4.50)              |                                | low cobble content<br>subrounded fine to<br>subangular of limes                      | coarse of vari        |                         | U                |                       |       |                               | 19.0 —<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>————————————————————— |
| 21.00                                   |                           |                                 | 100          | 0          | 0         |     |                        | -17.26     | 21.00               |                                |                                                                                      |                       |                         |                  |                       |       |                               | 20.0 —                                                             |
| 21.00                                   | С3                        |                                 | 90           | 0          | 0         | N/A |                        | 27.20      | (1.60)              |                                | Very stiff dark brow<br>to coarse. Gravel is<br>predominantly dark                   | subangular of         | various litholog        |                  | nd is fine            |       |                               | 21.5 —                                                             |
| 22.50<br>22.50 - 24.00                  | C4                        |                                 |              |            |           |     |                        | -18.86     | 22.60               |                                | Very stiff slightly sar<br>Sand is fine to coars<br>lithologies. Cobbles             | se. Gravel is su      | bangular fine to        | medium (         |                       |       |                               | 22.5 —                                                             |
| 24.00<br>24.00 - 25.50                  | CE                        |                                 | 95           | 0          | 0         | N/A |                        |            | (2.80)              |                                | 24.00-24.65m: Very dens                                                              | ie dark grey slightly | gravelly slightly claye | / fine to coarse | e sand.               |       |                               | 23.5 —                                                             |
| 24.00 23.30                             |                           |                                 | 95           | 0          | 0         |     |                        |            |                     |                                |                                                                                      |                       |                         |                  |                       |       |                               | 24.5 —<br>-<br>24.5 —<br>-<br>-<br>25.0 —                          |
| 25.50                                   |                           |                                 | 100          | 100        | 62        |     |                        | -21.66     | 25.40               |                                | Medium strong thir LIMESTONE with oc Slightly weathered: spacing.  Discontinuities:  | cassional stee        | ply oriented wh         | ite calcite      | veins.                |       |                               | 25.5 —<br>-<br>-<br>-<br>-<br>26.0 —                               |
| 26.70 - 26.80<br>26.80 - 27.00<br>27.00 |                           |                                 |              |            |           | 8   |                        |            | (4.60)              |                                | 1. 5-20 degree bedd<br>planar, smooth.<br>2. 75-90 degree joir<br>27.00-27.40m, 27.5 | nts from 25.50        | -25.60m, 26.20-         | -26.70m,         |                       |       |                               | 26.5 —<br>-<br>-<br>-<br>-<br>27.0 —                               |
|                                         |                           |                                 |              | 100        |           | FI  |                        |            |                     |                                | planar, smooth.                                                                      |                       |                         |                  |                       |       |                               | 27.5 —                                                             |
|                                         | Water                     | Strikes                         | iok          | JUK        |           |     | Chisel                 | ling Detai | ls                  | Remarks                        |                                                                                      |                       |                         |                  |                       |       | I                             |                                                                    |
| 6.50<br>8.30<br>9.70<br>Casing Do       | esing to (m)<br>6.50      | Time (min)<br>20<br>20<br>Water | Add          | 5.20<br>90 | n) F      |     | m)                     |            | me (hh:mm)<br>01:00 |                                | n pit machine excavat                                                                | ed to 1.50m.          |                         |                  |                       |       |                               |                                                                    |
| 12.00<br>15.00                          | 250<br>200                | (···/                           |              | ,          |           |     | <b>Barrel</b><br>K6L   |            | <b>Type</b>         |                                | <b>tion Reason</b><br>d at scheduled depth                                           | ı.                    |                         |                  | <b>Last Up</b> 12/06/ |       |                               | I<br>GS                                                            |

|                                                                    | <del>/</del> –        |                                                     | GEC                    | OTE      | EC             | Н                      |                          |                       | 22-1  | ect No.             | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS                                                                                                                                                                                                                                                                                                                                                                    |                       | BH101                                                                                                                |          |
|--------------------------------------------------------------------|-----------------------|-----------------------------------------------------|------------------------|----------|----------------|------------------------|--------------------------|-----------------------|-------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------|----------|
| Inspection<br>Cable Percu<br>Rotary Dril<br>Rotary Co              | Pit<br>ssion<br>Iling | 9 Plant U<br>3t Exca<br>Dando<br>Beretta<br>Beretta | vator<br>3000<br>a T44 | r<br>)   | 0.<br>1.<br>15 | (m)<br>00<br>50<br>.50 | 1.5<br>15.<br>16.<br>30. | 50<br>50<br>50        | 7180  | 76.10 E<br>94.29 N  | Final Depth:         30.00 m         Start Date:         23/11/2022         Driller:         CC+GT           Elevation:         3.74 mOD         End Date:         25/11/2022         Logger:         CMc+F                                                                                                                                                                                                                                                                     |                       | Sheet 4 of 4<br>Scale: 1:50<br>DRAFT                                                                                 |          |
| Depth                                                              |                       | / Field Records                                     |                        | SCR      | _              |                        | Casing<br>Depth<br>(m)   | Water<br>Depth<br>(m) | Level | Depth               | Legend Description                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Water                 | Backfill                                                                                                             | _        |
| (m)  28.30 - 28.40 28.40 - 28.50 28.50 28.60 - 28.80 28.80 - 29.00 | C3 C4 C5 C6           | Strikes Time (min) 20                               | TCR                    | 100 SCR  | 75             | FI                     | Chis                     |                       |       | (m)                 | Medium strong thinly to thickly laminated dark grey to black LIMESTONE with occassional steeply oriented white calcite veins. Slightly weathered: slightly reduced strength, slightly closer fracture spacing.  Discontinuities:  1. 5-20 degree bedding fractures, closely spaced (10/135/430), planar, smooth.  2. 75-90 degree joints from 25.50-25.60m, 26.20-26.70m, 27.00-27.40m, 27.55-27.90m and 29.50-30.00m, predominantly planar, smooth.  End of Borehole at 30.00m | M <sub>M</sub>        | 28.0<br>28.1<br>29.0<br>29.5<br>30.0<br>30.5<br>31.0<br>32.5<br>33.6<br>34.0<br>34.5<br>35.0<br>36.5<br>36.0<br>37.0 | 55       |
| 12.00                                                              | am (mm)<br>250        | Water From (m)                                      | Add                    | 90<br>ed |                |                        |                          |                       |       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                                                                                                      |          |
| 15.00                                                              | 200                   |                                                     |                        |          |                |                        | <b>Barr</b><br>K6L       | el                    |       | <b>Type</b><br>ater | ermination Reason Last U<br>erminated at scheduled depth. 12/0                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>pdat</b><br>6/202: |                                                                                                                      | <u> </u> |

|                        | C                                                  | GEOT                                                                                                                                                                                | ECH                 |                                        | 22-1         | ect No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project<br>Client:<br>Client's |                                                                                                                                            | nning Desig                                                                              |                                                                          | PC Land                                                 | S<br>                         |          | orehole ID<br>BH102                                                                     |
|------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|----------|-----------------------------------------------------------------------------------------|
| Method<br>Dynamic Sam  | pling                                              | Plant Used<br>Dando Terrier                                                                                                                                                         | <b>Top (m)</b> 0.00 | 3.00                                   | 7187         | 29.62 E<br>44.81 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Final De                       |                                                                                                                                            |                                                                                          | 04/01/2023                                                               | Driller:                                                |                               | !        | Scale: 1:50<br>DRAFT                                                                    |
|                        | ample /<br>Tests                                   | Field Records                                                                                                                                                                       |                     | Casing Water<br>Depth Depth<br>(m) (m) | Level<br>mOD | Depth<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Legend                         |                                                                                                                                            | Desc                                                                                     | cription                                                                 |                                                         |                               | Water    | Backfill                                                                                |
| .30 - 1.20 B .50 E .50 | 3 SS1 SS2 8 PT (C) SS4 SS5 9 PT (C) SS6 SS7 PT (C) | PID = 13.80ppm  PID = 12.90ppm  N=24 (4,5/7,7,6,4) Han 0696  PID = 8.90ppm  N=37 (5,6/7,6,6,18) Ha = 0696  PID = 9.50ppm  PID = 3.20ppm  N=13 (3,4/3,3,4,3) Han 0696  PID = 3.00ppm | mmer SN =           | 0.00 0.00  0.00 0.00  2.00 2.40        | 2.99<br>2.75 | - 0.06 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - 0.30 - | bit hand du                    | BITMAC MADE GROUND: Gr medium cobble con red brick and concr are subangular. MADE GROUND: Fir gravelly SILT with fir Sand is fine to coars | ntent with low<br>ete. Sand is fir<br>rm becoming s<br>agments of re<br>se. Gravel is ar | boulder contented to coarse. Columbia tiff greyish browd brick, concrete | t. and fragiobles and b<br>vn slightly s<br>vn metal an | ments of<br>coulders<br>sandy | <b>Y</b> | 2.5<br>3.0<br>3.0<br>3.5<br>4.0<br>4.5<br>5.0<br>6.0<br>6.5<br>7.0<br>7.5<br>8.0<br>8.5 |
|                        |                                                    |                                                                                                                                                                                     |                     |                                        |              | <b>Ferminatio</b><br>Ferminated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | <b>n</b><br>ing refusal at 2.50m.                                                                                                          |                                                                                          |                                                                          |                                                         | <b>Last Up</b>                |          |                                                                                         |

| Method   Plant Used   Open   Sase (m)   Coordinates   Street   S  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dynamic Sampling   Dando Terrier   1.50   4.00   718868.51 E   734045.91 N   Elevation:   3.52 mOD   End Date:   06/01/2023   Logger: RS   DRAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tests   Field Records   Company     |
| 3.50 B1 0.50 B2 0.50 B3 0.60 B3 0.60 B3 0.60 B54 0.60 B57 SPT (S) 0.60 B59 0.60 E59 |
| Water Strikes Casing Details truck at (m) Casing to (m) Time (min) Rose to (m) To (m) Diameter 2.00 140  No groundwater encountered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                                                                                                               | AUSEW<br>GEOTI                                                                                                                                                           | ECH                 |                                        | 22-1         | ect No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project<br>Client:<br>Client's |                                                        | nning Desig |            | DPC Lands |                           | orehole ID<br>BH105                                         |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------|-------------|------------|-----------|---------------------------|-------------------------------------------------------------|
| Method<br>Inspection Pit                                                                                      | Plant Used 3t Excavator                                                                                                                                                  | <b>Top (m)</b> 0.00 | Base (m)<br>1.20                       | Coor         | dinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Final De                       | <b>epth:</b> 2.50 m                                    | Start Date: | 20/01/2023 | Driller:  | JESC                      | Sheet 1 of 1<br>Scale: 1:50                                 |
| Dynamic Sampling                                                                                              | Dando Terrier                                                                                                                                                            | 1.20                | 2.50                                   |              | 75.72 E<br>79.48 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elevatio                       | on: 3.55 mOD                                           | End Date:   | 20/01/2023 | Logger:   |                           | DRAFT                                                       |
| Depth Sample /<br>(m) Tests                                                                                   | Field Records                                                                                                                                                            |                     | Casing Water<br>Depth Depth<br>(m) (m) | Level<br>mOD | Depth<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Legend                         |                                                        | Des         | cription   |           | Water                     | Backfill                                                    |
| .000 B4 .000 ES3 .000 D520 - 1.65 SPT (S)50 ES750 SS D685 - 2.30 SPT (S)50 ES800 ES800 ES950 - 2.90 SPT (C)50 | PID = 6.60ppm  N=32 (5,8/8,8,8,8) Han 0696  PID = 0.00ppm  23 (11,8/23 for 297mm Hammer SN = 0696  PID = 37.10ppm  50 (15,9/50 for 245mm Hammer SN = 0696  PID = 0.00ppm | (Cas                | 1.20 0.00  1.20 0.00  1.20 0.00        | eter lı      | Remarks  a post of the state of |                                | BITMAC CONCRETE  MADE GROUND: Ve SILT. Sand is fine to | End of Bore |            |           | relly                     | 2.5<br>3.0<br>4.0<br>4.5<br>5.0<br>6.5<br>7.0<br>7.5<br>8.0 |
|                                                                                                               |                                                                                                                                                                          |                     |                                        |              | <b>Terminatio</b><br>erminated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | <b>n</b><br>npler refusal.                             |             |            |           | Last Update<br>12/06/2023 |                                                             |

| Depth (m)   Sample / Tests   N=6 (1,1 1367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nl :                                                                   | AY<br>ECH         | L -          |           | 2-1041A                  | Project Name: 3FM Pla Client: Dublin F Client's Rep: RPS              | Port Company (DPC)                                                                                                                                                                 | ВН110              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|--------------|-----------|--------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| (m) Tests  .00 - 2.45 SPT (C) N=6 (1,1 1367) .50 ES2 .00 - 3.45 SPT (C) N=3 (1,0 1367) .50 ES3 .00 ES4 .00 - 4.45 SPT (C) N=2 (0,0 1367) .00 PID = 5.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plant Used<br>acked Excavator<br>ando Terrier                          | 0.00<br>1.50      | 1.50<br>4.00 | )<br>) 7  | 19224.54 E<br>33708.03 N |                                                                       | Start Date:         08/02/2023         Driller:           End Date:         08/02/2023         Logger:                                                                             | Scale: 1:50        |
| .00 - 2.45 SPT (C) N=6 (1,1 1367 SPT (C) N=3 (1,0 1367 SPT (C) N=3 (1,0 1367 SPT (C) N=2 (0,0 1367 SPT (C) N=2 (0,0 1367 SPT (C) N=5 (1,0 1367 SPT (C) N=5 (1,0 1367 SPT (C) N=6 | Field Records                                                          |                   | Depth D      | eptn      | evel Depth               | Legend                                                                | Description                                                                                                                                                                        | te Backfill        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1/1,1,1,3) Hamr<br>1,0/1,0,1,1) Hamr<br>0,0/1,1,0,0) Hamr<br>5.50ppm | mer SN = mer SN = | 2.00 C       | 2 Ory Ory | .18 - 4.00               | MADE GROUND: D coarse GRAVEL. Sai  MADE GROUND: Lc coarse SAND with i | oose dark brownish black slightly clayey fin medium cobble content, rootlets and fragn glass and plastic. Gravel is angular fine to ination encountered)  End of Borehole at 4.00m | 1.5 ne to nents of |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        | 1                 |              |           |                          |                                                                       |                                                                                                                                                                                    |                    |

|                                      | C     | AUSEW<br>GEOTI                                                                                                                                                                 | ЕСН               |               |                | 22-1    | ct No.<br><b>041A</b> | Project<br>Client:<br>Client's |                                                                                                                                                                                                                                                 | nning Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                 | PC Land:                                                                                   | S                              | В     | orehole II<br>BH112                                         |                                                             |
|--------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|----------------|---------|-----------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|-------|-------------------------------------------------------------|-------------------------------------------------------------|
| Method Inspection Pit Dynamic Sampli |       | Plant Used 3t Excavator Dando Terrier                                                                                                                                          | 0.00<br>1.20      | 1.2<br>4.0    | 0              | 71929   | 5.60 E<br>4.60 N      | Final De                       |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07/02/2023                                                                                                                                                      | Driller:                                                                                   |                                |       | Scale: 1:50                                                 |                                                             |
|                                      | ple / | Field Records                                                                                                                                                                  |                   | Casing Depth  | Water<br>Depth | Level   | Depth                 | Legend                         | 4.23 MOD                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07/02/2023                                                                                                                                                      | Logger:                                                                                    | KS                             | Water | DRAFT<br>Backfill                                           |                                                             |
| (m) Test                             | (S)   | PID = 5.00ppm  PID = 0.20ppm  PID = 0.40ppm  N=8 (1,1/2,2,2,2) Hamilator  PID = 0.30ppm  N=6 (1,1/1,2,2,1) Hamilator  N=3 (1,0/0,0,1,2) Hamilator  N=3 (1,0/0,0,1,2) Hamilator | mer SN = mer SN = | 0.00<br>0.004 | Dry L.00       |         | (m)<br>- 0.15         |                                | TOPSOIL  MADE GROUND: Br GRAVEL with low co occasional steel fra coarse. Cobbles are  MADE GROUND: Fir cobble content, occ fragments. Sand is to Cobbles are subant  MADE GROUND: Lo fine to coarse GRAV concrete, glass and (Contamination end | rown very sand obble content, gments and ra angular.  Im brown slight assional brick of fine to coarse. gular.  Fine to coarse. gular.  Fine to coarse. greying the same countered of Bore fine to fine to the same countered of Bore fine to the same countered of B | dy silty subrounc<br>frequent brick f<br>re strands of win<br>htly sandy gravel<br>ragments and or<br>Gravel is subang<br>sh black very sa<br>dant fragments of | ragments, re. Sand is f  ly CLAY wit ccasional co gular fine to  ndy silty ar of red brick | th low<br>oncrete<br>o coarse. | EM V  | 3. 3. 4. 4. 4. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | 2.5<br>2.5<br>3.0<br>3.5<br>4.0<br>7.5<br>5.5<br>5.5<br>7.0 |
|                                      | o (m) | Time (min) Rose to (r<br>25 3.50                                                                                                                                               |                   |               | Diame          | ter Ins | ermination            | on Reaso                       | e excavated to 1.20m.  n rehole collapse.                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |                                                                                            | <b>Last U</b> <sub>1</sub>     |       |                                                             | <b>■</b>                                                    |

|                               |             |                    | Droi  | ect No.              | Droinct             | : Name:                                                                                                         |                   | 1 -      | Trial Pit ID                    |
|-------------------------------|-------------|--------------------|-------|----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|----------|---------------------------------|
|                               |             |                    |       | 1041A                |                     | anning Design GI - Lot A DPC Lands                                                                              |                   | '        | IIIai Fit ib                    |
|                               | <b>CAUS</b> | EWAY               |       |                      | Client:             |                                                                                                                 |                   |          | DU116                           |
|                               | ——-G        | EOTECH             | Coor  | dinates              |                     |                                                                                                                 |                   |          | BH116                           |
| Method:                       |             |                    | 7194  | 03.79 E              |                     | Port Company (DPC) s Representative:                                                                            |                   |          |                                 |
| Inspection Pit                |             |                    | 7338  | 31.64 N              | RPS                 | s Representative:                                                                                               |                   |          | heet 1 of 1                     |
|                               |             |                    | F1    |                      |                     |                                                                                                                 | II                | - 5      | Scale: 1:25                     |
| <b>Plant:</b><br>3T Excavator |             |                    |       | vation<br>B mOD      | <b>Date:</b> 08/11/ | 2022                                                                                                            | Logger:<br>RS     |          | DRAFT                           |
| Depth                         | Sample /    |                    | Level | Depth                | +                   | 2022<br>I                                                                                                       | N3                |          |                                 |
| (m)                           | Tests       | Field Records      | (mOD) | (m)                  | Legend              | Description                                                                                                     |                   | Water    |                                 |
|                               |             |                    | 4.63  | 0.10                 |                     | MADE GROUND: Grey sandy very silty subangular fine<br>Sand is fine to coarse.                                   | to coarse GRAVE   | EL.      | _                               |
|                               |             |                    |       |                      |                     | MADE GROUND: Brownish yellow very sandy very silty                                                              |                   |          | _                               |
|                               |             |                    |       | -                    |                     | to coarse GRAVEL with high cobble content and cobble of red brick, shale and plastic. Sand is fine to coarse. O |                   | 5        | -                               |
|                               |             |                    |       |                      |                     | subrounded.                                                                                                     |                   |          | -                               |
| 0.50                          | ES1         |                    |       | -                    |                     |                                                                                                                 |                   |          | 0.5 —                           |
|                               |             |                    | 4.08  | 0.65                 |                     | MADE GROUND: Soft dark greyish black slightly sandy                                                             | gravally CLAV wii | th.      |                                 |
|                               |             |                    |       | _                    |                     | low cobble content. Sand is fine to coarse. Gravel is su                                                        |                   |          |                                 |
|                               | B3          |                    |       |                      |                     | coarse. Cobbles are subrounded.                                                                                 |                   |          |                                 |
| 1.00                          |             |                    |       | -                    |                     |                                                                                                                 |                   |          | 1.0                             |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | _                               |
|                               |             |                    |       | _                    |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          |                                 |
| 1.50                          | ES2         |                    |       | 4.65                 |                     |                                                                                                                 |                   |          | 1.5                             |
|                               |             |                    | 3.13  | 1.60                 |                     | End of trial pit at 1.60m                                                                                       |                   |          |                                 |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          |                                 |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | _                               |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | 2.0                             |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | =                               |
|                               |             |                    |       |                      |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          |                                 |
|                               |             |                    |       | _                    |                     |                                                                                                                 |                   |          | 2.5                             |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          |                                 |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | _                               |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | _                    |                     |                                                                                                                 |                   |          | 3.0                             |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          |                                 |
|                               |             |                    |       |                      |                     |                                                                                                                 |                   |          | 3.5 —                           |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | _                               |
|                               |             |                    |       | <del> </del>         |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       |                      |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | <u>-</u>             |                     |                                                                                                                 |                   |          | 4.0                             |
|                               |             |                    |       | †                    |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       |                      |                     |                                                                                                                 |                   |          |                                 |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          |                                 |
|                               |             |                    |       | <u>-</u>             |                     |                                                                                                                 |                   |          | 4.5 —                           |
|                               |             |                    |       | [                    |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | -                    |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | <u>-</u>             |                     |                                                                                                                 |                   |          | -                               |
|                               |             |                    |       | <del>-</del>         |                     |                                                                                                                 |                   |          | -                               |
|                               | Cr. 11      |                    | Dec.  | arks:                |                     |                                                                                                                 |                   |          |                                 |
|                               | Remarks     | <b>Depth:</b> 1.60 |       | narks:<br>ection pit | machine             | excavated to 1.60m.                                                                                             |                   |          |                                 |
| Struck at (m)                 | Reillarks   | Width:             |       | groundwat            |                     |                                                                                                                 |                   |          |                                 |
|                               |             | Length:            |       |                      |                     |                                                                                                                 |                   |          |                                 |
|                               |             | Stability:         | Terr  | nination R           | leason              |                                                                                                                 | Last              | Update   | ed <b>T</b>                     |
|                               |             |                    | Loca  | tion termin          | ated by Cli         | ent.                                                                                                            |                   | /06/2023 |                                 |
|                               | 1           | 1                  | 1     |                      | ,                   |                                                                                                                 | 1/                | ,        | •    •    •    •    •    •    • |

|                               |             |                       | Droi  | ect No.         | Droine              | t Name:                                                                                                       |          | Tri   | al Pit ID |
|-------------------------------|-------------|-----------------------|-------|-----------------|---------------------|---------------------------------------------------------------------------------------------------------------|----------|-------|-----------|
|                               |             |                       |       | 1041A           | 1                   | anning Design GI - Lot A DPC Lands                                                                            |          |       | ai Fit ID |
|                               | <b>CAUS</b> | <b>EWAY</b><br>EOTECH |       |                 | Client:             |                                                                                                               |          |       | H117      |
|                               | ——G         | EOTECH                | Coor  | dinates         | 1                   | Port Company (DPC)                                                                                            |          | -     | ытт/      |
|                               |             |                       | 7194  | 04.68 E         |                     | s Representative:                                                                                             |          |       |           |
| Method:<br>Inspection Pit     |             |                       | 7338  | 53.97 N         | RPS                 | s representative:                                                                                             |          |       | et 1 of 1 |
|                               |             |                       |       |                 |                     | 1                                                                                                             |          | Sc    | ale: 1:25 |
| <b>Plant:</b><br>3T Excavator |             |                       |       | wation<br>5 mOD | <b>Date:</b> 08/11/ | Logger: RS                                                                                                    |          |       | RAFT      |
| Depth                         | Sample /    |                       | Level | Depth           | _                   | 2022   13                                                                                                     |          |       |           |
| (m)                           | Tests       | Field Records         | (mOD) | (m)             | Legend              | Description                                                                                                   |          | Water |           |
|                               |             |                       | 4.25  | 0.10            |                     | MADE GROUND: Grey sandy very silty subangular fine to coarse<br>Sand is fine to coarse.                       | GRAVEL.  |       | _         |
|                               |             |                       |       | -               |                     | MADE GROUND: Brownish yellow very gravelly very silty fine to                                                 |          |       | _         |
|                               |             |                       |       |                 |                     | SAND with low cobble content. Gravel is subrounded fine to coa<br>Cobbles are subrounded.                     | rse.     |       | -         |
|                               |             |                       |       |                 |                     | 0000100 010 00010001                                                                                          |          |       | -         |
| 0.50                          | ES1         |                       |       | -               |                     |                                                                                                               |          |       | 0.5       |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       | _               |                     |                                                                                                               |          |       |           |
|                               |             |                       |       |                 |                     |                                                                                                               |          |       |           |
| 1.00                          | В3          |                       | 3.35  | 1.00            |                     | 6 1111 1111 11 11 11 11 11                                                                                    |          |       | 1.0       |
|                               |             |                       |       | -               |                     | Very soft grey slightly sandy slightly gravelly CLAY. Sand is fine to<br>Gravel is subangular fine to coarse. | coarse.  |       | _         |
|                               |             |                       |       |                 |                     | -                                                                                                             |          |       | -         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | -         |
| 1.50                          | ES2         |                       | 2.75  | - 1.50          |                     |                                                                                                               |          |       | 1.5 —     |
|                               |             |                       | 2.75  | 1.60            |                     | End of trial pit at 1.60m                                                                                     |          |       |           |
|                               |             |                       |       | _               |                     |                                                                                                               |          |       |           |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | _         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | 2.0 —     |
|                               |             |                       |       |                 |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | _         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       |                 |                     |                                                                                                               |          |       | 2.5 —     |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | _         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | _         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | =         |
|                               |             |                       |       | _               |                     |                                                                                                               |          |       | 3.0       |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | _         |
|                               |             |                       |       |                 |                     |                                                                                                               |          |       |           |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | 3.5 —     |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | _         |
|                               |             |                       |       | <u> </u>        |                     |                                                                                                               |          |       | _         |
|                               |             |                       |       |                 |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       | <del> -</del>   |                     |                                                                                                               |          |       | 4.0       |
|                               |             |                       |       |                 |                     |                                                                                                               |          |       |           |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       |           |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | _         |
|                               |             |                       |       | <u> </u>        |                     |                                                                                                               |          |       | 4.5       |
|                               |             |                       |       |                 |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       | -               |                     |                                                                                                               |          |       | -         |
|                               |             |                       |       |                 |                     |                                                                                                               |          |       |           |
|                               | . Chuile -  |                       | Por   | narks:          |                     |                                                                                                               |          |       |           |
| Struck at (m)                 | Remarks     | <b>Depth:</b> 1.60    |       |                 | machine             | excavated to 1.60m.                                                                                           |          |       |           |
| Juliack at (III)              | Nemarks     | Width:                | Nog   | groundwat       | er encou            | ntered.                                                                                                       |          |       |           |
|                               |             | Length:               | Foui  | r attempts      | made to             | advance borehole.                                                                                             |          |       |           |
|                               |             | Stability:            | Terr  | nination R      | leason              |                                                                                                               | Last Upd | ated  |           |
|                               |             |                       | Term  | ninated on r    | efusal.             |                                                                                                               | 12/06/20 | 023   | AGS       |
|                               | 1           | 1                     | 1     |                 |                     |                                                                                                               | . ,-     |       |           |

|                                                                                                                                                                          | CAUSEW                                                                                                                                                                                               | ECH          | T            |                       | 22-1                   | ct No.<br><b>041A</b> | Project Client: Client's |                                                                                                                                                                                                                                                                           | nning Desig                                                                                                                                                                                            |                                                                                                                                                                                                 | PC Lands                                                                                                   |                        | BH119                             | 9                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------------------|------------------------|-----------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|-------------------------------------------|
| Method Trial Pitting Cable Percussion                                                                                                                                    | Plant Used 3T Excavator Dando 3000                                                                                                                                                                   | 0.00<br>1.50 | 1.5<br>3.5   | 50                    | 71973                  | 5.30 E<br>1.29 N      | Final De                 | •                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                        | 21/11/2022 24/11/2022                                                                                                                                                                           | Driller: CC                                                                                                |                        | Sheet 1 of<br>Scale: 1:4<br>DRAFT | 40                                        |
| Depth Sample<br>(m) Tests                                                                                                                                                | / Field Records                                                                                                                                                                                      |              | Depth        | Water<br>Depth<br>(m) | Level<br>mOD           | Depth<br>(m)          | Legend                   |                                                                                                                                                                                                                                                                           | Desc                                                                                                                                                                                                   | ription                                                                                                                                                                                         |                                                                                                            | Water                  | Backfill                          |                                           |
| (m) Tests  .50 ES1 .50 B3 .00 ES2 .00 B3 .00 ES2 .50 D9 .50 ES4 .50 - 2.50 B8 .50 - 1.95 SPT (S .50 .00 ES5 .00 ES6 .50 - 3.50 B11 .50 - 2.95 SPT (S .50 .00 ES7 .00 ES7 | Fast inflow at 0.25m  PID = 0.20ppm  PID = 0.30ppm  PID = 0.10ppm  PID = 1.20ppm  N=16 (2,3/3,4,4,5) Har 0197 PID = 1.40ppm  PID = 0.30ppm  PID = 0.30ppm  N=12 (1,2/2,3,3,4) Har 0197 PID = 0.50ppm | nmer SN =    | 1.50<br>2.50 | Dry                   |                        |                       | Legend                   | MADE GROUND: Gr GRAVEL. Sand is find MADE GROUND: Li GRAVEL with low co angular. MADE GROUND: Gr coarse GRAVEL with Cobbles are very an Ternam at 0.35m MADE GROUND: Sti cobble content. San coarse. Cobbles are MADE GROUND: Fir fragments of red br subangular to subro | ey sandy very e to coarse. ght grey sandy bble content.  ey slightly san high cobble c gular.  ff grey slightly d is fine to coa subangular. ey COBBLES w m to stiff grey ick and concre unded fine to | very silty angular very silty angular very silty angular very silty and very silty silty ontent. Sand is sandy very gravarse. Gravel is suith a little sandy slightly gravelly te. Sand is fine | lar fine to coarse. Cobble very angular fi fine to coarse. velly SILT with ubangular fine y gravelly clay. | rse s are ne to low to |                                   | 0.5 · · · · · · · · · · · · · · · · · · · |
|                                                                                                                                                                          | er Strikes m) Time (min) Rose to (i  Water Added er From (m) To (m)                                                                                                                                  |              |              | elling<br>To (n       | <b>Details</b> n) Time | e (hh:mm)             |                          | pit machine excavate                                                                                                                                                                                                                                                      | ed to 1.50m.                                                                                                                                                                                           |                                                                                                                                                                                                 |                                                                                                            | ast Updat              | ad la                             | 6.0 -                                     |

|                                                                                  |                                       | CAUSEV                                                                                   | <b>VAY</b><br>TECH |                        |                       |                   | ct No.<br><b>041A</b> | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS                                                                                                                                | BH120        |
|----------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|--------------------|------------------------|-----------------------|-------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Meth                                                                             | od                                    | Plant Used                                                                               | Top (m)            | Base                   | (m)                   | Coord             | linates               |                                                                                                                                                                                                                                             | Sheet 1 of 5 |
| Cable Pero<br>Rotary C                                                           |                                       | Dando 3000<br>Beretta T44                                                                | 0.00 29.00         | 29.0<br>40.5           | 50                    |                   | 6.19 E<br>5.91 N      | Final Depth:         40.50 m         Start Date:         21/11/2022         Driller:         GT+CC           Elevation:         5.13 mOD         End Date:         22/11/2022         Logger:         DM+RS                                 | Scale: 1:50  |
| Depth                                                                            | Sample /                              | Field Record                                                                             | ds                 | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD      | Depth                 | Legend Description                                                                                                                                                                                                                          | Backfill     |
| (m)<br>0.00 - 0.50                                                               | Tests<br>B15                          |                                                                                          |                    | (m)                    | (m)                   | MOD               | (m)                   | MADE GROUND: Grey slightly sandy slightly silty angular fine to                                                                                                                                                                             | 3            |
| .50<br>.50 - 1.50<br>.50<br>.00<br>.00<br>.20<br>.20 - 1.65                      | ES1<br>B16<br>ES2<br>D17<br>SPT (C)   | PID = 0.20ppm<br>PID = 0.30ppm<br>N=26 (3,4/6,7,7,6) H3                                  | ammer SN =         | 1.20                   |                       | 4.63              | 0.50                  | coarse GRAVEL. Sand is fine to coarse.  MADE GROUND: Firm to stiff grey slightly sandy gravelly CLAY with low cobble content and fragments of plastic, concrete and red brick. Sand is fine to coarse. Gravel is subangular fine to coarse. | 1            |
| .50<br>.00<br>.00 - 3.00<br>.00 - 2.45<br>.00<br>.50<br>.50<br>.00<br>.00 - 3.45 | ES5<br>D20<br>ES6                     | N=13 (2,3/3,3,3,4) Ha<br>0197<br>PID = 0.10ppm<br>PID = 0.40ppm<br>N=22 (3,4/5,5,6,6) Ha |                    |                        |                       | 1.63              | 3.50                  | MADE CROUND: Lease to medium dense gravuery candy silty                                                                                                                                                                                     | 2 2 3        |
| .00<br>.50<br>.50 - 4.50<br>.50<br>.00<br>.00<br>.00 - 4.45                      | ES7<br>B21<br>D22<br>ES8              | 0197<br>PID = 0.20ppm<br>PID = 0.40ppm<br>N=13 (2,3/3,3,3,4) Ha<br>0197<br>PID = 0.30ppm | ammer SN =         | 4.00                   | Dry                   |                   |                       | MADE GROUND: Loose to medium dense grey very sandy silty subangular fine to coarse GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are subrounded.                                                                          | 4            |
| .45<br>.50<br>.50<br>.00<br>.00<br>.00 - 6.00<br>.00 - 5.45                      | D24<br>ES10<br>B23                    | PID = 0.20ppm<br>N=8 (2,2/2,1,2,3) Hai<br>0197                                           | mmer SN =          | 5.00 4                 | 1.30                  |                   |                       |                                                                                                                                                                                                                                             | 5            |
|                                                                                  | ES12<br>D25<br>ES13<br>B26<br>SPT (C) | PID = 0.70ppm  PID = 0.20ppm  N=10 (1,2/2,2,3,3) Ha 0197  PID = 0.10ppm PID = 0.80ppm    | ammer SN =         | 6.50 \$                |                       | -1.37             | 6.50                  | Medium dense grey sandy slightly silty subrounded fine to coarse GRAVEL. Sand is fine to coarse.                                                                                                                                            | - 6          |
| 7.50<br>7.50<br>8.00 - 8.45<br>3.50 - 9.50                                       | ES14<br>SPT (C)                       | PID = 0.10ppm<br>N=13 (2,2/3,3,3,4) Ha<br>0197                                           | ammer SN =         | 8.00                   |                       | -2.87             | 8.00                  | Medium dense becoming dense grey sandy subrounded fine GRAVEL. Sand is fine to coarse.                                                                                                                                                      | 88           |
|                                                                                  |                                       |                                                                                          |                    |                        |                       |                   | -                     | 4 ( x x x x x )                                                                                                                                                                                                                             |              |
| ruck at (m) C<br>5.00                                                            |                                       | r <b>Strikes</b>   Time (min)   Rose to   20   4.30                                      |                    |                        | To (m                 | Details<br>) Time | e (hh:mm)             | Remarks nspection pit hand dug to 1.20m.                                                                                                                                                                                                    |              |
| Casing D To (m) D 13.50 29.00                                                    | Details Diam (mm 250 200              | Water Added   To (m   5.00   29.0                                                        | n)<br>0            |                        |                       |                   |                       |                                                                                                                                                                                                                                             |              |
| 23.00                                                                            | 200                                   |                                                                                          | Core               | Barre                  | el                    | Flush             | Туре                  | Termination Reason Last Up                                                                                                                                                                                                                  | odated       |

|                                                                                                         | CAUSEV                                     |                     |                       | 2       | Project            |              | Project Name: 3FM Plan Client: Dublin Pc Client's Rep: RPS | nning Design GI<br>ort Company (D |                       | nds                   | Borehole<br>BH12  |                            |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|-----------------------|---------|--------------------|--------------|------------------------------------------------------------|-----------------------------------|-----------------------|-----------------------|-------------------|----------------------------|
| Method  Cable Percussion                                                                                | Plant Used Dando 3000                      | <b>Top (m)</b> 0.00 | <b>Base</b> (29.0     |         | Coordir            | nates        | Final Depth: 40.50 m                                       | Start Date: 21/2                  | 11/2022 <b>Drille</b> | er: GT+CC             | Sheet 2 c         |                            |
| Rotary Coring                                                                                           | Beretta T44                                | 29.00               | 40.5                  | 0       | 719806.<br>733385. |              |                                                            | End Date: 22/2                    |                       | er: DM+RS             | Scale: 1:         |                            |
| Depth Sample<br>(m) Tests                                                                               |                                            | ds                  | Casing 1<br>Depth (m) |         | Level<br>mOD       | Depth<br>(m) | Legend                                                     | Description                       | n                     | 1                     | Mackfill Backfill |                            |
| 9.50 D28<br>9.50 - 9.95 SPT (0<br>10.00 C1<br>10.00 - 11.00 B29                                         | N=28 (3,4/5,7,7,9) H<br>0197               | ammer SN =          | 9.50 3                | .10     |                    | -            |                                                            |                                   |                       |                       |                   | 9.5 -                      |
| 11.00 D30<br>11.00 - 11.45 SPT (C<br>11.50 - 12.50 B31                                                  | C) N=25 (2,3/4,6,7,8) H<br>0197            | ammer SN =          | 11.0 5                | .60     |                    | -            |                                                            |                                   |                       |                       |                   | 11.0 —                     |
| 12.50 D32 12.50 - 12.95 SPT (C                                                                          | C) N=29 (3,4/5,7,8,9) H<br>0197            | ammer SN =          | 12.5 7                | .30     |                    | -            |                                                            |                                   |                       |                       |                   | 12.5 —                     |
| 14.00 D34 14.00 - 14.45 SPT (0                                                                          | C) N=31 (4,5/9,6,7,9) H<br>0197            | ammer SN =          | 14.0 1                | .60     |                    | -            |                                                            |                                   |                       |                       |                   | 14.0                       |
| 15.00 - 16.00 B35 15.50 D36 15.50 - 15.95 SPT (0                                                        | C) N=29 (4,6/6,7,8,8) H<br>0197            | ammer SN =          | 15.5 3                | .90     |                    | -            |                                                            |                                   |                       |                       |                   | 15.0                       |
| 16.50 - 17.30 B37  17.00 D38 17.00 - 17.45 SPT (0  17.30 - 19.00 B39                                    | C) N=12 (3,4/3,3,3,3) H<br>0197            | lammer SN =         | 17.0 5                |         | 12.17              | 17.30        | Medium dense grey                                          | silty fine to coarse              | SAND.                 |                       |                   | 17.0                       |
| Wat                                                                                                     | N=14 (2,2/3,3,4,4) H<br>0197<br>er Strikes |                     | Chise                 | lling D |                    | -            | Remarks                                                    |                                   |                       |                       |                   | 18.0 —<br>18.0 —<br>18.5 — |
| Casing Details           To (m)         Diam (m           13.50         250           29.00         200 | Time (min)   Rose to                       | 0                   | (m)  Barre            | To (m)  | Time (             | ype          | Termination Reason Terminated at scheduled depth.          |                                   |                       | <b>Last Up</b> 12/06, |                   |                            |

|                          |            | CAUSEN                               | /AY<br>ECH    |                        |                        |         | ct No.<br><b>041A</b> | Project Client: Client's    |                      | nning Desig<br>ort Compar |            | PC Land  | S       |       | oreholo<br>BH12          |      |
|--------------------------|------------|--------------------------------------|---------------|------------------------|------------------------|---------|-----------------------|-----------------------------|----------------------|---------------------------|------------|----------|---------|-------|--------------------------|------|
| Metho                    |            | Plant Used                           | Top (m)       |                        |                        | Coord   | linates               | Final De                    | <b>pth:</b> 40.50 m  | Start Date:               | 21/11/2022 | Driller: | GT+CC   |       | Sheet 3 o                |      |
| Cable Percu<br>Rotary Co |            | Dando 3000<br>Beretta T44            | 0.00<br>29.00 | 29.<br>40.             |                        |         | 06.19 E<br>85.91 N    | Elevation                   |                      |                           | 22/11/2022 |          | DM+RS   |       | Scale: 1  DRAF           |      |
| Depth                    | Sample /   | Field Records                        |               | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m)  | Level   | Depth                 | Legend                      |                      | ļ                         | cription   | LOBBC: . | BIVITIS | Water | Backfill                 | Т    |
| (m)                      | Tests      | Tield Records                        | •             | (m)                    | (m)                    | mOD     | (m)                   | ×××                         |                      | Des                       | рион       |          |         | Ma    | ) Backiiii               |      |
|                          |            |                                      |               |                        |                        |         | <u>E</u>              | ×××                         |                      |                           |            |          |         |       | $\cdot \cdot \mathbb{R}$ | 19.0 |
|                          |            |                                      |               |                        |                        |         |                       | ×、×                         |                      |                           |            |          |         |       |                          | 15.0 |
|                          |            |                                      |               |                        |                        |         |                       | ×××                         |                      |                           |            |          |         |       |                          | :    |
|                          |            |                                      |               |                        |                        |         |                       | × × ×                       |                      |                           |            |          |         |       |                          | 19.5 |
|                          |            |                                      |               |                        |                        |         |                       | × × ×                       |                      |                           |            |          |         |       |                          |      |
| 0.00                     | C2         |                                      |               |                        |                        | 14.07   | 20.10                 | x × ×                       |                      |                           |            |          |         |       |                          | 20.0 |
| 0.00 - 20.45             | SPT (C)    | N=13 (2,3/3,3,3,4) Har<br>0197       | mmer SN =     | 20.0                   | 20.6                   | -14.97  | 20.10                 | X                           | Firm grey silty CLAY | =                         |            |          |         |       |                          |      |
| 0.10 - 21.00             | B40        | 0197                                 |               |                        |                        |         |                       | ×                           |                      |                           |            |          |         |       |                          | 20.5 |
|                          |            |                                      |               |                        |                        |         | Ē                     | ×— —>                       |                      |                           |            |          |         |       |                          |      |
|                          |            |                                      |               |                        |                        |         | E                     | <u>×</u>                    |                      |                           |            |          |         |       |                          | Ī    |
|                          |            |                                      |               |                        |                        |         | F                     | ×                           |                      |                           |            |          |         |       |                          | 21.0 |
|                          |            |                                      |               |                        |                        |         | Ė                     | ×_ ×                        |                      |                           |            |          |         |       |                          | Ī    |
| 1.50 - 21.95             | U41        | Ublow=30 100% Recov                  | very          | 21.5                   | 8.00                   |         | F                     | <u>×</u> × 1                |                      |                           |            |          |         |       |                          | 21.  |
|                          |            |                                      |               |                        |                        |         | E                     | × ×                         |                      |                           |            |          |         |       |                          | Ī    |
| 2.00                     | D42        |                                      |               |                        |                        |         | E                     | × ×                         |                      |                           |            |          |         |       |                          | 22.0 |
| 2.00<br>2.00 - 23.00     |            |                                      |               |                        |                        |         | Ė                     | ×——>                        |                      |                           |            |          |         |       |                          | 22.0 |
|                          |            |                                      |               |                        |                        |         | Ė                     | ×                           |                      |                           |            |          |         |       |                          | Ī    |
|                          |            |                                      |               |                        |                        |         | Ē                     | ×——>                        |                      |                           |            |          |         |       |                          | 22.5 |
|                          |            |                                      |               |                        |                        |         | E                     | ×                           |                      |                           |            |          |         |       |                          | Ī    |
| 3.00                     | D44        |                                      |               |                        |                        |         | E                     | $\times$ _ $\times$ _ $\to$ |                      |                           |            |          |         |       |                          | 23.0 |
|                          | SPT (S)    | N=13 (2,3/3,3,3,4) Har               | mmer SN =     | 23.0                   | 11.2                   |         | Ė                     | ×_×_                        |                      |                           |            |          |         |       |                          | Ī    |
| 250 2455                 |            | 0197                                 |               |                        |                        |         | Ė                     | × × 1                       |                      |                           |            |          |         |       |                          |      |
| 3.50 - 24.50             | B45        |                                      |               |                        |                        |         | Ē                     | × ×                         |                      |                           |            |          |         |       |                          | 23.5 |
|                          |            |                                      |               |                        |                        |         | E                     |                             |                      |                           |            |          |         |       |                          | Ī    |
|                          |            |                                      |               |                        |                        |         | Ė                     | ×                           |                      |                           |            |          |         |       |                          | 24.0 |
|                          |            |                                      |               |                        |                        |         | ŧ                     | ×                           |                      |                           |            |          |         |       |                          |      |
| 4.50 - 24.95             | U46        | Ublow=31 100% Recov                  | verv          | 24.5                   | 14.6                   |         | Ē                     | L×—⇒                        |                      |                           |            |          |         |       |                          | 24.5 |
| 21.55                    |            | 32 20070 110000                      | ,             |                        |                        |         | E                     | ×                           |                      |                           |            |          |         |       |                          |      |
|                          | <u>.</u>   |                                      |               |                        |                        |         | E                     | ×_×                         |                      |                           |            |          |         |       |                          |      |
| 5.00<br>5.00 - 26.00     | D47<br>B48 |                                      |               |                        |                        |         | F                     | × × 1                       |                      |                           |            |          |         |       |                          | 25.0 |
| J.00 - 20.00             | טדט        |                                      |               |                        |                        |         | Ė                     | $\left[ \times \right]$     |                      |                           |            |          |         |       |                          | Ī    |
|                          |            |                                      |               |                        |                        |         | Ē                     | × ×                         |                      |                           |            |          |         |       |                          | 25.5 |
|                          |            |                                      |               |                        |                        |         | E                     |                             |                      |                           |            |          |         |       |                          | Ī    |
| 6.00 - 26.45             | SPT (c)    | N=15 (2,3/4,3,4,4) Har               | mmer SNI -    | 26.0                   | 21.0                   |         | Ĺ                     | ×>                          |                      |                           |            |          |         |       |                          | 26.0 |
| 20.43                    | Si-1 (S)   | 0197                                 | ci 3iV =      | 20.0                   | _1.0                   |         | ŧ                     | ×                           |                      |                           |            |          |         |       |                          | 20.0 |
|                          |            |                                      |               |                        |                        |         | F                     | ×                           |                      |                           |            |          |         |       |                          |      |
|                          |            |                                      |               |                        |                        |         | Ē                     | ×                           |                      |                           |            |          |         |       |                          | 26.5 |
|                          |            |                                      |               |                        |                        |         | E                     | ×_×                         |                      |                           |            |          |         |       |                          |      |
| 7.00 - 28.00             | B49        |                                      |               |                        |                        |         | E                     | <u>×</u> × 1                |                      |                           |            |          |         |       |                          | 27.0 |
|                          |            |                                      |               |                        |                        |         | Ė                     |                             |                      |                           |            |          |         |       |                          |      |
| 7.50 37.05               | LIFO       |                                      |               | 27.5                   | 4.60                   |         | Ē.                    | × ×                         |                      |                           |            |          |         |       |                          |      |
| 7.50 - 27.95             | U50        | Ublow=33 100% Recov                  | very          | 27.5                   | 4.60                   |         | Ē                     | × ×                         |                      |                           |            |          |         |       |                          | 27.5 |
|                          |            |                                      |               |                        |                        |         | E                     | ×——>                        |                      |                           |            |          |         |       |                          |      |
|                          |            |                                      |               |                        |                        |         | <u> </u>              |                             |                      |                           |            | _        |         |       |                          |      |
| uck at (m) c             |            | r Strikes<br>n) Time (min) Rose to ( | m) From (     |                        | <b>elling</b><br>To (r | Details | e (hh:mm)             | Remarks                     | pit hand dug to 1.20 |                           |            |          |         |       |                          |      |
| Casing De                | 5.00       | 20 4.30<br>Water Added               |               |                        | -                      |         |                       | F-30011                     | 00 1.100             |                           |            |          |         |       |                          |      |
| 13.50<br>29.00           | 250<br>200 | 5.00 29.00                           |               | Barre                  | el                     | Flush   | Туре                  | Terminat                    | ion Reason           |                           |            |          | Last Up | date  | ed <b>E</b>              |      |
| 1                        |            |                                      | S             | K6L                    |                        | Wa      | ter                   | Terminated                  | d at scheduled depth | ı.                        |            |          | 12/06/  | /วกวล | $\Lambda$                | P    |

|                                      | C                                             | AUS                 | E       | <b>VV</b><br>DTE | A          | <b>Y</b> |                        |                       | Proje<br><b>22-1</b> | ct No.<br>041A   | Project<br>Client:<br>Client's         |                                                                                                        | nning Desig<br>ort Compar |                   | PC Land      | S              |       | orehole II<br>BH120  |
|--------------------------------------|-----------------------------------------------|---------------------|---------|------------------|------------|----------|------------------------|-----------------------|----------------------|------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|-------------------|--------------|----------------|-------|----------------------|
| Method<br>Cable Percu                |                                               | Plant U             |         |                  | <b>Top</b> |          | <b>Base</b> 29.        |                       | Coord                | inates           | Final De                               | <b>pth:</b> 40.50 m                                                                                    | Start Date:               | 21/11/2022        | Driller:     | GT+CC          |       | heet 4 of 5          |
| Rotary Co                            |                                               | Beretta             |         |                  | 29.        |          | 40.                    |                       | 71980<br>73338       | 6.19 E<br>5.91 N | Elevatio                               |                                                                                                        | End Date:                 | 22/11/2022        | Logger:      | DM+RS          |       | Scale: 1:50<br>DRAFT |
| Depth<br>(m)                         | Sample /<br>Tests                             | Fie                 | ld Red  | cords            |            |          | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD         | Depth<br>(m)     | Legend                                 | 1                                                                                                      | Des                       | cription          |              |                | Water | Backfill             |
| 8.00                                 | D51                                           |                     |         |                  |            |          |                        |                       |                      |                  | X————————————————————————————————————— |                                                                                                        |                           |                   |              |                |       | 28.0<br>28.1         |
|                                      | D53<br>B52<br>SPT(S) N<br>(2,3/4,5,<br>Hammer |                     | 25      |                  |            |          | 29.0                   | 7.10                  | -23.87               | 29.00            | × × × × × × × × × × × × × × × × × × ×  | Dark brown slightly                                                                                    | sandy CLAY. S             | and is fine to me | edium.       |                |       | 29.ú<br>29.í         |
| 0.00<br>0.00 - 30.45<br>0.50         | D54<br>SPT(S) N<br>(2,3/4,4,<br>Hammer        |                     |         |                  |            |          | 30.0                   | 9.80                  |                      |                  |                                        |                                                                                                        |                           |                   |              |                |       | 30.ú<br>30.í         |
|                                      |                                               |                     | 70      |                  |            |          |                        |                       |                      |                  |                                        |                                                                                                        |                           |                   |              |                |       | 31.6                 |
| 2.00<br>2.00 - 32.45                 | SPT(C) N<br>(2,2/3,3,<br>Hammer               |                     | 90      |                  |            | NI       |                        |                       |                      | (5.80)           |                                        |                                                                                                        |                           |                   |              |                |       | 32.d                 |
| 3.50<br>3.50 - 33.95                 | SPT(C) N<br>(3,3/4,4,                         |                     |         |                  |            |          |                        |                       |                      |                  |                                        |                                                                                                        |                           |                   |              |                |       | 33.ú                 |
|                                      |                                               | - SN = 0208         | 95      | 15               | 0          |          |                        |                       | -29.67               | 34.80            |                                        |                                                                                                        |                           |                   |              |                |       | 34.0<br>34.:         |
| 5.00<br>5.00 - 35.11                 | 45mm/5                                        |                     |         |                  |            |          |                        |                       | 25.07                | 54.00            |                                        | Strong dark grey thi<br>with occasional whi<br>weathered: slight d<br>Discontinuities:                 | ite calcite vein          | s up to 10mm th   | nick. Slight |                |       | 35.ú<br>35.          |
|                                      | C1                                            |                     | 95      | 95               | 85         | 10       |                        |                       |                      | -                |                                        | <ol> <li>5-10 degree fract<br/>smooth and clean.</li> <li>35-45 degree fract<br/>and rough.</li> </ol> |                           |                   |              |                |       | 36.0                 |
| 6.50<br>6.50 - 36.60<br>6.60 - 36.75 | C3<br>C4                                      |                     |         |                  |            |          |                        |                       |                      |                  |                                        |                                                                                                        |                           |                   |              |                |       | 36.                  |
|                                      | Water                                         | Strikes             | TCR     | SCR              | RQD        |          | Chis                   | elling                | g Details            |                  | Remarks                                | <u> </u>                                                                                               |                           |                   |              |                |       |                      |
| Casing De                            | 5.00                                          | Water From (m) 5.00 | Adde To | .30              | n) Fr      |          |                        | To (                  |                      | e (hh:mm)        | Inspection                             | pit hand dug to 1.20                                                                                   | 0m.                       |                   |              |                |       |                      |
| 29.00                                | 200                                           | 3.00                | . 23    | 2.00             | -          |          | Barr<br>K6L            | el                    | Flush Wat            |                  |                                        | tion Reason d at scheduled depth                                                                       | 1.                        |                   |              | <b>Last Up</b> |       |                      |

| Mari                                                                      | _          |                               | GEC  | TI   | ECI  | Н                | De                     | (m-1                  | 22-1         | ot No.           | Project Client: Client's |                                                                                                                                   | nning Desig                         |                                    | T Land             | S              |       | BH12(                             | 0            |
|---------------------------------------------------------------------------|------------|-------------------------------|------|------|------|------------------|------------------------|-----------------------|--------------|------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|--------------------|----------------|-------|-----------------------------------|--------------|
| Metho<br>Cable Percu<br>Rotary Co                                         | ıssion     | Plant I<br>Dando<br>Beretta   | 3000 | )    | 0.   | (m)<br>00<br>.00 | 29.<br>40.             | .00                   | 71980        | 6.19 E<br>5.91 N | Final De                 | -                                                                                                                                 |                                     | 21/11/2022                         |                    | GT+CC<br>DM+RS | 1     | Sheet 5 or<br>Scale: 1:5<br>DRAFT | 50           |
| Depth<br>(m)                                                              | Samples    | / Field Records               | TCR  | SCR  | RQD  | FI               | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)     | Legend                   |                                                                                                                                   | Des                                 | cription                           |                    |                | Water | Backfill                          | Т            |
| 8.00                                                                      |            |                               | 95   | 95   | 60   |                  |                        |                       |              |                  |                          | Strong dark grey th<br>with occasional wh<br>weathered: slight d<br>Discontinuities:<br>1. 5-10 degree fract<br>smooth and clean. | ite calcite vein<br>liscolouration, | s up to 10mm th<br>slight weakenin | nick. Slight<br>g. | ly             |       |                                   | 37.5<br>38.0 |
|                                                                           |            |                               | 95   | 95   | 85   |                  |                        |                       |              | (5.70)           |                          | 2. 35-45 degree fra<br>and rough.                                                                                                 | ctures widely                       | spaced (250/650                    | )/1010), ur        | ndulating      |       |                                   | 38.5<br>39.0 |
| 89.30 - 39.40<br>89.40 - 39.50<br>89.50<br>89.50 - 39.65<br>89.65 - 39.80 | C6<br>C7   |                               | 87   | 87   | 80   | 6                |                        |                       |              |                  |                          |                                                                                                                                   |                                     |                                    |                    |                |       |                                   | 39.5<br>40.0 |
| 10.50                                                                     |            |                               |      |      |      |                  |                        |                       | -35.37       | 40.50            |                          |                                                                                                                                   | End of Bore                         | hole at 40.50m                     |                    |                | -     |                                   | 40.5         |
|                                                                           |            |                               |      |      |      |                  |                        |                       |              |                  |                          |                                                                                                                                   |                                     |                                    |                    |                |       |                                   | 41.0         |
|                                                                           |            |                               |      |      |      |                  |                        |                       |              |                  |                          |                                                                                                                                   |                                     |                                    |                    |                |       |                                   | 42.0         |
|                                                                           |            |                               |      |      |      |                  |                        |                       |              |                  |                          |                                                                                                                                   |                                     |                                    |                    |                |       |                                   | 42.5         |
|                                                                           |            |                               |      |      |      |                  |                        |                       |              |                  |                          |                                                                                                                                   |                                     |                                    |                    |                |       |                                   | 43.0         |
|                                                                           |            |                               |      |      |      |                  |                        |                       |              |                  |                          |                                                                                                                                   |                                     |                                    |                    |                |       |                                   | 43.5         |
|                                                                           |            |                               |      |      |      |                  |                        |                       |              |                  |                          |                                                                                                                                   |                                     |                                    |                    |                |       |                                   | 44.5         |
|                                                                           |            |                               |      |      |      |                  |                        |                       |              |                  |                          |                                                                                                                                   |                                     |                                    |                    |                |       |                                   | 45.0         |
|                                                                           |            |                               |      |      |      |                  |                        |                       |              |                  |                          |                                                                                                                                   |                                     |                                    |                    |                |       |                                   | 45.5<br>46.0 |
|                                                                           |            |                               |      | 867  | DC-  |                  |                        |                       |              | <u> </u>         |                          |                                                                                                                                   |                                     |                                    |                    |                |       |                                   |              |
|                                                                           | Water      | Strikes                       | ICR  | SUR  | RQD  | H                | Chis                   | elling                | g Details    |                  | Remarks                  |                                                                                                                                   |                                     |                                    |                    |                | 1     |                                   | _            |
| Casing De                                                                 | 5.00       | Time (min) 20  Water From (m) | Add  | 1.30 | n) F | rom (            | (m)                    | To (                  | m) Time      | e (hh:mm)        | Inspection               | pit hand dug to 1.20                                                                                                              | )m.                                 |                                    |                    |                |       |                                   |              |
| 13.50<br>29.00                                                            | 250<br>200 | 5.00                          |      | 9.00 |      | Core             | Barr                   | el                    | Flush        | Туре             | Terminat                 | ion Reason                                                                                                                        |                                     |                                    |                    | Last Up        | date  | ed 🔳                              | ī            |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAUSEW                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                        | -            | ject No.<br>1041A    | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Boreho<br>BH1                         |                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------|--------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|
| Metho<br>Cable Perc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Plant Used Dando 3000                                                                                                                                                                                                                                                                                                                                                                                    | Top (m) E                           | Base (m)<br>32.45                      | Coo          | rdinates             | Final Depth: 32.45 m Start Date: 15/11/2022 Driller: CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sheet                                 |                                                       |
| cubic i cic         | u331011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dunido 3000                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                | 32.13                                  |              | 316.63 E<br>292.27 N | Elevation: 4.81 mOD End Date: 17/11/2022 Logger: RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scale:                                |                                                       |
| Depth<br>(m)        | Sample /<br>Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Field Records                                                                                                                                                                                                                                                                                                                                                                                            |                                     | Casing Water<br>Depth Depth<br>(m) (m) | Level<br>mOD | Depth<br>(m)         | Legend Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a Back                                | fill                                                  |
|                     | Tests   B30   B3 | Field Records  PID = 0.00ppm  PID = 0.30ppm  N=30 (3,5/7,7,8,8) Har 0197  PID = 0.20ppm  N=15 (2,3/3,3,4,5) Har 0197  PID = 1.30ppm  PID = 1.30ppm  PID = 0.80ppm  Water strike 3.10m  PID = 0.20ppm Water strike 3.10m  PID = 0.40ppm  N=14 (2,2/3,4,4,3) Har 0197  PID = 0.50ppm  PID = 0.50ppm  PID = 0.10ppm  N=17 (3,4/5,2,5,5) Har 0197  PID = 0.30ppm  PID = 0.10ppm  N=28 (4,5/6,7,7,8) Har 0197 | nmer SN = 2 nmer SN = 2 nmer SN = 5 | 2.00 Dry 2.00 Dry 3.00 Dry 4.00 1.60   |              | (m)                  | MADE GROUND: Grey slightly sandy slightly silty angular fine to coarse GRAVEL. Sand is fine to coarse.  MADE GROUND: Firm to stiff dark greyish black slightly sandy gravelly CLAY with low cobble content and fragments of plastic, ast and red brick. Sand is fine to coarse. Gravel is subangular fine to coarse. Cobbles are subangular.  MADE GROUND: Medium dense greyish black sandy silty subrounded fine to coarse GRAVEL with low cobble content. Sand i fine to coarse. Cobbles are subrounded.  Medium dense grey slightly gravelly silty fine to coarse SAND. Grav is subrounded fine to coarse.  Medium dense grey very sandy slightly silty rounded fine GRAVEL. Sand is fine to coarse. | * * * * * * * * * * * * * * * * * * * | 0.5 1.0 - 1.5 2.0 - 2.5 3.0 - 4.0 - 4.5 5.0 - 6.5 6.5 |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                        |              | -                    | X°X.X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                       |
| unde ne fa sle      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r Strikes                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Chiselling                             |              |                      | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                              |                                                       |
| 3.10 Casing D       | asing to (m<br>3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time (min)   Rose to (i   20   2.60     2.60                                                                                                                                                                                                                                                                                                                                                             |                                     |                                        | m) Ti        | ine (hh:mm)<br>01:00 | Hand dug inspection pit excavated to 1.20m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                       |
| 32.00               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                        |              |                      | Termination Reason Last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Updated                               |                                                       |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                        |              |                      | Terminated at scheduled depth. 12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06/2023                               | AC                                                    |

|                                                      |                       | AUS                                      |                 |                        |                        |                       |              | ect No.<br>041A     |                                                   | nning Design GI - Lot A D                                      | PC Lands     |            | orehole II                 |
|------------------------------------------------------|-----------------------|------------------------------------------|-----------------|------------------------|------------------------|-----------------------|--------------|---------------------|---------------------------------------------------|----------------------------------------------------------------|--------------|------------|----------------------------|
| Metho<br>Cable Percu                                 |                       | Plant Us<br>Dando 30                     |                 | <b>Top (m)</b><br>0.00 | _                      | e (m)<br>.45          | Coord        | dinates             | Final Depth: 32.45 m                              | <b>Start Date:</b> 15/11/2022                                  | Driller:     | CC         | heet 2 of 5<br>Scale: 1:40 |
|                                                      |                       |                                          |                 |                        |                        |                       |              | 16.63 E<br>92.27 N  | Elevation: 4.81 mOD                               | End Date: 17/11/2022                                           | Logger:      |            | DRAFT                      |
| Depth<br>(m)                                         | Sample /<br>Tests     | Field                                    | d Records       |                        | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)        | Legend                                            | Description                                                    | -            | Water      | Backfill                   |
| .00<br>.00 - 8.45<br>.50 - 9.50                      | D17<br>SPT (C)<br>B15 | N=12 (2,3/2,3,<br>0197                   | .3,4) Harr      | nmer SN =              | 8.00                   | 3.10                  |              |                     | Medium dense gre<br>Sand is fine to coar          | y very sandy slightly silty round<br>se.                       | ded fine GRA | AVEL.      | 8. 8. 9.                   |
| 50<br>50 - 9.95<br>0.00 - 11.00                      |                       | N=25 (4,5/6,6,<br>0197                   | .6,7) Ham       | nmer SN =              | 9.50                   | 5.60                  |              |                     |                                                   |                                                                |              |            | 9.                         |
| 1.00<br>1.00 - 11.45                                 | D14<br>SPT (C)        | N=28 (3,4/5,7,<br>0197                   | .8,8) Ham       | nmer SN =              | 11.0                   | 7.20                  |              |                     |                                                   |                                                                |              |            | 11.                        |
| 1.90 - 13.00<br>2.50<br>2.50 - 12.95                 | D44                   | N=33 (4,6/6,7,<br>= 0197                 | 9,11) Ha        | mmer SN                | 12.5                   | 7.30                  | -7.09        | 11.90               | Dense grey slightly                               | sandy rounded fine to coarse and is fine to coarse. Cobbles ar |              | h low      | 12.<br>12.<br>13.          |
| 4.00<br>4.00 - 15.00<br>4.00 - 14.45<br>4.50 - 14.95 | SPT (C)               | N=34 (5,5/7,8,<br>= 0197<br>Ublow=41 100 |                 |                        |                        | 1.20<br>8.10          |              | -                   |                                                   |                                                                |              |            | 14.                        |
| 3.10 Casing De                                       | 3.10                  | r Strikes 1) Time (min) R 20  Water A    | 2.60            | n) From<br>4.50        | (m)                    | To (1                 |              | ne (hh:mm)<br>01:00 | Remarks Hand dug inspection pit excava            | ated to 1.20m                                                  |              | ·          | <u>,</u>                   |
| To (m) D<br>13.50<br>32.00                           | 250<br>200            | 4.00                                     | To (m)<br>32.00 |                        |                        |                       |              |                     | Tormination Pass                                  |                                                                |              | lock U 1   | a 1                        |
|                                                      | _00                   |                                          |                 |                        |                        |                       |              |                     | Termination Reason  Terminated at scheduled deptl |                                                                |              | 12/06/2023 |                            |

|                                      |                   | GEOT                          |                 |          |                       | 22-1         | ct No.<br><b>041A</b>                 | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS                                                                                           | Borehole II BH121           |
|--------------------------------------|-------------------|-------------------------------|-----------------|----------|-----------------------|--------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Metho<br>Cable Percu                 |                   | Plant Used<br>Dando 3000      | Top (m)<br>0.00 | 32.4     |                       | Coord        | inates                                | Final Depth: 32.45 m Start Date: 15/11/2022 Driller: CC                                                                                                                                                | Sheet 3 of 5<br>Scale: 1:40 |
|                                      |                   |                               |                 |          |                       |              | 6.63 E<br>2.27 N                      | Elevation: 4.81 mOD End Date: 17/11/2022 Logger: RS                                                                                                                                                    | DRAFT                       |
| Depth<br>(m)                         | Sample /<br>Tests | Field Record                  | s               | Depth    | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)                          | Legend Description                                                                                                                                                                                     | Backfill                    |
| 5.50<br>5.50 - 15.95<br>5.60 - 16.50 |                   | N=14 (2,3/3,3,4,4) Ha<br>0197 | mmer SN =       | : 15.5 3 | 3.60                  | 10.79        | - 15.60                               | Dense grey slightly sandy rounded fine to coarse GRAVEL with lo cobble content. Sand is fine to coarse. Cobbles are rounded.  Medium dense brown gravelly fine to coarse SAND. Gravel is rounded fine. | 15. 15. 16. 16.             |
| 7.00<br>7.00 - 17.45                 | D39<br>SPT (C)    | N=13 (1,1/2,3,4,4) Ha<br>0197 | mmer SN =       | 17.0 7   | 7.45                  |              | -<br>-<br>-<br>-<br>-                 |                                                                                                                                                                                                        | 17.                         |
| 7.50 - 17.95                         | U58               | Ublow=46 100% Reco            | very            | 17.5     |                       |              | -                                     | [4643]<br>1883                                                                                                                                                                                         | 17.                         |
| .7.70<br>8.50 - 18.95                | B38               | Ublow=37 100% Reco            | very            | 18.5     |                       | 12.89        | - 17.70<br>-<br>-<br>-<br>-<br>-<br>- | Firm to stiff grey sandy silty CLAY. Sand is fine to coarse.                                                                                                                                           | 18.                         |
| .9.00                                | D37               |                               |                 |          |                       |              | -<br>-<br>-<br>-<br>-<br>-            |                                                                                                                                                                                                        | 19.                         |
| 9.50 - 21.00                         |                   | N=15 (2,3/3,4,4,4) Ha<br>0197 | mmer SN =       | 20.0 1   | 14.2                  |              | -                                     |                                                                                                                                                                                                        | 20                          |
| 21.50 - 21.95                        | U32               | Ublow=41 100% Reco            | very            | 21.5 1   | 16.6                  |              | -<br>-<br>-<br>-<br>-                 | X +                                                                                                                                                                                                    | 21                          |
| truck at (m) Ca                      |                   | r Strikes                     | (m) From        |          | lling I               | Details      | e (hh:mm)                             | Remarks  Hand dug inspection pit excavated to 1.20m                                                                                                                                                    |                             |
| 3.10 Casing De                       | 3.10              | 20 2.60 Water Added           | 4.50            |          | 5.00                  |              | 01:00                                 |                                                                                                                                                                                                        | st Updated                  |
|                                      |                   |                               |                 |          |                       |              |                                       |                                                                                                                                                                                                        | 12/06/2023                  |

|                                      |                    | GEOT                                     | ECH           |                        |                           |                | 041A                                      | Project Nar<br>Client:<br>Client's Rep | Dublin P           | nning Desig     | n GI - Lot A E    | OPC Land |                           | orehole II                 |
|--------------------------------------|--------------------|------------------------------------------|---------------|------------------------|---------------------------|----------------|-------------------------------------------|----------------------------------------|--------------------|-----------------|-------------------|----------|---------------------------|----------------------------|
| Metho<br>Cable Percu                 |                    | Plant Used Dando 3000                    | <b>Top (m</b> | 32 Base                |                           | Coord          | inates                                    | Final Depth:                           | 32.45 m            | Start Date:     | 15/11/2022        | Driller: | CC I                      | neet 4 of 5<br>scale: 1:40 |
|                                      |                    |                                          |               |                        |                           | 71981<br>73329 |                                           | Elevation:                             | 4.81 mOD           | End Date:       | 17/11/2022        | Logger:  |                           | DRAFT                      |
| Depth<br>(m)                         | Sample /<br>Tests  | Field Record                             | ls            | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m)     | Level<br>mOD   | Depth<br>(m)                              | Legend                                 |                    | Des             | cription          | ļ        | Water                     | Backfill                   |
| 2.00<br>2.00 - 23.00                 | D35<br>B34         |                                          |               |                        |                           |                | -                                         | X X X X X X X X X X X X X X X X X X X  | n to stiff grey sa | ndy silty CLAY. | Sand is fine to o | coarse.  |                           | 22.                        |
| 3.00<br>3.00 - 23.45                 | D33<br>SPT (S)     | N=18 (3,3/4,4,5,5) Ha                    | nmmer SN      | = 23.0                 | 2.70                      |                | -                                         | X X X X X X X X X X X X X X X X X X X  |                    |                 |                   |          |                           | 23.                        |
| .50 - 25.40                          | B57                |                                          |               |                        |                           |                | -<br>-<br>-<br>-<br>-<br>-                | X                                      |                    |                 |                   |          |                           | 23.                        |
| .50 - 24.95                          | U61                | Ublow=41 100% Reco                       | overy         | 24.5                   | 8.10                      |                | -                                         | X X X                                  |                    |                 |                   |          |                           | 24.                        |
| 5.00<br>5.00 - 26.00                 | D56<br>B55         |                                          |               |                        |                           |                | -<br>-<br>-<br>-<br>-                     | X X X X X X X X X X X X X X X X X X X  |                    |                 |                   |          |                           | 25                         |
| 5.00<br>5.00 - 26.45<br>5.50 - 27.50 |                    | N=14 (3,2/3,3,4,4) Ha                    | ammer SN      | = 26.0                 | 10.6                      |                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-      | X X X X X X X X X X X X X X X X X X X  |                    |                 |                   |          |                           | 26<br>26                   |
| 7.50 - 27.95<br>8.00<br>8.00 - 29.00 | D52                | Ublow=46 100% Reco                       | overy         | 27.5                   | 2.30                      |                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | X                                      |                    |                 |                   |          |                           | 27<br>27<br>28             |
| 9.00<br>9.00 - 29.45                 | D50<br>SPT (S)     | N=17 (3,3/4,4,4,5) Ha                    | ammer SN      | = 29.0                 | 6.20                      |                | -<br>-<br>-<br>-<br>-<br>-<br>-           | X                                      |                    |                 |                   |          |                           | 28.                        |
| ruck at (m) Cas                      |                    | r Strikes  n) Time (min) Rose to 20 2.60 |               | n (m)                  | elling I<br>To (m<br>5.00 |                | e (hh:mm)<br>01:00                        | Remarks<br>Hand dug inspe              | ection pit excava  | ited to 1.20m   |                   |          | ,                         | '                          |
| Casing De                            | etails<br>Diameter | Water Added From (m) To (m               | .)            |                        |                           |                |                                           |                                        |                    |                 |                   |          |                           |                            |
| 13.50<br>32.00                       | 250<br>200         | 4.00 32.00                               |               |                        |                           |                |                                           | <b>Termination I</b> Terminated at s   |                    |                 |                   |          | Last Update<br>12/06/2023 | d L                        |

|                                 |                          | GEOT                                                                       |                     |                        |                       | 22-1         | ct No.<br><b>041A</b> | Client's F                            |                        | ort Compai      |                   | . S Lariu |            | BH121                     |        |
|---------------------------------|--------------------------|----------------------------------------------------------------------------|---------------------|------------------------|-----------------------|--------------|-----------------------|---------------------------------------|------------------------|-----------------|-------------------|-----------|------------|---------------------------|--------|
| Metho<br>Cable Percu            |                          | Plant Used<br>Dando 3000                                                   | <b>Top (m)</b> 0.00 |                        | .45                   |              | linates               | Final Dep                             | <b>th:</b> 32.45 m     | Start Date:     | 15/11/2022        | Driller:  | CC         | Sheet 5 of<br>Scale: 1:40 |        |
|                                 |                          |                                                                            |                     |                        |                       |              | .6.63 E<br>2.27 N     | Elevation                             | : 4.81 mOD             | End Date:       | 17/11/2022        | Logger:   | RS         | DRAFT                     |        |
| Depth<br>(m)                    | Sample /<br>Tests        | Field Records                                                              | S                   | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)          | Legend                                |                        |                 | cription          |           | Water      | Backfill                  |        |
| 9.50 - 30.50                    |                          |                                                                            |                     | 22.0                   | 42.7                  |              | -                     | X X X X X X X X X X X X X X X X X X X | Firm to stiff grey sai | ndy silty CLAY. | Sand is fine to c | oarse.    |            | 30                        | 29.5   |
| .50 - 30.95                     | U60                      | Ublow=48 100% Reco                                                         | very                | 32.0                   | 13.7                  |              | -                     | × ×                                   |                        |                 |                   |           |            | 30                        | 30.5   |
| 1.00<br>1.00 - 32.00            | D48<br>B47               |                                                                            |                     |                        |                       |              | -                     | X X X X X X X X X X X X X X X X X X X |                        |                 |                   |           |            |                           | 31.0 · |
|                                 | D46<br>SPT (C)           | N=19 (3,4/4,4,5,6) Hai<br>0197                                             | mmer SN =           | 32.0                   | 12.7                  |              | -                     | ×                                     |                        |                 |                   |           |            | 3:                        | 32.0   |
|                                 |                          | 0197                                                                       |                     |                        |                       | -27.64       | 32.45                 | <u>×</u> ×                            |                        | End of Bore     | hole at 32.45m    |           |            | 3:                        | 32.5   |
|                                 |                          |                                                                            |                     |                        |                       |              | -                     |                                       |                        |                 |                   |           |            |                           |        |
|                                 |                          |                                                                            |                     |                        |                       |              | -                     |                                       |                        |                 |                   |           |            | 33                        | 33.0   |
|                                 |                          |                                                                            |                     |                        |                       |              |                       |                                       |                        |                 |                   |           |            | 3                         | 33.5   |
|                                 |                          |                                                                            |                     |                        |                       |              | -                     |                                       |                        |                 |                   |           |            | 3.                        | 5.5    |
|                                 |                          |                                                                            |                     |                        |                       |              | -                     |                                       |                        |                 |                   |           |            | 34                        | 34.0   |
|                                 |                          |                                                                            |                     |                        |                       |              | -<br>-<br>-           |                                       |                        |                 |                   |           |            |                           |        |
|                                 |                          |                                                                            |                     |                        |                       |              | [                     |                                       |                        |                 |                   |           |            | 34                        | 34.5   |
|                                 |                          |                                                                            |                     |                        |                       |              | -<br>-<br>-           |                                       |                        |                 |                   |           |            | 3:                        | 35.0   |
|                                 |                          |                                                                            |                     |                        |                       |              | -<br>-                |                                       |                        |                 |                   |           |            |                           |        |
|                                 |                          |                                                                            |                     |                        |                       |              | -                     |                                       |                        |                 |                   |           |            | 35                        | 35.5   |
|                                 |                          |                                                                            |                     |                        |                       |              | -                     |                                       |                        |                 |                   |           |            | 31                        | 36.0   |
|                                 |                          |                                                                            |                     |                        |                       |              |                       |                                       |                        |                 |                   |           |            |                           |        |
|                                 |                          |                                                                            |                     |                        |                       |              |                       |                                       |                        |                 |                   |           |            |                           | _      |
| 3.10                            | sing to (m<br>3.10       | r Strikes    Time (min)   Rose to (   20   2.60                            | m) From (           | m)                     | To (                  |              | e (hh:mm)<br>01:00    | Remarks<br>Hand dug in                | spection pit excava    | ted to 1.20m    |                   |           |            |                           |        |
| <b>Casing De</b> To (m) D 13.50 | itails<br>iameter<br>250 | Water Added           From (m)         To (m)           4.00         32.00 |                     |                        |                       |              |                       |                                       |                        |                 |                   |           |            |                           |        |
| 32.00                           | 200                      |                                                                            |                     |                        |                       |              | -                     | Terminatio                            | on Reason              |                 |                   |           | Last Updat | ed                        | T      |

|                                                    |                               | CAUSEV                                                                   | <b>/AY</b><br>ECH |                        |                       |              | ject No.<br>1041A    | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS                                                                                                                                                                                     | Borehole ID<br>BH122                    |
|----------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|-------------------|------------------------|-----------------------|--------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Metho                                              |                               | Plant Used<br>3T Excavator                                               | <b>Top (m)</b>    | +                      | e (m)<br>.50          | Coo          | rdinates             | Final Depth: 23.50 m Start Date: 18/11/2022 Driller: CC                                                                                                                                                                                                                                          | Sheet 1 of 4                            |
| Inspection<br>Cable Perc                           |                               | Dando 3000                                                               | 1.50              |                        | .50                   |              | 630.45 E<br>425.20 N | Elevation: 4.72 mOD End Date: 20/11/2022 Logger: RS                                                                                                                                                                                                                                              | Scale: 1:40 DRAFT                       |
| Depth<br>(m)                                       | Sample /<br>Tests             | Field Records                                                            | 5                 | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)         | Legend Description                                                                                                                                                                                                                                                                               | Backfill                                |
| 0.50<br>0.50                                       | ES1                           | Slow seepage at 0.35r                                                    | n                 |                        |                       | 4.42         | 0.30                 | MADE GROUND: Grey very sandy very silty subangular fine to coarse GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are subangular.  MADE GROUND: Grey very sandy silty subangular fine to coarse GRAVEL with high cobble content. Sand is fine to coarse. Cobbles are subangular. |                                         |
| 1.00<br>1.00                                       | B4<br>ES2                     |                                                                          |                   |                        |                       |              | -                    |                                                                                                                                                                                                                                                                                                  | 1.0                                     |
| 1.50<br>1.50                                       | ES3                           | PID = 1.70ppm                                                            |                   |                        |                       | 3.22         | - 1.50<br>-          | MADE GROUND: Brownish grey sandy silty angular fine to coarse GRAVEL with fragments of red brick and concrete. Sand is fine to coarse.                                                                                                                                                           | 1.5                                     |
| 2.00<br>2.00<br>2.00 - 3.00<br>2.00 - 2.45         |                               | N=13 (2,3/3,5,3,2) Hai                                                   | mmer SN =         | 2.00                   | Dry                   | 2.72         | - 2.00               | MADE GROUND: Firm greyish brown sandy gravelly SILT with fragments of red brick and concrete. Sand is fine to coarse. Gravel is subangular fine to medium.                                                                                                                                       | 2.1                                     |
| 2.50<br>2.50<br>3.00<br>3.00                       | D7<br>ES18                    | PID = 1.00ppm                                                            |                   |                        |                       |              | -<br>-<br>-<br>-     |                                                                                                                                                                                                                                                                                                  | 3.                                      |
| 3.00 - 3.45<br>3.00<br>3.20 - 4.50                 | B8                            | N=22 (4,5/7,8,3,4) Hai<br>0197<br>PID = 0.60ppm                          | mmer SN =         | 3.00                   | Dry                   | 1.52         | 3.20                 | MADE GROUND: Firm to stiff grey sandy gravelly SILT with fragments of red brick, concrete, glass and wood. Sand is fine to coarse. Gravel is subangular fine to coarse.                                                                                                                          | 3.                                      |
| 3.50<br>3.50<br>4.00<br>4.00                       | D9<br>ES20                    | PID = 1.80ppm                                                            |                   |                        |                       |              | -                    |                                                                                                                                                                                                                                                                                                  | 4                                       |
| 1.00 - 4.45<br>1.00<br>1.50                        | SPT (C)                       | N=12 (2,3/3,4,3,2) Hai<br>0197<br>PID = 1.00ppm<br>Slow seepage at 4.30r |                   | 4.00                   | Dry                   | 0.12         | -<br>-<br>- 4.60     | MADE GROUND: Firm grey very gravelly CLAY with fragments of red brick, concrete, timber, plastic, glass and wires. Gravel is subangular                                                                                                                                                          | 4.                                      |
| 1.50<br>1.60 - 5.50<br>1.00<br>1.00<br>1.00 - 5.45 | B10<br>D11<br>ES22<br>SPT (C) | PID = 0.60ppm<br>N=9 (1,2/2,2,2,3) Ham                                   | ımer SN =         | 5.00                   | 2.30                  |              | -<br>-<br>-<br>-     | fine to coarse.                                                                                                                                                                                                                                                                                  | * • • • • • • • • • • • • • • • • • • • |
| 5.00<br>5.50<br>5.50 - 6.50<br>5.50<br>6.00        | ES23<br>B12<br>ES24           | 0197<br>PID = 4.30ppm<br>PID = 0.10ppm                                   |                   |                        |                       | -0.78        | - 5.50               | Medium dense grey fine to coarse SAND and subrounded fine to coarse GRAVEL.                                                                                                                                                                                                                      | 5.                                      |
| 5.50<br>5.50<br>5.50<br>5.50 - 6.95                | D13<br>ES25<br>SPT (C)        | PID = 0.00ppm<br>N=12 (2,2/3,3,3,3) Hai<br>0197                          | mmer SN =         | 6.50                   | 5.90                  |              | -                    |                                                                                                                                                                                                                                                                                                  | 6.                                      |
| 7.00 - 8.00                                        | B14                           | 0121                                                                     |                   |                        |                       |              | -<br>-<br>-<br>-     |                                                                                                                                                                                                                                                                                                  | 7.                                      |
|                                                    | Wate                          | r Strikes                                                                | 1                 | Chi                    | selling               | g Detai      | ils                  | <br>                                                                                                                                                                                                                                                                                             |                                         |
| 0.35<br>4.30<br>9.50                               |                               | 20 3.90<br>20 3.60                                                       | m) From           |                        | To (                  |              | ime (hh:mm)          | Inspection pit machine excavated to 1.50m. Blowing sands from 8.00m to 9.70m.                                                                                                                                                                                                                    |                                         |
|                                                    | Diameter                      |                                                                          |                   |                        |                       |              |                      |                                                                                                                                                                                                                                                                                                  |                                         |
| 13.50<br>23.50                                     | 250<br>200                    | 4.50 23.50                                                               |                   |                        |                       |              |                      |                                                                                                                                                                                                                                                                                                  | pdated                                  |
|                                                    |                               |                                                                          |                   |                        |                       |              |                      | Terminated at scheduled depth. 12/06                                                                                                                                                                                                                                                             | 5/2023 <b>AC</b>                        |

| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                | GEO                               | <b>VAY</b><br>TECH |        |       |       | ect No.<br>. <b>041A</b>             | Project Name Client: Client's Rep: |             | nning Desig<br>ort Compar |                  | PC Land   | S     | В     | orehole I<br>BH122 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|-----------------------------------|--------------------|--------|-------|-------|--------------------------------------|------------------------------------|-------------|---------------------------|------------------|-----------|-------|-------|--------------------|
| Daniel   D |                                 |                                |                                   |                    | _      |       | Coor  | dinates                              | Final Depth:                       | 23.50 m     | Start Date:               | 18/11/2022       | Driller:  | CC    | l     |                    |
| Second   S |                                 |                                |                                   |                    |        |       |       |                                      | Elevation:                         | 4.72 mOD    | End Date:                 | 20/11/2022       | Logger:   | RS    |       |                    |
| Medium dessegrey fine to coarse SAND and subtrounded fine to coarse SAND. Gravel is coarse SAND. Gravel is subtrounded fine to coarse. SAND. Gravel is subtr |                                 |                                | Field Recor                       | ds                 | Depth  | Depth |       |                                      | Legend                             |             | Desc                      | cription         |           |       | Water | Backfill           |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .00<br>.00 - 8.45<br>.50 - 9.70 | SPT (C)                        |                                   | lammer SN :        | = 8.00 | 5.10  | -3.28 | - 8.00                               | coarse                             | GRAVEL.     | y gravelly fine           |                  |           | ne to |       | 8                  |
| 1.50 - 11.45   SPT (C)   N=23 (3.4/5,56.7)   Hammer SN =   11.0   4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50<br>50 - 9.95<br>70 - 11.00   | SPT (C)                        | 0197                              |                    | = 9.50 | 3.60  | -4.98 | 9.70                                 |                                    |             |                           | inded fine to me | edium GRA | VEL.  |       | s<br>10            |
| 2.50 - 12.95 SPT (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | SPT (C)                        |                                   | lammer SN :        | = 11.0 | 4.90  |       | -                                    |                                    |             |                           |                  |           |       |       | 11                 |
| No - 14.45   SPT (C)   N=31 (4,5/7,7,8,9)   Hammer SN   14.0   6.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | SPT (C)                        |                                   | lammer SN :        | = 12.5 | 5.50  | -7.78 | 12.50                                | GRAVE                              | with low co |                           |                  |           |       |       | 12                 |
| Casing Details         Water Added           To (m)         Diameter 13.50         250         4.50         23.50           23.50         200         4.50         23.50         4.50         23.50         4.50         4.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         23.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50         4.50 <td< td=""><td>4.00<br/>4.00 - 14.45</td><td></td><td>N=31 (4,5/7,7,8,9) H<br/>0197</td><td>lammer SN :</td><td>= 14.0</td><td>6.30</td><td></td><td>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>14</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.00<br>4.00 - 14.45            |                                | N=31 (4,5/7,7,8,9) H<br>0197      | lammer SN :        | = 14.0 | 6.30  |       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                    |             |                           |                  |           |       |       | 14                 |
| 0.35       0.35       4.30       20       3.90         9.50       9.50       20       3.60             Casing Details       Water Added         To (m)       Diameter       From (m)       To (m)         13.50       250       4.50       23.50         23.50       200       Last Updated    Termination Reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                                |                                   |                    |        |       |       |                                      | Remarks                            |             |                           |                  |           |       |       |                    |
| 13.50 250 4.50 23.50 200 Termination Reason Last Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.35<br>4.30<br>9.50            | 0.35<br>4.30<br>9.50<br>etails | 20 3.90<br>20 3.60<br>Water Added | 0<br>0             |        |       |       |                                      |                                    |             |                           |                  |           |       |       |                    |
| Last opuateu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.50                           | 250                            |                                   |                    |        |       |       |                                      |                                    |             |                           |                  |           |       |       |                    |
| Terminated at scheduled depth. 12/06/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.50                           | 200                            |                                   |                    |        |       |       |                                      |                                    |             |                           |                  |           |       |       |                    |

| CAUSEWAY<br>GEOTECH                    |                       |                                           |              |             | 2         | Project No<br>22-1041                                                                       | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Borehole ID<br>BH122              |                |
|----------------------------------------|-----------------------|-------------------------------------------|--------------|-------------|-----------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------|----------------|
| Method Inspection Pit Cable Percussion |                       | Plant Used<br>3T Excavator<br>Dando 3000  | 0.00<br>1.50 | 1.5<br>23.5 | 0<br>60 7 | 200rdinates<br>219630.45 E                                                                  | Final Depth: 23.50                                                                                           | m <b>Start Date:</b> 18/11/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Driller: CC | Scale: 1:40                       |                |
| Depth                                  | Sample /              |                                           |              | Casing \    | Vater     | 33425.20 N                                                                                  | h                                                                                                            | DD <b>End Date:</b> 20/11/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Logger: RS  | DRAF                              | 1              |
| .5.50                                  | B36<br>D37<br>SPT (C) | Field Record N=33 (2,4/6,7,9,11) H = 0197 |              | (m)         |           | - (m)                                                                                       | Medium dense                                                                                                 | Description to dense grey sandy subrounded on the content. Sand is fine to describe the content of the content |             | Backfill                          | 15.0           |
|                                        |                       | N=13 (1,2/3,3,3,4) Ha<br>0197             | ammer SN =   | 17.0 9      | .20 -1    | 2.38 - 17.1<br>                                                                             | 0 Medium dense                                                                                               | brown silty fine SAND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                   | 17.0<br>17.0   |
| 8.50 - 18.95<br>8.50 - 19.50<br>9.00   |                       | Ublow=21 100% Reco                        | overy        | 18.5 1      | 0.1 -1    | 3.78 - 18.5                                                                                 | O Stiff grey silty C                                                                                         | .AY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                   | 18             |
| 20.00 - 21.00                          | SPT (S)               | N=18 (2,3/3,4,5,6) Ha<br>0197             | ammer SN =   | 20.0 1      | .60       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | X 1 X                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                   | 19<br>20<br>20 |
| 21.50 - 21.95                          | U33                   |                                           |              |             |           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                              | ×                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                   | 21             |
|                                        |                       | Strikes                                   |              |             | lling D   |                                                                                             | Remarks                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                   | _              |
| 0.35<br>4.30<br>9.50<br>Casing De      | 0.35<br>4.30<br>9.50  | 20 3.90<br>20 3.60<br>Water Added         |              |             | To (m)    | Time (hh:mn                                                                                 | nspection pit machine exc<br>Blowing sands from 8.00m                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                   |                |
| 13.50<br>23.50                         | 250<br>200            | 4.50 23.50                                |              |             |           |                                                                                             |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 -         | · · · · · · · · · · · · · · · · · | _              |
| _5.50                                  | 200                   | 1                                         |              |             |           |                                                                                             | Termination Reason                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Last U      | pdated                            |                |

| CAUSEWAY<br>GEOTECH                              |                                              |                                                                          |                         |                                       |              | ect No.<br>L <b>041A</b>   | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS |                                                          |             | Borehole ID BH122 Sheet 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|--------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|-------------------------|---------------------------------------|--------------|----------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Method<br>Inspection Pit<br>Cable Percussion     |                                              | Plant Used<br>3T Excavator                                               | Top (m)<br>0.00<br>1.50 | Base (m<br>1.50                       |              | 719630.45 E<br>733425.20 N |                                                                                                              | Final Depth: 23.50 m Start Date: 18/11/2022 Driller: CC  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                  |                                              | Dando 3000                                                               |                         | 23.50                                 |              |                            |                                                                                                              | Elevation: 4.72 mOD End Date: 20/11/2022 Lo              |             | Scale: 1:40  DRAFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Depth<br>(m)                                     | Sample /<br>Tests                            | Field Record                                                             | S                       | Casing Wate<br>Depth Depti<br>(m) (m) | Level<br>mOD | Depth<br>(m)               | Legend                                                                                                       | Description                                              | Water       | Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 22.00<br>22.00 - 23.00<br>23.00<br>23.00 - 23.45 | D46 SPT (S)  Water sing to (m 0.35 4.30 9.50 | N=22 (3,4/5,5,6,6) Ha 0197  Strikes Time (min) Rose to ( 20 3.90 20 3.60 |                         | 23.0 4.7                              | 0 -18.78     | - 23.50                    |                                                                                                              | pit machine excavated to 1.50m. nds from 8.00m to 9.70m. |             | 22.0 - 22.5 · 23.0 - 23.5 · 24.0 - 24.5 · 25.0 - 26.5 · 27.0 - 27.5 · 28.0 - 28.5 · 29.0 - 28.5 · 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29.0 - 29 |  |
|                                                  | 250<br>200                                   | From (m) To (m)<br>4.50 23.50                                            |                         |                                       |              |                            |                                                                                                              |                                                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 23.30                                            | 200                                          |                                                                          |                         |                                       |              |                            | Termina                                                                                                      | ion Reason                                               | Last Update | d 📗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

|                                |                      | AUSE                                  | <b>W</b><br>OTE |                       |                        |                       | -            | ect No.<br>1 <b>041A</b> | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS                                                                                                 | Borehole II<br>BH123 |
|--------------------------------|----------------------|---------------------------------------|-----------------|-----------------------|------------------------|-----------------------|--------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Met                            | hod                  | Plant Use                             | ed              | Top (m)               | Base                   | (m)                   | Coor         | dinates                  |                                                                                                                                                                                                              | Sheet 1 of 5         |
| Inspect<br>Cable Per<br>Rotary | rcussion             | 3t Excavat<br>Dando 200<br>Beretta T4 | 00              | 0.00<br>1.50<br>27.50 | 1.5<br>27.<br>41.      | 50                    |              | 15.17 E<br>51.40 N       | Final Depth:         41.00 m         Start Date:         18/11/2022         Driller:         BM+GT           Elevation:         4.58 mOD         End Date:         10/01/2023         Logger:         RS+CMc | Scale: 1:50          |
| Depth<br>(m)                   | Sample /<br>Tests    | Field F                               | Records         |                       | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)             | Legend Description                                                                                                                                                                                           | Backfill             |
| (111)                          | iests                |                                       |                 |                       | (m)                    | (m)                   | 4.43         | 0:15                     | MADE GROUND: Grey very sandy very silty subangular fine to coarse                                                                                                                                            | >                    |
|                                |                      | Slow seepage at                       | t 0.30m         |                       |                        |                       | 4.38         | 0.20                     | GRAVEL. Sand is fine to coarse.  CONCRETE                                                                                                                                                                    |                      |
| 0.50<br>0.50                   | ES1                  | PID = 1.10ppm                         |                 |                       |                        |                       |              |                          | MADE GROUND: Dark greyish black very sandy slightly silty subangular fine to coarse GRAVEL with high cobble content and cobbles sized fragments of red brick. Sand is fine to coarse. Cobbles                | 0.                   |
| 1.00                           | B4<br>ES2            |                                       |                 |                       |                        |                       |              |                          | are angular.                                                                                                                                                                                                 | 1.                   |
| 1.00<br>1.00                   |                      | PID = 0.10ppm                         |                 |                       |                        |                       |              |                          |                                                                                                                                                                                                              |                      |
| 1.50                           | ES3                  |                                       |                 |                       |                        |                       | 3.08         | 1.50                     | MADE GROUND: Stiff greyish black SILT with fragments of wood and                                                                                                                                             | - 1.                 |
| 1.80 - 2.00                    | B14                  |                                       |                 |                       |                        |                       |              | -                        | plastic.                                                                                                                                                                                                     |                      |
| 2.00                           | D21                  |                                       |                 |                       |                        |                       |              |                          |                                                                                                                                                                                                              | 2.                   |
| 2.00<br>2.00 - 2.45            | ES5<br>SPT (C)       | N=16 (2,5/7,4,3,                      | ,,2) Ham        | mer SN =              | 2.00                   | Dry                   |              |                          |                                                                                                                                                                                                              | 2.                   |
| 2.00<br>2.50                   | ES6                  | PID = 3.40ppm                         |                 |                       |                        |                       |              |                          |                                                                                                                                                                                                              |                      |
| 2.50                           |                      | PID = 0.60ppm                         |                 |                       |                        |                       |              |                          |                                                                                                                                                                                                              | 3.                   |
| 2.80 - 3.00<br>3.00            | B15<br>D22           |                                       |                 |                       |                        |                       |              |                          |                                                                                                                                                                                                              | 3.                   |
| 3.00                           | ES7                  |                                       |                 |                       |                        |                       |              | Ė                        |                                                                                                                                                                                                              |                      |
| 3.00 - 3.45                    | SPT (C)              | N=21 (2,2/3,8,5,1386                  | ,5) Ham         | mer SN =              | 3.00                   | Dry                   |              | E                        |                                                                                                                                                                                                              | 3.                   |
| 3.00<br>3.50                   | ES8                  | PID = 15.00ppm                        |                 |                       |                        |                       |              |                          |                                                                                                                                                                                                              | 4.                   |
| 3.50<br>3.80 - 4.00            | B16                  | PID = 11.00ppm                        | 1               |                       |                        |                       | 0.28         | 4.30                     |                                                                                                                                                                                                              | _                    |
| 4.00                           | D23                  |                                       |                 |                       |                        |                       | 0.28         | 4.30                     | Medium dense greyish gravelly fine to coarse SAND with shell                                                                                                                                                 |                      |
| 4.00<br>4.00 - 4.45            | ES9<br>SPT (C)       | N=18 (2,3/3,3,7,1386                  |                 | mer SN =              | 4.00                   | Dry                   |              |                          | fragments. Gravel is subangular to subrounded fine to coarse.                                                                                                                                                |                      |
| 4.00<br>4.09                   | EW1                  | PID = 11.40ppm<br>Slow seepage at     |                 |                       |                        |                       |              |                          |                                                                                                                                                                                                              | 5.                   |
| 4.50                           | ES10                 | DID 2.04                              |                 |                       |                        |                       |              | -                        |                                                                                                                                                                                                              |                      |
| 4.50<br>4.80 - 5.00            |                      | PID = 2.94ppm                         |                 |                       |                        |                       |              | -                        |                                                                                                                                                                                                              |                      |
| 5.00                           | D24<br>ES11          |                                       |                 |                       |                        |                       |              | <b>E</b>                 |                                                                                                                                                                                                              |                      |
| 5.00<br>5.00 - 5.45            | SPT (C)              | N=16 (3,4/3,4,4,1)                    | .,5) Ham        | mer SN =              | 5.00                   | 4.60                  |              |                          |                                                                                                                                                                                                              |                      |
| 5.00<br>5.50                   | ES12                 | PID = 4.70ppm                         |                 |                       |                        |                       | -2.12        | 6.70                     | 1949                                                                                                                                                                                                         | Ь.                   |
| 5.50                           |                      | PID = 72.00ppm                        | ı               |                       |                        |                       | ۷.1۷         | 3.70                     | Medium dense becoming dense grey sandy subangular to subrounded fine to coarse GRAVEL. Sand is fine to coarse.                                                                                               |                      |
| 5.80 - 6.00<br>6.00<br>6.00    | B18<br>D25<br>ES13   |                                       |                 |                       |                        |                       |              | <u>-</u>                 | Subrounded mile to Coarse GIVAVEL. Saild IS life to Coarse.                                                                                                                                                  | 7.                   |
| 6.00 - 6.45                    |                      | N=18 (3,4/4,5,4                       | ,5) Ham         | mer SN =              | 6.00                   | 4.90                  |              | -                        |                                                                                                                                                                                                              | 7.                   |
| 6.00                           |                      | 1386<br>PID = 66.00ppm                | 1               |                       |                        |                       |              | Ē                        |                                                                                                                                                                                                              |                      |
| 6.80 - 7.30                    | B19                  | солооррііі                            |                 |                       |                        |                       |              | E                        |                                                                                                                                                                                                              |                      |
| 7.50<br>7.50 - 7.95            | D26<br>SPT (C)       | N=30 (6,6/7,7,8,<br>1386              | 3,8) Ham        | mer SN =              | 7.50                   | 5.30                  |              |                          |                                                                                                                                                                                                              | 8.                   |
| 8.80 - 9.00                    | B20                  |                                       |                 |                       |                        |                       |              |                          |                                                                                                                                                                                                              | 8.                   |
| 9.00                           | D27                  |                                       |                 |                       |                        |                       |              | F                        |                                                                                                                                                                                                              | 9.                   |
| 9.00 - 9.45                    |                      | N=25 (6,6/6,6,7)<br>1386              | ',6) Ham        | mer SN =              |                        |                       | _            | -                        |                                                                                                                                                                                                              |                      |
|                                |                      | Strikes                               |                 |                       |                        |                       | Detail       |                          | Remarks                                                                                                                                                                                                      |                      |
| truck at (m)<br>0.30           | Casing to (m<br>0.30 | ) Time (min) Ro                       | se to (m        | n) From (<br>10.5     |                        | To (r                 |              | ne (hh:mm)<br>03:00      | Inspection pit machine excavated to 1.50m.                                                                                                                                                                   |                      |
| 4.30 Casing                    | 4.30 Details         | Water Ad                              | lded            |                       |                        |                       |              |                          |                                                                                                                                                                                                              |                      |
|                                | Diam (mm             |                                       | To (m)          | -                     |                        |                       |              |                          |                                                                                                                                                                                                              |                      |
| 15.00<br>27.50                 | 250<br>200           | 4.30                                  | 27.50           | Corr                  | Rager                  | el                    | Flush        | Туре                     | Termination Reason Last Up                                                                                                                                                                                   | dated =              |
| 41.00                          | 145                  |                                       |                 |                       | Barr                   | e1                    |              |                          |                                                                                                                                                                                                              |                      |
|                                |                      | 1                                     |                 | S                     | K6L                    |                       | Wa           | iter                     | Terminated at scheduled depth. 12/06/                                                                                                                                                                        | /2023                |

| Security Couring   31 Excessor   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1. |                           |              | CAUSEV                | <b>VAY</b><br>rech |                 |                |         | ct No.<br><b>041A</b> | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS | Borehole ID<br>BH123 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|-----------------------|--------------------|-----------------|----------------|---------|-----------------------|--------------------------------------------------------------------------------------------------------------|----------------------|
| Cable Percussion   Danied 2000   1.50   27.50   41.00   73351.40 N   Elevation: 4.58 mol   End Date: 10/01/2023   Logger: R5+CN/c   DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |              |                       |                    | _               |                | Coord   | linates               | Final Denth: 41.00 m Start Date: 18/11/2022 Driller: RM+                                                     | Sheet 2 of 5         |
| 10.30 - 10.50   828   10.50   10.50   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60  | Cable Percu               | ussion       | Dando 2000            | 1.50               | 27.5            | 50             |         |                       |                                                                                                              | Scale: 1:50          |
| 1.80 - 1.0.50   528   1.80 - 1.0.50   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80 |                           |              | Field Recor           | ds                 | Casing<br>Depth | Water<br>Depth |         |                       | Legend Description                                                                                           | ag Backfill          |
| 2.00 - 12.45 SPT (C) N=26 (6.6/6,6.7.7) Hammer SN = 12.0 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.30 - 10.50<br>0.50      | B28<br>D29   |                       | ammer SN =         |                 |                |         |                       |                                                                                                              | 9.5                  |
| 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00                      | D32          |                       | ammer SN =         | 12.0 3          | 3.40           |         |                       |                                                                                                              | 11.5                 |
| 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.50                      | D33          |                       | ammer SN =         | 13.5            | 5.20           | -8.92   | 13.50                 |                                                                                                              | 13.0                 |
| 6.50 - 16.95 SPT (C) N=30 (6,7/8,7,7,8) Hammer SN = 1386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                      | D37          |                       | ammer SN =         | ij              | 5.10           |         |                       |                                                                                                              | 14.5.C               |
| Note   18.00   18.45   U34   Ublow=50 60% Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.50                      | D39          |                       | ammer SN =         | ç               | 9.30           | -12.42  | 17.00                 | Very stiff dark greyish black sandy silty CLAY. Sand is fine to coarse.                                      | 16.0                 |
| Truck at (m)   Casing to (m)   Time (min)   Rose to (m)   From (m)   To (m)   Time (hh:mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |              | Ublow=50 60% Reco     | very               |                 |                |         |                       |                                                                                                              | 17.5<br>18.0         |
| ruck at (m)         Casing to (m)         Time (min)         Rose to (m)         From (m)         To (m)         Time (hh:mm)           0.30         0.30         4.30         4.30         10.50         13.50         03:00           Casing Details         Water Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | Wate         | r Strikes             |                    | Chiec           | lling          | Details |                       | * Remarks                                                                                                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.30<br>4.30<br>Casing De | 0.30<br>4.30 | n) Time (min) Rose to | 10.5               | (m)             | To (           | m) Tim  | e (hh:mm)             |                                                                                                              |                      |
| 15.00 250 4.30 27.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.00                     | 250          |                       |                    |                 |                |         |                       |                                                                                                              |                      |
| 27.50 41.00 145 Core Barrel Flush Type Termination Reason Last Updated  SK6L Water Terminated at scheduled depth. 12/06/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |              |                       |                    |                 | el             |         |                       |                                                                                                              | Peri                 |

|                           |                   | ALICENA                             | / 4 3 /      |                        |                       |                  | ct No.             |                                        | Name: 3FM Plai                 |                 |                 | OPC Lands    | S        | В     | orehole   |          |
|---------------------------|-------------------|-------------------------------------|--------------|------------------------|-----------------------|------------------|--------------------|----------------------------------------|--------------------------------|-----------------|-----------------|--------------|----------|-------|-----------|----------|
|                           |                   | CAUSEY<br>GEOT                      | ECH          |                        |                       | 22-1             | 041A               | Client:                                |                                | ort Compar      | ny (DPC)        |              |          |       | BH123     | 3        |
| Method                    | d                 | Plant Used                          | Top (m)      | Base                   | - (m)                 | Coord            | linates            | Client's                               | Rep: RPS                       |                 |                 | 1            |          |       | Sheet 3 o |          |
| Inspection<br>Cable Percu | n Pit             | 3t Excavator<br>Dando 2000          | 0.00<br>1.50 | 1.                     | 50<br>.50             |                  | 15.17 E            | Final Dep                              | oth: 41.00 m                   | Start Date:     | 18/11/2022      | Driller:     | BM+GT    |       | Scale: 1: |          |
| Rotary Co                 |                   | Beretta T44                         | 27.50        | 1                      | .00                   |                  | 51.40 N            | Elevation                              | 1: 4.58 mOD                    | End Date:       | 10/01/2023      | Logger:      | RS+CMc   |       | DRAFT     | Τ        |
| Depth<br>(m)              | Sample /<br>Tests | Field Record                        | s            | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD     | Depth<br>(m)       | Legend                                 |                                | Desc            | cription        |              |          | Water | Backfill  |          |
|                           |                   |                                     |              |                        |                       |                  |                    | ×——-                                   |                                |                 |                 |              |          |       |           |          |
|                           |                   |                                     |              |                        |                       |                  | -                  | × × 1                                  |                                |                 |                 |              |          |       |           | 19.0 -   |
|                           |                   |                                     |              |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           |          |
| 9.50                      | D42               |                                     |              |                        |                       |                  | -                  |                                        |                                |                 |                 |              |          |       |           | 19.5     |
|                           | B41<br>SPT (C)    | N=30 (4,5/6,8,8,8) Ha               | mmer SN =    | :                      | 15.8                  |                  |                    |                                        |                                |                 |                 |              |          |       |           |          |
|                           |                   | 1386                                |              |                        |                       |                  | F                  | ×— —                                   |                                |                 |                 |              |          |       |           | 20.0     |
|                           |                   |                                     |              |                        |                       |                  |                    | ×>                                     |                                |                 |                 |              |          |       |           |          |
|                           |                   |                                     |              |                        |                       |                  |                    | X———                                   |                                |                 |                 |              |          |       |           | 20.5     |
|                           |                   |                                     |              |                        |                       |                  |                    | ×                                      |                                |                 |                 |              |          |       |           |          |
| 00 21 45                  | 25                | Liblani-EQ 70% Pagay                |              |                        |                       |                  |                    | ×                                      |                                |                 |                 |              |          |       |           | 21.6     |
| .00 - 21.45               | 33                | Ublow=50 70% Recov                  | сіу          |                        |                       |                  |                    | X————————————————————————————————————— |                                |                 |                 |              |          |       |           | 21.0     |
| ı                         |                   |                                     |              |                        |                       |                  |                    | ×                                      |                                |                 |                 |              |          |       |           | 1        |
| ı                         |                   |                                     |              |                        |                       |                  | -                  |                                        | Very stiff dark greyi          |                 |                 | Sand is fine | to       |       |           | 21.5     |
| ı                         |                   |                                     |              |                        |                       |                  |                    |                                        | coarse. Gravel is sub          | oangular fine t | o coarse.       |              |          |       |           | ı        |
| .00 - 23.00               | B43               |                                     |              |                        |                       |                  | -                  |                                        |                                |                 |                 |              |          |       |           | 22.0     |
| ı                         |                   |                                     |              |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           | ı        |
| ı                         |                   |                                     |              |                        |                       |                  | Ė                  |                                        |                                |                 |                 |              |          |       |           | 22.5     |
| ı                         |                   |                                     |              |                        |                       |                  | Ē                  |                                        |                                |                 |                 |              |          |       |           | l        |
| .00                       | D44               |                                     |              |                        |                       |                  | E                  |                                        |                                |                 |                 |              |          |       |           | 23.0     |
|                           |                   | N=32 (6,6/7,8,8,9) Ha               | mmer SN =    | 22.0                   | 18.0                  |                  |                    |                                        |                                |                 |                 |              |          |       |           | ĺ        |
|                           |                   | 1386                                |              |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           | ı        |
|                           |                   |                                     |              |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           | 23.5     |
|                           |                   |                                     |              |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           |          |
| 1.00 - 25.00              | B45               |                                     |              |                        |                       |                  | -                  |                                        |                                |                 |                 |              |          |       |           | 24.0     |
|                           |                   |                                     |              |                        |                       |                  | Ē                  |                                        |                                |                 |                 |              |          |       |           |          |
|                           |                   |                                     |              |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           | 24.5     |
|                           |                   |                                     |              |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           |          |
| 5.00 - 25.45              | U48               | Ublow=50 60% Recov                  | erv          |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           | 25.0     |
| 231.13                    | 0.0               | obien se con necer                  | c. <b>,</b>  |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           |          |
|                           |                   |                                     |              |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           | 1        |
| ı                         |                   |                                     |              |                        |                       |                  | E                  |                                        |                                |                 |                 |              |          |       |           | 25.5     |
| ı                         |                   |                                     |              |                        |                       |                  | Ē                  |                                        |                                |                 |                 |              |          |       |           |          |
| .00 - 27.00               | B47               |                                     |              |                        |                       |                  | E                  |                                        |                                |                 |                 |              |          |       |           | 26.0     |
| ı                         |                   |                                     |              |                        |                       |                  | Ē                  |                                        |                                |                 |                 |              |          |       |           | ı        |
|                           |                   |                                     |              |                        |                       |                  | É                  |                                        |                                |                 |                 |              |          |       |           | 26.5     |
| ı                         |                   |                                     |              |                        |                       |                  | Ē                  |                                        |                                |                 |                 |              |          |       |           | I        |
| 7.00                      | D46               |                                     |              |                        |                       |                  | F                  |                                        |                                |                 |                 |              |          |       |           | 27.0     |
| '.00 - 27.45              | SPT (S)           | N=37 (6,8/8,9,10,10) I<br>SN = 1386 | Hammer       | 22.0                   | 24.0                  |                  |                    |                                        |                                |                 |                 |              |          |       |           | 1        |
|                           |                   | 214 - 1300                          |              |                        |                       |                  | 27.50              |                                        |                                |                 |                 |              |          |       |           | 27.5     |
| ı                         |                   |                                     |              |                        |                       | -22.92<br>-22.92 | [                  |                                        | Very stiff dark greyis medium. | sh brown sligh  | tly sandy CLAY. | Sand is fine | to       |       |           | 1        |
| ı                         |                   | TCR SCF                             | R RQD FI     | -                      |                       |                  | F                  |                                        |                                |                 |                 |              |          |       |           | 4        |
|                           | Water             | r Strikes                           | · Iven Li    | Chis                   | ellin                 | g Details        |                    | Remarks                                |                                |                 |                 |              |          |       |           | _        |
| uck at (m) Cas            |                   | n) Time (min) Rose to (             | (m) From     | (m)                    | To (                  | m) Tim           | e (hh:mm)<br>03:00 |                                        | pit machine excavate           | ed to 1.50m.    |                 |              |          |       |           |          |
| 4.30                      | 4.30              |                                     |              |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           |          |
|                           | am (mm            |                                     |              |                        |                       |                  |                    |                                        |                                |                 |                 |              |          |       |           |          |
| 15.00                     | 250<br>200        | 4.30 27.50                          | Core         | Rari                   | rel                   | Flush            | Type               | Terminati                              | on Reason                      |                 |                 |              | Last Up  | date  | d 🔳       | <b>-</b> |
| 27.50<br>41.00            | 145               |                                     |              | . Duii                 |                       |                  | .,,,,              |                                        |                                |                 |                 |              | -ast 0 p |       |           | _ =      |

|                                         | CAUS                                                                                                                                                                            | E             | <b>W</b> | ECI       | Н                      |                                        | 22-1               | ect No.<br>041A            | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS                                                                                                                                                                                                                                                                                                                                                                  | Borehole ID<br>BH123 |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-----------|------------------------|----------------------------------------|--------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Inspection<br>Cable Percu<br>Rotary Con | n Pit 3t Excar<br>Ission Dando                                                                                                                                                  | vator<br>2000 | r<br>)   | 0.0<br>1. | (m)<br>00<br>50<br>.50 | 1.50<br>27.50<br>41.00                 | 71961              | 15.17 E<br>51.40 N         | Final Depth:         41.00 m         Start Date:         18/11/2022         Driller:         BM+0           Elevation:         4.58 mOD         End Date:         10/01/2023         Logger:         RS+CI                                                                                                                                                                                                                                                                    | Scale: 1:50          |
| Depth<br>(m)                            | Samples / Field Records                                                                                                                                                         | TCR           | SCR      | RQD       | FI                     | Casing Water<br>Depth Depth<br>(m) (m) | Level<br>mOD       | Depth<br>(m)               | Legend Description                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ta Backfill          |
|                                         |                                                                                                                                                                                 | 100           | 0        | 0         | N/A                    |                                        | -24.32             | (1.40)                     | Very stiff dark greyish brown slightly sandy CLAY. Sand is fine to medium.  Very stiff dark greyish brown slightly sandy slightly gravelly CLAY. Sa                                                                                                                                                                                                                                                                                                                           | 28.0                 |
| 29.00<br>29.00 - 29.45                  | SPT(C) N=31<br>(6,7/8,8,7,8)<br>Hammer SN = 0208                                                                                                                                | 100           | 0        | 0         |                        |                                        |                    |                            | is fine to coarse. Gravel is subangular fine to coarse of predominant dark grey limestone.                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| 0.50<br>0.50 - 30.95                    | SPT(C) N=34<br>(7,8/9,8,8,9)<br>Hammer SN = 0208                                                                                                                                | 90            | 0        | 0         | N/A                    |                                        |                    | (3.10)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.5 -<br>31.0 -     |
| 2.00                                    |                                                                                                                                                                                 | 50            | 0        | 0         | N/A                    |                                        | -27.42             | 32.00                      | Dense dark grey slightly sandy slightly clayey subangular fine to coarse GRAVEL of predominantly dark grey limestone. Sand is fine t coarse.  32.75-33.50m: AZCL (Possibly due to fines and gravel being washed out with flush).                                                                                                                                                                                                                                              | 32.0 -<br>32.5       |
| 33.50                                   |                                                                                                                                                                                 |               |          |           | N/A                    |                                        | -28.92             | 33.50                      | Dense dark greyish brown slightly sandy clayey subangular fine to coarse GRAVEL of dark grey limestone. Sand is fine to coarse.  Dense dark greyish brown slightly gravelly clayey fine to coarse SAN Gravel is subangular fine to coarse of dark grey limestone.  Very stiff dark greyish brown slightly sandy gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular fine to coarse of predominantly dark grey limestone. Cobbles are subangul | 34.0                 |
| 5.00                                    |                                                                                                                                                                                 | 95            | 0        | 0         | N/A                    |                                        | -29.67<br>-30.42   | 34.25<br>(0.75)<br>- 35.00 | of dark grey limestone.  35.00-35.40m: Dark brownish grey slightly sandy slightly clayey subangular fine to coarse gravel.  Medium strong thinly to thickly laminated dark grey LIMESTONE.  Slightly weathered: slightly reduced strength, slightly closer fracture spacing, clay infill on some fracture surfaces within top 40cm of                                                                                                                                         | 34.5                 |
|                                         | SPT(C) 50 (25 for<br>68mm/50 for<br>79mm) Hammer SN<br>= 0208                                                                                                                   | 95            | 0        | 0         | N/A                    |                                        | 30.42              | - (2.00)                   | stratum.  Discontinuities:  1. 35-55 degree bedding fractures, closely spaced (30/165/540), planar, predominanatly smooth, clay infill on some fracture surfaces (up to 20mm thick).  2. 70-90 degree joints from 37.40-37.70 and 38.75-38.90m and 39.50-39.70m, planar to undulating, rough, clay infill on joint from 37.40-37.70m (up to 25mm thick).                                                                                                                      | 35.5                 |
|                                         |                                                                                                                                                                                 | TCR           | SCR      | RQD       |                        |                                        | -32.42             | 37.00                      | 3. 10-30 degree joints, medium spaced (140/570/1400), planar, rough.  37.00-37.40m: Moderately weak from 37.00-37.40m, clay infill on most fracture surfaces.                                                                                                                                                                                                                                                                                                                 | 37.0 -               |
| 0.30<br>4.30                            | Water Strikes           sing to (m)         Time (min)           0.30         4.30           stails         Water           am (mm)         From (m)           250         4.30 | <b>Add</b>    |          |           |                        | m) To                                  |                    | e (hh:mm)<br>03:00         | Remarks Inspection pit machine excavated to 1.50m.                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| 27.50<br>41.00                          | 250 4.30<br>200<br>145                                                                                                                                                          | 2.            | ,.3U     |           |                        | Barrel<br>K6L                          | <b>Flush</b><br>Wa |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Updated              |

| 77.97 - 77.90 C 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                    |                             | GEC          | OTE     | ECI       | Н             | D <sub>C</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (100)          | 22-1    | ot No.             | Project<br>Client:<br>Client's |                                                                                                                                                                                                                                         | nning Desig<br>ort Compar                                                                    |                                                                                                                                                       | PC Land                                                                            | S                                                       |       | BH12      | 3                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------|-----------------------------|--------------|---------|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------|-------|-----------|-----------------------------------------------------------------------------------------|
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100  | Inspection<br>Cable Percu                                                   | n Pit<br>ussion                    | 3t Exca<br>Dando            | vato<br>2000 | r<br>)  | 0.0<br>1. | 00<br>50      | 1.5<br>27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>50        | 71961   | 5.17 E             |                                |                                                                                                                                                                                                                                         |                                                                                              |                                                                                                                                                       |                                                                                    |                                                         |       | Scale: 1: | 50                                                                                      |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100  |                                                                             | Samples                            | / Field Records             | TCR          | SCR     | RQD       | FI            | Casing<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water<br>Depth |         |                    | Legend                         |                                                                                                                                                                                                                                         | Desc                                                                                         | cription                                                                                                                                              |                                                                                    | -                                                       | /ater | Backfill  |                                                                                         |
| Value   Valu | (m)<br>7.70 - 37.80<br>7.80 - 37.90<br>8.00<br>8.40<br>9.50<br>9.50 - 39.70 | C1<br>C2<br>C3                     | / Field Records             | 100          | 100     | 90        |               | Caving Caving (Caving Caving C |                | mOD     | (4.00)             |                                | Slightly weathered: spacing, clay infill o stratum.  Discontinuities:  1. 35-55 degree bet planar, predominan (up to 20mm thick)  2. 70-90 degree joir 39.50-39.70m, plan 37.40-37.70m (up to 3. 10-30 degree joir 3. 10-30 degree joir | nly to thickly la<br>slightly reduc<br>n some fracture<br>dding fracture:<br>latly smooth, o | eminated dark greed strength, sligl<br>re surfaces withing<br>s, closely spaced<br>clay infill on som<br>-37.70 and 38.79<br>ng, rough, clay ir<br>l. | htly closer<br>in top 40cd<br>(30/165/)<br>e fracture<br>5-38.90m<br>nfill on joir | fracture<br>m of<br>540),<br>surfaces<br>and<br>ht from | Wate  | Backfill  | 37.5<br>38.0 · 38.5<br>39.0 · 39.5<br>40.0 · 41.5<br>41.5<br>42.0 · 42.5<br>43.0 · 43.5 |
| 41.00   145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.30<br>4.30                                                                | 0.30<br>4.30<br>etails<br>[am (mm) | Time (min)  Water  From (m) | Rose<br>Add  | e to (n | m) Fi     | rom (<br>10.5 | (m)<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | To (m<br>13.50 | n) Time | e (hh:mm)<br>03:00 | Inspection                     |                                                                                                                                                                                                                                         | ed to 1.50m.                                                                                 |                                                                                                                                                       |                                                                                    | Last Up                                                 | date  | ed T      | 44.0<br>44.5<br>45.0<br>45.5                                                            |

|                                 |                            | ALICENA                                             | / 8 3 /            |                        |                       |              | ct No.             | Project Name: 3FM Planning Design GI - Lot A DPC Lands                                                                                                                                    | Borehole ID                |
|---------------------------------|----------------------------|-----------------------------------------------------|--------------------|------------------------|-----------------------|--------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 8                               |                            | AUSEW                                               | AY<br>ECH          |                        |                       | 22-1         | 041A               | Client: Dublin Port Company (DPC)                                                                                                                                                         | BH124                      |
| Meth                            | od                         | Plant Used                                          | Top (m)            | Base                   | (m)                   | Coord        | linates            | Client's Rep: RPS                                                                                                                                                                         | Sheet 1 of 5               |
| Inspection<br>Cable Pero        |                            | 3T Excavator<br>Dando 2000                          | 0.00<br>1.50       | 1.5<br>20.5            |                       | 71951        | .2.78 E            | Final Depth: 40.00 m Start Date: 18/11/2022 Driller: BM+JG                                                                                                                                | Scale: 1:50                |
| Rotary C                        | Coring                     | Comacchio 601                                       | 20.50              | 40.0                   | 00                    | 73337        | '6.20 N            | Elevation: 4.75 mOD End Date: 18/11/2022 Logger: RS+CMc                                                                                                                                   |                            |
| Depth<br>(m)                    | Sample /<br>Tests          | Field Records                                       |                    | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)       | Legend Description  MADE GROUND: Grey very sandy very clayey subrounded fine to                                                                                                           | Backfill Kat               |
| .50<br>.50                      | ES1                        | PID = 3.00ppm<br>Seepage at 0.80m                   |                    |                        |                       |              |                    | coarse GRAVEL with high cobble content and cobbles sized fragments of red brick. Sand is fine to coarse. Cobbles are subangular.                                                          |                            |
| .00<br>.00<br>.00               | B4<br>ES2                  | PID = 0.20ppm                                       |                    |                        |                       |              |                    |                                                                                                                                                                                           | 1.0                        |
| .50<br>.50<br>.80 - 2.00        | ES3<br>B5                  | PID = 0.10ppm                                       |                    |                        |                       | 3.25         | 1.50               | MADE GROUND: Very stiff dark greyish black slightly sandy gravelly SILT with fragments of wood, plastic glass and red brick. Sand is fine to coarse. Gravel is subangular fine to coarse. | 1.5                        |
| .00<br>.00<br>.00 - 2.45        | D7<br>ES6<br>SPT (C)       | N=36 (3,7/7,15,8,6) Ha<br>= 1386<br>PID = 0.30ppm   | mmer SN            | 2.00                   | Dry                   |              |                    |                                                                                                                                                                                           | 2.0                        |
| 50<br>50<br>50<br>80 - 3.00     | ES9<br>B8<br>D10           | PID = 1.10ppm                                       |                    |                        |                       | 1.75         | 3.00               | MADE GROUND: Very stiff greyish black sandy gravelly SILT with fragments of wood, plastic and glass. Sand is fine to coarse. Gravel is                                                    | 3.0                        |
| 00<br>00 - 3.45<br>00           | ES11<br>SPT (C)            | N=50 (2,2/12,14,19,5)<br>SN = 1386<br>PID = 1.80ppm | Hammer             | 3.00                   | Dry                   |              |                    | subrounded fine to coarse.                                                                                                                                                                | 3.5                        |
| 50<br>50<br>30 - 4.00<br>00     | ES13<br>B12<br>D14         | PID = 5.50ppm                                       |                    |                        |                       |              |                    |                                                                                                                                                                                           | 4.0                        |
| 00<br>00 - 4.45<br>00           | ES16<br>SPT (C)            | N=19 (5,7/7,4,4,4) Han<br>1386<br>PID = 1.50ppm     | nmer SN =          | 4.00                   | Dry                   |              |                    |                                                                                                                                                                                           | 5.0                        |
| 50<br>50<br>80 - 5.00<br>00     | ES19<br>B15<br>D17         | PID = 12.00ppm                                      |                    |                        |                       | -0.35        | 5.10               | Medium dense grey gravelly fine to coarse SAND with shell fragments. Gravel is subrounded fine to coarse.                                                                                 | 5.5                        |
| 00<br>00 - 5.45<br>00           | ES22<br>SPT (C)            | N=14 (3,5/3,3,4,4) Han<br>1386<br>PID = 12.90ppm    | nmer SN =          | 5.00                   | 4.70                  |              |                    |                                                                                                                                                                                           | 6.0                        |
| 50<br>50<br>80 - 6.00<br>00     | B18<br>D20                 | PID = 2.10ppm                                       |                    |                        |                       |              |                    |                                                                                                                                                                                           | 6.5                        |
| 00<br>00 - 6.45<br>00           | ES28<br>SPT (C)            | N=18 (3,4/5,4,4,5) Han<br>1386<br>PID = 1.90ppm     | nmer SN =          | 6.00                   | 4.50                  | -2.25        | 7.00               | Medium dense becoming dense grey sandy subangular fine to coarse GRAVEL.                                                                                                                  | 7.0                        |
| .80 - 7.00<br>.50<br>.50 - 7.95 | B21<br>D23<br>SPT (C)      | N=25 (5,6/6,6,6,7) Han<br>1386                      | nmer SN =          | 7.50                   | 5.10                  |              |                    |                                                                                                                                                                                           | 8.0                        |
| 80 - 9.00<br>00<br>00 - 9.45    | B24<br>D26<br>SPT (C)      | N=27 (5,6/7,6,7,7) Han                              | nmer SN =          | 9.00                   | 4.60                  |              |                    |                                                                                                                                                                                           | 9.0                        |
|                                 |                            | 1386                                                |                    |                        |                       | D.: "        |                    | Para dia                                                                                                                                                                                  |                            |
| uck at (m) 0                    |                            | r Strikes  i) Time (min) Rose to (r                 | n) From (<br>12.00 | m)                     | To (n<br>15.0         |              | e (hh:mm)<br>00:41 | Remarks Inspection pit machine excavated to 1.50m                                                                                                                                         |                            |
|                                 |                            |                                                     |                    |                        |                       |              |                    |                                                                                                                                                                                           |                            |
| Casing D                        | Details<br>Diam (mm<br>250 | Water Added ) From (m) To (m)                       |                    |                        |                       |              |                    |                                                                                                                                                                                           |                            |
| 20.50<br>40.00                  | 200<br>145                 |                                                     | Core               | Barre                  | el                    | Flush        | Туре               | Termination Reason Last Up                                                                                                                                                                | dated                      |
|                                 |                            |                                                     | S                  | K6L                    |                       | Wa           | ter                | Terminated at scheduled depth. 12/06/                                                                                                                                                     | <sup>(2023</sup> <b>AG</b> |

|                              |                       | AUSEW                          | <b>AY</b><br>ECH    |                               |                    | ject No.<br>·1041A   | Project Na<br>Client:<br>Client's Re |                  | nning Desig<br>ort Compar |                   | PC Lands      | 5       |       | orehole               |                          |
|------------------------------|-----------------------|--------------------------------|---------------------|-------------------------------|--------------------|----------------------|--------------------------------------|------------------|---------------------------|-------------------|---------------|---------|-------|-----------------------|--------------------------|
| Metho                        |                       | Plant Used<br>3T Excavator     | <b>Top (m)</b> 0.00 | 1.50                          |                    | rdinates             | Final Depth                          | : 40.00 m        | Start Date:               | 18/11/2022        | Driller:      | BM+JG   |       | heet 2 o<br>Scale: 1: |                          |
| Cable Percu<br>Rotary Co     |                       | Dando 2000<br>Comacchio 601    | 1.50<br>20.50       | 20.50<br>40.00                |                    | 512.78 E<br>376.20 N | Elevation:                           | 4.75 mOD         | End Date:                 | 18/11/2022        | Logger:       | RS+CMc  |       | DRAF                  |                          |
| Depth<br>(m)                 | Sample /<br>Tests     | Field Records                  |                     | Casing W<br>Depth De<br>(m) ( | ter pth mOD        |                      | Legend                               |                  | Des                       | cription          | •             |         | Water | Backfill              |                          |
| 0.00 - 10.50                 | B27                   |                                |                     |                               |                    |                      |                                      |                  |                           |                   |               |         |       |                       | 9.5                      |
| 0.50<br>0.50 - 10.95         | D29<br>SPT (C)        | N=29 (5,6/7,7,7,8) Han<br>1386 | nmer SN =           | 10.5 5.                       | 30                 |                      |                                      |                  |                           |                   |               |         |       |                       | 10.5<br>11.0 -           |
| 2.00 - 12.45                 | SPT (C)               | N=30 (5,6/7,8,7,8) Han<br>1386 | nmer SN =           | 12.0 6.                       | 10                 |                      |                                      |                  |                           |                   |               |         |       |                       | 12.0 -                   |
| 3.50<br>3.50<br>3.50 - 13.95 | B42<br>D43<br>SPT (C) | N=31 (6,7/8,7,8,8) Han<br>1386 | nmer SN =           | 13.5 8.                       | 10                 |                      |                                      |                  |                           |                   |               |         |       |                       | 13.5<br>14.0             |
| 5.00<br>5.00<br>5.00 - 15.45 | B44<br>D45<br>SPT (C) | N=31 (6,6/7,8,8,8) Han<br>1386 | nmer SN =           | 15.0 9.                       | -10.2 <sup>1</sup> | 5 - 15.00            | De                                   | nse grey subang  | ular fine to coa          | erse GRAVEL.      |               |         |       |                       | 15.0 ·<br>15.5           |
| .6.50<br>6.50 - 16.95        | B30<br>U36            | Ublow=40 60% Recove            | ry                  |                               | -11.5              | 5 16.30              | Stil                                 | ff becoming very | stiff grey sand           | y CLAY. Sand is f | fine to coars | se.     |       |                       | 16.0 -<br>16.5<br>17.0 - |
| 8.00<br>8.00<br>8.00 - 18.45 | B31<br>D34<br>SPT (S) | N=23 (5,5/5,6,6,6) Han<br>1386 | nmer SN =           | 18.0 11                       | 2                  |                      |                                      |                  |                           |                   |               |         |       |                       | 18.0 -                   |
| ruck at (m) Cas              |                       | r Strikes                      | m) From (           |                               | ling Deta          | ils<br>ime (hh:mm)   | Remarks Inspection pit               | machine excavat  | ed to 1 50m               |                   |               |         |       |                       |                          |
| 0.80 Casing De               | 0.80                  | Water Added                    | 12.00               |                               | 15.00              | 00:41                | Termination                          |                  |                           |                   |               | Last Up | date  | ed 🔳                  | Ţ!                       |
| -10.00                       | 140                   |                                | S                   | K6L                           | V                  | Vater                | Terminated at                        | scheduled depth  | 1.                        |                   |               | 12/06/  | 2023  | A                     | ¥                        |

|                                      | C                                           | AUS                               | E      | W       | Ά   | Y              |                        |                       | Project        | ct No.<br>041A     | Project I             | Name: 3FM Plan                                                      | nning Desig     |                   | PC Land:    | S         |       | orehole<br>BH124 |                                      |
|--------------------------------------|---------------------------------------------|-----------------------------------|--------|---------|-----|----------------|------------------------|-----------------------|----------------|--------------------|-----------------------|---------------------------------------------------------------------|-----------------|-------------------|-------------|-----------|-------|------------------|--------------------------------------|
| Method                               |                                             | Plant U                           | Jsed   |         | Тор |                | Base                   |                       | Coord          | inates             | Client's<br>Final Dep | -                                                                   | Start Date:     | 18/11/2022        | Driller:    | BM+JG     |       | heet 3 of        |                                      |
| Cable Percu<br>Rotary Co             | ıssion                                      | Dando<br>Comacch                  | 2000   | )       | 1.  | 50<br>.50      | 20.5<br>40.0           | 50                    | 71951<br>73337 |                    | Elevation             | 4.75 mOD                                                            | End Date:       | 18/11/2022        | Logger:     | RS+CMc    |       | DRAF1            |                                      |
| Depth<br>(m)                         | Sample /<br>Tests                           | Fie                               | eld Re | cords   |     |                | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD   | Depth<br>(m)       | Legend                |                                                                     | Desc            | cription          |             |           | Water | Backfill         |                                      |
| 0.00<br>0.00 - 20.45                 | B32<br>U37                                  | Ublow=50 80                       | 0% Re  | ecove   | ry  | AZCL           |                        |                       | -15.75         | 20.50              |                       | Very stiff dark brow                                                | n slightly sand | ly CLAY Sand is f | ine.        |           |       |                  | 19.0<br>19.5<br>20.0<br>20.5<br>21.0 |
| 2.00                                 | B33<br>D35<br>SPT(S) N<br>(5,6/7,7<br>Hamme |                                   | 45     | 0       | 0   | N/A            | 22.0 :                 | 12.0                  |                |                    |                       |                                                                     |                 |                   |             |           |       |                  | 22.0<br>22.5<br>23.0                 |
| 3.50                                 |                                             |                                   |        |         |     |                |                        |                       |                | (6.20)             |                       |                                                                     |                 |                   |             |           |       |                  | 23.5                                 |
| 4.00 - 24.45                         | B39<br>U38Ublo<br>Recover                   |                                   | 30     | 0       | 0   | AZCL<br>N/A    |                        |                       |                | (6.30)             |                       |                                                                     |                 |                   |             |           |       |                  | 24.0<br>24.5                         |
| 5.00<br>6.00<br>6.00 - 26.45<br>6.50 | B40<br>D41<br>SPT(S) N<br>(6,7/8,6          |                                   | 30     | 0       | 0   | AZCL<br>N/A    | 23.0 1                 | 14.0                  |                |                    |                       |                                                                     |                 |                   |             |           |       |                  | 25.0<br>25.5<br>26.0                 |
| 5.50                                 |                                             | r SN = 1387                       | 40     | 0       | 0   | AZCL<br>N/A    |                        |                       | -22.05         | 26.80              | 0                     | Dense dark grey slig<br>coarse GRAVEL of d<br>is fine to coarse. Co | ark grey limes  | tone with low co  | obble conte | ent. Sand |       |                  | 27.0<br>27.5                         |
|                                      | 18/                                         | Chuil                             | TCR    | SCR     | RQD | FI             | CI-:                   | .0:                   | Dot: "         | -                  | Pares :               |                                                                     |                 |                   |             |           |       |                  |                                      |
| 0.80 Casing De                       | sing to (m<br>0.80                          | Strikes Time (min) Water From (m) | Add    |         |     | rom (<br>12.00 | m)                     | To (                  |                | e (hh:mm)<br>00:41 | Remarks<br>Inspection | pit machine excavate                                                | ed to 1.50m     |                   |             |           |       |                  |                                      |
| 15.00<br>20.50                       | 250<br>200                                  |                                   | 10     | - (111) | _   | Ca:            | Bar.                   | ol T                  | Elock 1        | Tunc               | Torm:                 | on Possan                                                           |                 |                   |             | lock!!    | da+-  | d   <del></del>  | _                                    |
| 40.00                                | 145                                         |                                   |        |         |     | core           | Barre                  | eı                    | Flush          | ıype               | ierminatio            | on Reason                                                           |                 |                   |             | Last Upo  | aate  | a 🔳              |                                      |

|                         |                  | AUS                         | iF   | W     | / <u>/</u> \_` | Y               |                        |                       |           | ct No.<br>041A     | Project<br>Client:                    | Name: 3FM Pla                               | nning Desig<br>ort Compar |                  | PC Land     | S                 | В     | orehole          |                       |
|-------------------------|------------------|-----------------------------|------|-------|----------------|-----------------|------------------------|-----------------------|-----------|--------------------|---------------------------------------|---------------------------------------------|---------------------------|------------------|-------------|-------------------|-------|------------------|-----------------------|
|                         |                  |                             | GEC  | OTE   | ECI            | Н               |                        |                       | 22-1I     | OTIA               | Client's                              |                                             | or compar                 | IY (DPC)         |             |                   |       | חחדק             | •                     |
| Metho                   |                  | Plant l                     |      |       |                |                 | Base                   |                       | Coord     | inates             | Final De                              |                                             | Start Data:               | 18/11/2022       | Drille      | BM+JG             | 9     | Sheet 4 c        | of 5                  |
| Cable Perc<br>Rotary Co | cussion          | 3T Exca<br>Dando<br>Comacch | 2000 | )     | 1.             | 00<br>50<br>.50 | 1.5<br>20.<br>40.      | 50                    |           | 2.78 E<br>6.20 N   | Elevatio                              |                                             |                           | 18/11/2022       |             | RS+CMc            |       | Scale: 1:        |                       |
| Depth                   |                  | / Field Records             | TCD  | SCR   | 200            | FI              | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level     | Depth              | Legend                                | 4.73 11100                                  |                           | cription         | Logger.     | N3+CIVIC          | Water | DRAF<br>Backfill | <u>'</u>              |
| (m)<br>!8.00            | Samples          | / Field Records             | ick  | JCK   | NQD            |                 | (m)                    | (m)                   | mOD       | (m)                | . + 0                                 | Dense dark grey slig                        |                           |                  | ngular fine | e to              | Wa    | Backiiii         | 28.0                  |
|                         |                  |                             | 53   | 0     | 0              | AZCL<br>N/A     |                        |                       |           | (2.70)             |                                       | coarse GRAVEL of d<br>is fine to coarse. Co | ark grey limes            | tone with low co | obble conte | ent. Sand         |       |                  | 28.5<br>29.0 <b>–</b> |
| 29.50                   |                  |                             |      |       |                |                 |                        |                       | -24.75    | 29.50              |                                       | Dark brownish grey                          | slightly clayey           | fine to coarse S | AND.        |                   |       |                  | 29.5                  |
|                         |                  |                             |      |       |                | AZCL            |                        |                       |           | (0.50)             |                                       |                                             |                           |                  |             |                   |       |                  |                       |
|                         |                  |                             | 50   | 0     | 0              | N/A             |                        |                       | -25.25    | 30.00              |                                       | Dark grey slightly sa<br>GRAVEL of dark gre |                           |                  |             | arse              |       |                  | 30.0 —                |
| 31.00<br>31.00          | C1               |                             | 43   | 0     | 0              | AZCL<br>N/A     |                        |                       |           | (2.50)             |                                       |                                             |                           |                  |             |                   |       |                  | 31.0 -                |
|                         |                  |                             |      |       |                | IN/A            |                        |                       |           |                    |                                       |                                             |                           |                  |             |                   |       |                  |                       |
| 32.50                   |                  |                             |      |       |                | 4761            |                        |                       | -27.75    | 32.50              |                                       | Dark brownish grey<br>Gravel is subangula   |                           |                  | ne to coars | e SAND.           |       |                  | 32.5                  |
|                         |                  |                             | 33   | 0     | 0              | AZCL            |                        |                       |           | (1.35)             |                                       |                                             |                           |                  |             |                   |       |                  | 33.0 <del>-</del>     |
| 34.00                   |                  |                             |      |       |                | N/A             |                        |                       | -29.10    | 33.85              |                                       | Dark brownish grey<br>coarse GRAVEL of d    |                           |                  |             |                   |       |                  | 34.0 -                |
| 35 FQ                   |                  |                             | 33   | 0     | 0              | AZCL<br>N/A     |                        |                       |           |                    |                                       |                                             |                           |                  |             |                   |       |                  | 34.5                  |
| 35.50                   |                  |                             | 33   | 0     | 0              | AZCL            |                        |                       |           | (3.75)             |                                       |                                             |                           |                  |             |                   |       |                  | 35.5<br>36.0 -        |
| 37.00                   |                  |                             |      |       |                |                 |                        |                       |           | _                  |                                       |                                             |                           |                  |             |                   |       |                  | 37.0 -                |
|                         |                  |                             | TCR  | SCR   | RQD            | FI              |                        |                       |           | ŧ                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                             |                           |                  |             |                   |       |                  | 4                     |
|                         |                  | Strikes                     |      |       |                |                 |                        | elling                | Details   |                    | Remarks                               | i                                           |                           |                  |             |                   |       | 1                | <u> —</u>             |
| 0.80  Casing D          | 0.80  Details    | ) Time (min)  Water         | Add  | ed    |                | rom (<br>12.00  | m)                     | To (                  | m) Time   | e (hh:mm)<br>00:41 | Inspection                            | n pit machine excavat                       | ed to 1.50m               |                  |             |                   |       |                  |                       |
| 15.00                   | Diam (mm)<br>250 | From (m)                    | To   | ) (m) | $\dashv$       |                 |                        |                       |           |                    |                                       |                                             |                           |                  |             |                   |       |                  |                       |
| 20.50<br>40.00          | 200<br>145       |                             |      |       |                |                 | Barr<br>K6L            | el                    | Flush Wat |                    |                                       | cion Reason d at scheduled depth            | 1.                        |                  |             | Last Up<br>12/06/ |       |                  | Ī                     |

|                                |                     |                                        | GEC          | OTE         | ECI | Н                      |                        |                       | 22-1         | ect No.<br>041A | Project<br>Client:<br>Client's |                                                                                      | nning Desig                                     |                                                           | PC Land                                  | S               |       | BH12                   | 4                 |
|--------------------------------|---------------------|----------------------------------------|--------------|-------------|-----|------------------------|------------------------|-----------------------|--------------|-----------------|--------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|------------------------------------------|-----------------|-------|------------------------|-------------------|
| Inspect<br>Cable Per<br>Rotary | ion Pit<br>rcussion | Plant I<br>3T Exca<br>Dando<br>Comacch | vato<br>2000 | r<br>)      | 0.  | (m)<br>00<br>50<br>.50 | 1.5<br>20.<br>40.      | 50<br>50              | 71951        | L2.78 E         | Final De                       |                                                                                      |                                                 | 18/11/2022                                                |                                          | BM+JG           |       | Sheet 5 o<br>Scale: 1: | 50                |
|                                | Corning             | Comacci                                | 110 00       | J1          | 20  | .50                    |                        |                       |              | 76.20 N         | Elevatio                       | <b>n:</b> 4.75 mOD                                                                   | End Date:                                       | 18/11/2022                                                | Logger:                                  | RS+CMc          |       | DRAF                   | Г<br><del>—</del> |
| Depth<br>(m)                   | Samples             | / Field Records                        | TCR          | SCR         | RQD | FI                     | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)    | Legend                         | Dark brownish grey                                                                   |                                                 | cription                                                  | uhangular                                | fine to         | Water | Backfill               | _                 |
|                                |                     |                                        | 87           | 23          | 10  | N/A                    |                        |                       | -32.85       | 37.60           |                                | coarse GRAVEL of d  Very stiff thickly lan (highly to complete Sand is fine to coars | ark grey limes<br>ninated brown<br>ly weathered | tone. Sand is fin<br>slightly gravelly<br>calcareous muds | e to coarso<br>slightly sa<br>stone bedr | e.<br>andy CLAY | -     |                        | 37.5<br>38.0 -    |
|                                |                     |                                        |              |             |     |                        |                        |                       | -33.50       | 38.25           |                                | Weak dark greyish l                                                                  |                                                 |                                                           | Distinctly                               |                 |       |                        |                   |
| 3.50                           |                     |                                        |              |             |     | 5                      |                        |                       |              | (0.55)          |                                | weathered: significa                                                                 | antly reduced                                   | strength.                                                 |                                          |                 |       |                        | 38.5              |
|                                |                     |                                        |              |             |     |                        |                        |                       | -34.05       | 38.80           |                                | Discontinuities:                                                                     |                                                 |                                                           |                                          |                 |       |                        |                   |
|                                |                     |                                        | 100          | 20          | 10  |                        |                        |                       |              |                 |                                | 1. 75-85 degree joir                                                                 | nt from 38.30-                                  | 38.50m, planar,                                           | rough.                                   |                 |       |                        | 39.0              |
|                                |                     |                                        | 100          | 20          | 10  | NI                     |                        |                       |              | (1.20)          |                                | 2. 0-5 degree beddi<br>Very stiff brown and<br>to completely weat                    | d light brownis<br>hered mudsto                 | sh grey slightly g<br>ne). Sand is fine                   | ravelly CLA                              | Y (highly       |       |                        | 39.5              |
| 0.00                           |                     |                                        |              |             |     |                        |                        |                       | -35.25       | 40.00           | · · · · · ·                    | angular fine to coar                                                                 |                                                 | hole at 40.00m                                            |                                          |                 |       |                        | 40.0              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 40.5              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 41.0              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 41.5              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 42.0              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 42.5              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 43.0              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 44.0              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 44.5              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 45.0              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 45.5              |
|                                |                     |                                        |              |             |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        | 46.0              |
|                                |                     |                                        | TCR          | SCR         | RQD |                        |                        |                       |              | f               |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        |                   |
|                                | Casing to (m        | r Strikes  ) Time (min)                | Rose         | to (n       |     | rom (                  | m)                     | To (                  |              | e (hh:mm)       | Remarks<br>Inspection          | pit machine excavat                                                                  | ed to 1.50m                                     |                                                           |                                          |                 |       |                        |                   |
| 0.80                           | 0.80                |                                        |              |             |     | 12.00                  | U                      | 15.0                  | DU           | 00:41           |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        |                   |
|                                | Details Diam (mm    | Water ) From (m)                       |              | ed<br>o (m) |     |                        |                        |                       |              |                 |                                |                                                                                      |                                                 |                                                           |                                          |                 |       |                        |                   |
| 20.50                          | 200                 |                                        |              |             | -   | Core                   | Barr                   | el                    | Flush        | Туре            | Terminat                       | ion Reason                                                                           |                                                 |                                                           |                                          | Last Up         | date  | ed <b>I</b>            | <b>—</b>          |
| 40.00                          | 145                 |                                        |              |             |     | S                      | K6L                    |                       | Wa           |                 | Terminate                      | d at scheduled depth                                                                 |                                                 |                                                           |                                          | 12/06/          |       |                        | Ŧ                 |

| Method   Plant Used   Top (m)   Base (m)   Coordinates   Final Depth:   36.50 m   Start Date:   01/12/2022   Driller:   BM+JG   Scale: 1   Sc   |                                  | C                 | AUSEW                     | <b>AY</b> |                        |                       | Proje<br><b>22-1</b> | ct No.<br><b>041A</b> | Project Name: 3FM Planning Design GI - Lot A DPC La  Client: Dublin Port Company (DPC)                               | nds       | В     | orehole II<br>BH125  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|---------------------------|-----------|------------------------|-----------------------|----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------|-----------|-------|----------------------|
| Scale   1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Metho                            | od                |                           |           | Base                   | (m)                   | Coord                | linates               |                                                                                                                      |           | 9     | Sheet 1 of 4         |
| MADE GROUND: Steff dark greysh black sandy gravelly SLT with fragments of train and red brick. Sand is fine to coarse. Cobbles are ubrounded.    Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cable Perci                      | ussion            | Dando 2000                | 1.70      | 21.5                   | 50                    |                      |                       |                                                                                                                      |           |       | Scale: 1:50<br>DRAFT |
| MADE GROUND: Stem fine to coarse. GANVE with high coable corner to a subrounded of fingments of traind red brick. Sand is fine to coarse. Cobbles are ubrounded.  PID = 1.70ppm  PID = 1.00ppm  PID = 3.30ppm  PID = 2.30ppm  PID = 3.30ppm  PID = 3.3 |                                  | Sample /<br>Tests | Field Records             |           | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) |                      |                       | Legend Description                                                                                                   | 1         | Nater | Backfill             |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    | 1.50                             |                   | PID = 1.70ppm             |           |                        | ()                    |                      |                       | fine to coarse GRAVEL with high cobble content and cob<br>fragments of tar and red brick. Sand is fine to coarse. Co | ole sized | _ >   | 0.                   |
| 50 80 2.00 85 PIC 3.30ppm 80 2.00 85 PIC 3.30ppm 80 2.00 85 PIC 1.819 (7.5/9.5.3.2) Hammer SN = 2.00 Dry 1.818 PID = 2.30ppm 80 2.00 80 80 2.00 80 80 80 80 80 80 80 80 80 80 80 80 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .00<br>.00                       | ES2               | PID = 10.00ppm            |           |                        |                       |                      |                       |                                                                                                                      |           |       | 1.                   |
| 00 - 2.45   SPT (C)   N=19 (2.5/9.5,3.2) Hammer SN = 2.00 Dry   1386   PID = 11.80ppm   PID = 2.30ppm   D17   S11   SPT (C)   1386   PID = 30.30ppm   D17   SPT (C)   1386   PID = 30.30ppm   D17   SPT (C)    | 50<br>80 - 2.00<br>00            | B5<br>D16         | PID = 3.30ppm             |           |                        |                       | 3.24                 | 1.70                  | fragments of wood, plastic and cloth. Sand is fine to coa                                                            |           |       | 2.0                  |
| 50 - 21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00 - 2.45                       | SPT (C)           | 1386                      | nmer SN = | 2.00                   | Dry                   |                      |                       |                                                                                                                      |           |       | 2.                   |
| 00 - 3.45   SPT (C)   N=17 (2,2/3,3,5,6) Hammer SN = 3.00   Dry   1386   PID = 30.30ppm   PID = 7.30ppm   80 - 4.00   B7   00   D18   00   ES13   00 - 4.35   SPT (C)   00   PID = 10.70ppm   1386   PID = 10.70ppm   10   D18   10   D19   10   ES14   10   ES14   10   ES15   10   Solve seepage at 4.70m   11   Solve seepage at 4.70m   12   Solve seepage at 4.70m   13   Solve seepage at 4.70m   14   Solve seepage at 4.70m   15   Solve seepage at 4.70m   16   Solve seepage at 4.70m   17   Solve seepage at 4.70m   18   Solve seepage at 4.70m   19   Solve seepage at 4.70m   10   | .50 - 21.00<br>.50<br>.80 - 3.00 | B41<br>B6<br>D17  | PID = 2.30ppm             |           |                        |                       |                      |                       |                                                                                                                      |           |       | 3.                   |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00 - 3.45                        |                   | 1386                      | nmer SN = | 3.00                   | Dry                   |                      |                       |                                                                                                                      |           |       | 3.                   |
| SPT (C) N=26 (3,4/13,8,2,3) Hammer SN = 1386 PID = 10.70ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50<br>80 - 4.00<br>00            | B7<br>D18         | PID = 7.30ppm             |           |                        |                       |                      |                       |                                                                                                                      |           |       | 4                    |
| ES14 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00 - 4.45<br>00                  | SPT (C)           | = 1386                    | mmer SN   | 4.00                   |                       | -0.06                | 5.00                  |                                                                                                                      | ell       |       | 5.                   |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50<br>50                         | ES14              |                           | 1         |                        |                       |                      |                       |                                                                                                                      |           |       | 5.                   |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .00                              | ES15              |                           | nmer SN = | 5.00                   | 4.50                  |                      |                       |                                                                                                                      |           |       | 6.                   |
| 1.00 - 6.45   SPT (C)   N=17 (3,3/4,4,4,5) Hammer SN = 6.00   4.60   1386   PID = 13.40ppm   N=20 (4,4/4,5,5,6) Hammer SN = 7.50   5.20   1386   N=20 (4,4/4,5,5,6) Hammer SN = 7.50   5.20   1386   N=20 (4,4/4,5,5,6) Hammer SN = 7.50   5.20   1386   N=20 (4,4/4,5,5,6) Hammer SN = 7.50   N=20 (4,4/ | .50<br>.80 - 6.00<br>.00         | B20<br>D26        | PID = 18.90ppm            |           |                        |                       | -2.16                | 7.10                  | Medium dense grev sandy subangular fine to coarse GR                                                                 | VEL.      | _     | 7.                   |
| 50 - 7.95   D27<br>50 - 7.95   SPT (C)   N=20 (4,4/4,5,5,6) Hammer SN = 7.50 5.20   1386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .00 - 6.45                       | SPT (C)           | 1386                      | nmer SN = | 6.00                   | 4.60                  |                      |                       |                                                                                                                      |           |       | 7.                   |
| 00 D28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .50                              | D27               |                           | nmer SN = | 7.50                   | 5.20                  |                      |                       |                                                                                                                      |           |       | 8.                   |
| .00 - 9.45   SPT (C)   N=25 (5,6/6,6,6,7) Hammer SN =   9.00   4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                   |                           | nmer SN = | 9.00                   | 4.70                  |                      |                       |                                                                                                                      |           |       | 9.                   |
| Water Strikes Chiselling Details Remarks  ruck at (m) Casing to (m) Time (min) Rose to (m) From (m) To (m) Time (hh:mm)  Inspection pit machine excavated to 1.70m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                   |                           |           |                        |                       |                      |                       |                                                                                                                      |           |       | 1                    |
| To (m)   Diam (mm)   From (m)   To (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | To (m) D<br>15.00<br>26.00       | 250<br>200        | 5.00 To (m)<br>5.00 21.50 | Cara      | Rarre                  | al T                  | Eluch                | Type                  | Termination Reason                                                                                                   | Lactilia  | vd a+ | ad 💻                 |
| 15.00 250 5.00 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.00                            | 150               |                           | core      | Darre                  | =1                    | riusn                | ype                   | ICITIIIIIdUUII REdSUII                                                                                               | Last Up   | udt   | eu 📗                 |

|                                         |                     | CAUSEW                                      | <b>AY</b><br>ECH      |                                       |             | ect No.<br>L <b>041A</b> | Project Name: 3FM Planning Design G Client: Dublin Port Company ( Client's Rep: RPS |                                 | Borehole ID<br>BH125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|---------------------|---------------------------------------------|-----------------------|---------------------------------------|-------------|--------------------------|-------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metho                                   |                     | Plant Used                                  | Top (m)               |                                       | ) Coor      | dinates                  | Final Depth: 36.50 m Start Date: 01                                                 | ./12/2022 <b>Driller:</b> BM+JG | Sheet 2 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Inspection<br>Cable Percu<br>Rotary Dri | ussion              | 3T Excavator<br>Dando 2000<br>Comacchio 601 | 0.00<br>1.70<br>21.50 | 1.70<br>21.50<br>35.00                |             | 10.27 E<br>50.28 N       | Elevation: 4.94 mOD End Date: 17                                                    |                                 | Scale: 1:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Depth<br>(m)                            | Sample /<br>Tests   | Field Records                               |                       | Casing Water<br>Depth Dept<br>(m) (m) | Level mOD   | Depth<br>(m)             | Legend Descript                                                                     | ion                             | Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| .0.50                                   | D29<br>SPT (C)      | N=28 (5,6/7,7,7,7) Han<br>1386              | nmer SN =             |                                       |             |                          |                                                                                     |                                 | 9.5<br>10.0 -<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.00<br>2.00 - 12.45                    | D30<br>SPT (C)      | N=30 (5,6/7,7,7,9) Han<br>1386              | nmer SN =             | 4.7                                   | -7.06<br>0  | 12.00                    | Medium dense to dense grey silty sul                                                | prounded fine to coarse GRAVEL  | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13.00 - 13.50<br>13.50<br>13.50 - 13.95 | D33                 | N=28 (6,6/6,7,7,8) Han                      | nmer SN =             | 13.5 5.1                              | 0           |                          |                                                                                     |                                 | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| .4.50 - 15.00<br>.5.00<br>.5.00 - 15.45 | D35                 | N=29 (6,6/7,7,7,8) Han                      | nmer SN =             | 15.0 6.2                              | 0           |                          |                                                                                     |                                 | 14.5<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16.00 - 16.50<br>16.50<br>16.50 - 16.95 | D37                 | N=31 (6,7/8,7,8,8) Han<br>1386              | nmer SN =             | 16.5 9.1                              | -10.76<br>0 | 15.70                    | Very stiff dark greyish black sandy gracoarse. Gravel is subrounded fine to d       |                                 | 16.0 · 16.5 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17.0 · 17 |
| 17.50 - 18.00<br>18.00<br>18.00 - 18.45 | D39                 | N=31 (5,7/8,8,7,8) Han<br>1386              | nmer SN =             | 18.0 1.5                              | 0           |                          |                                                                                     |                                 | 17.5<br>18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | Water               | r Strikes                                   |                       | Chiselli                              | ng Detail   | s                        | Remarks                                                                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Casing De<br>To (m) Di<br>15.00         | 4.70  etails am (mm | ) Time (min) Rose to (r                     |                       | m) To                                 |             | ne (hh:mm)<br>03:00      | Inspection pit machine excavated to 1.70m                                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26.00<br>35.00                          | 200<br>150          |                                             | Core                  | Barrel                                | Flush       | Туре                     | Termination Reason                                                                  | Last U                          | Jpdated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                     |                                             | S                     | K6L                                   | Wá          | ater                     | Terminated at scheduled depth.                                                      | 12/0                            | 6/2023 <b>AG</b> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Method<br>Inspection                 |                                                 | —— G                                              | E       | VV<br>OT F | A          | Y    |                        |                       | 22-1         | ct No.<br><b>041A</b> | Client:                                |                                                   | ort Compar            |                        |            |          |       | BH12                   | e ID<br>5            |
|--------------------------------------|-------------------------------------------------|---------------------------------------------------|---------|------------|------------|------|------------------------|-----------------------|--------------|-----------------------|----------------------------------------|---------------------------------------------------|-----------------------|------------------------|------------|----------|-------|------------------------|----------------------|
|                                      |                                                 |                                                   |         |            |            |      |                        | ()                    | <u> </u>     |                       | Client's I                             | Rep: RPS                                          | T                     |                        |            |          |       |                        |                      |
|                                      | Pit                                             | 9T Exca                                           | vato    | r          | 0.0        | 00   | Base<br>1.7            | 70                    | 71951        | inates                | Final Dep                              | <b>36.50</b> m                                    | Start Date:           | 01/12/2022             | Driller:   | BM+JG    |       | Sheet 3 c<br>Scale: 1: |                      |
| Cable Percus<br>Rotary Drill         |                                                 | Dando :<br>Comacch                                |         |            | 1.7<br>21. |      | 21.<br>35.             |                       |              | 0.27 E                | Elevation                              | : 4.94 mOD                                        | End Date:             | 17/01/2023             | Logger:    | RS+CMc   |       | DRAF                   | T                    |
| Depth (m)                            | Sample /<br>Tests                               | Fie                                               | eld Red | cords      |            |      | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)          | Legend                                 |                                                   | Des                   | cription               |            |          | Water | Backfill               |                      |
| 9.00 - 19.50<br>9.50 - 19.95         | B40<br>U31                                      | Ublow=50 70                                       | ecove   | ry         |            | 19.5 | 15.4                   |                       |              |                       |                                        |                                                   |                       |                        |            |          |       | 19.0<br>19.5<br>20.0   |                      |
|                                      |                                                 | 14<br>PT (S) N=29 (5,5/6,7,8,8) Hammer SN<br>1386 |         |            |            |      |                        | 4.50                  | -16.56       | 21.50                 |                                        | Very stiff often thin!<br>slightly silty CLAY. Sa |                       | minated dark br        | own slight | ly sandy |       |                        | 20.5<br>21.0<br>21.5 |
| 2.50 - 23.00<br>3.00<br>3.00 - 23.45 |                                                 | ow=50 70%                                         | 54      | 0          | 0          |      |                        |                       |              |                       | X                                      | 22:30-23:00m: AZCL (Po                            |                       | eing washed out with : | flush).    |          |       |                        | 22.0<br>22.5<br>23.0 |
|                                      | Recover                                         |                                                   | 100     | 0          | 0          |      |                        |                       |              |                       | X X X X X X X X X X X X X X X X X X X  |                                                   |                       |                        |            |          |       |                        | 23.5                 |
| 5.00 - 25.45                         | D46<br>SPT(S) N<br>(6,7/8,9                     |                                                   | 63      | 0          | 0          |      | 25.0                   | 12.4                  |              | (9.30)                | X X X X X X X X X X X X X X X X X X X  | 25.45-26.00m: AZCL (Po.                           | ssibly due to fines b | eing washed out with i | flush).    |          |       |                        | 24.5<br>25.0<br>25.5 |
| 6.00                                 |                                                 |                                                   | 100     | 0          | 0          |      |                        |                       |              |                       | × × × × × × × × × × × × × × × × × × ×  |                                                   |                       |                        |            |          |       |                        | 26.0<br>26.5<br>27.0 |
|                                      | (5,5/7,8                                        |                                                   | TCR     | SCR        | RQD        | FI   |                        | Dry                   |              |                       | X————————————————————————————————————— |                                                   |                       |                        |            |          |       |                        | 27.5                 |
| , , .1                               |                                                 | Strikes                                           |         |            |            |      |                        |                       | Details      |                       | Remarks                                |                                                   |                       |                        |            |          |       |                        |                      |
| struck at (m) Casi 4.70  Casing Det  | (5,5/7,8<br>Hamme<br>Water<br>ing to (m<br>4.70 | ,8,9) r SN = 1387  Strikes Time (min)  Water      | Rose    | to (n      | n) Fr      |      | m)                     | To (                  | m) Time      | e (hh:mm)<br>03:00    | Remarks                                | oit machine excavato                              | ed to 1.70m           |                        |            |          |       |                        |                      |
| 15.00<br>26.00                       | 250<br>200                                      | 5.00                                              |         | 1.50       | 1          |      | $\perp$                |                       |              | _                     |                                        |                                                   |                       |                        |            | 1        |       |                        | _                    |
| 35.00                                | 150                                             |                                                   |         |            | '          |      | <b>Barr</b><br>K6L     | ei                    | Flush Wat    |                       | Terminated                             | on Reason  at scheduled depth                     |                       |                        |            | 12/06/   |       |                        | ם<br>ק               |

|                            | C                               | AUS                              | E          | <b>VV</b><br>DTE | A          | Y              |                            |                 |                | ct No.<br>041A           | Project<br>Client:<br>Client's        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nning Desig<br>ort Compar                       |                                       | PC Land:                  | s                |       | ehole ID<br>H125                       |
|----------------------------|---------------------------------|----------------------------------|------------|------------------|------------|----------------|----------------------------|-----------------|----------------|--------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------|---------------------------|------------------|-------|----------------------------------------|
| Method<br>Inspection       |                                 | Plant U                          |            | r                | <b>Top</b> |                | Base (<br>1.70             | _               | Coord          | inates                   | Final De                              | <b>pth:</b> 36.50 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Start Date:                                     | 01/12/2022                            | Driller:                  | BM+JG            |       | eet 4 of 4                             |
| Cable Percu<br>Rotary Dril | ssion                           | Dando<br>Comacch                 | 2000       | )                | 1.7        | 70             | 21.5<br>35.0               | 0               | 71951<br>73345 | 0.27 E<br>0.28 N         | Elevatio                              | <b>n:</b> 4.94 mOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | End Date:                                       | 17/01/2023                            | Logger:                   | RS+CMc           |       | PRAFT                                  |
| Depth<br>(m)               | Samples /                       | Field Records                    | TCR        | SCR              | RQD        | FI             | Casing W<br>Depth D<br>(m) |                 | Level<br>mOD   | Depth<br>(m)             | Legend                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Des                                             | cription                              | •                         |                  | Water | Backfill                               |
| 29.00                      |                                 |                                  | 41         | 0                | 0          |                |                            | iry             |                |                          | X                                     | Very stiff often thin slightly silty CLAY. Sightly silty CLAY. Sightly silty CLAY. Sightly silty CLAY. Sightly silty can be supported by the stiff of the silty si | and is fine.                                    |                                       |                           | y sandy          |       | 28.0 <b>-</b><br>28.5<br>29.0 <b>-</b> |
|                            | SPT(C) N<br>(4,6/8,9,<br>Hammer |                                  | 30         | 0                | 0          |                |                            |                 |                |                          | X                                     | 29.40-30.50m: AZCL (Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ssibly due to fines b                           | eing washed out with :                | flush).                   |                  |       | 29.5<br>30.0 -                         |
| 30.50<br>30.50 - 30.95     | SPT(C) N<br>(5,6/8,8,<br>Hammer |                                  | 47         | 0                | 0          | N/A            | С                          | iry -:          | 25.86          | 30.80                    | X                                     | Dense dark grey slig<br>fine to coarse GRAV<br>content. Cobbles ar<br>to coarse.<br>31.05-32.00m AZCL (Pos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /EL of dark gre<br>re subangular (              | y limestone with<br>of dark grey lime | h low cobb<br>estone. San | le<br>nd is fine |       | 30.5<br>31.0 -                         |
| 32.00<br>32.00 - 32.30     | for 150m                        | 0 (7,13/50<br>nm)<br>· SN = 1387 |            |                  |            |                | C                          |                 | 27.06<br>27.56 | 32.00<br>(0.50)<br>32.50 | * * * * * * * * * * * * * * * * * * * | Stiff slightly sandy s  Dense dark grey slig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ghtly sandy slig                                | ghtly clayey pred                     |                           |                  |       | 32.0 <b>-</b><br>32.5                  |
| i3.50<br>i3.50 - 33.80     | for 150m                        |                                  | 50         | 0                | 0          |                | C                          | ery             |                | (2.20)                   |                                       | cobble content. Sar<br>grey limestone.<br>32.75-33.50m: AZCL (Po.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd is fine to co                                | arse. Cobbles ar                      | e subangul                | ar of dark       |       | 33.0 -<br>33.5<br>34.0 -               |
| 5.00<br>5.00 - 35.18       | 65mm/5                          |                                  | 100        | 15               | 7          |                | C                          | -:<br>ery       | 29.76          | 34.70                    |                                       | Medium strong, loc<br>bedded dark grey L<br>reduced strength, lo<br>patchy brown staini<br>joint surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IMESTONE. Mocally reduced                       | oderately weath strength, closer      | ered: sligh<br>fracture s | tly<br>pacing,   |       | 34.5<br>35.0 -                         |
| 6.50                       | SN = 138                        | 37                               | 100        | 86               | 52         | 14             |                            |                 | 24.50          | (1.80)                   |                                       | Discontinuities:  1. 5-10 degree bedd smooth, pathcy bro  2. 75-90 degree joir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | own staining or                                 | n most joint surf                     | aces.                     |                  |       | 36.0 -                                 |
| 6.50                       |                                 |                                  | TCR        | SCR              | RQD        | FI             |                            | -               | 31.56          | 36.50                    |                                       | brown staining on jo<br>3. 60-75 degree join<br>joint surface (up to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oint surface.<br>nt from 35.90-<br>15mm thick). |                                       | ough, clay ii             |                  |       | 36.5<br>37.0 -                         |
|                            |                                 | Strikes                          | le.        |                  | -1 -       |                |                            |                 | Details        |                          | Remarks                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                       |                           |                  |       |                                        |
| 15.00                      | 4.70<br>tails<br>am (mm)<br>250 | Water From (m) 5.00              | <b>Add</b> |                  |            | rom (<br>12.00 |                            | To (m)<br>15.00 |                | (hh:mm)<br>03:00         | Inspection                            | pit machine excavat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed to 1.70m                                     |                                       |                           |                  |       |                                        |
| 26.00<br>35.00             | 200<br>150                      |                                  |            |                  |            |                | <b>Barre</b> l<br>K6L      |                 | Flush Wat      |                          |                                       | <b>tion Reason</b><br>d at scheduled depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                       |                           | 12/06/2          |       | A C G                                  |

|                                                                        | GEOT                                                                                                                                | ЕСН                 |                                        | 22-1         | ect No.<br>.041A                   | Client:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nning Desig<br>ort Compar                                                                                                                               |                                                                                                                             | PC Land                                                               | S              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BH12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                      |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|--------------|------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Method<br>Inspection Pit                                               | Plant Used 3t Excavator                                                                                                             | <b>Top (m)</b> 0.00 | <b>Base (m)</b><br>1.50                | 71939        | 96.11 E<br>43.52 N                 | Final De    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         | 23/11/2022 01/12/2022                                                                                                       | Driller:                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sheet 1 of Scale: 1:  DRAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :50                                                                    |
| Depth Sample /                                                         | Field Records                                                                                                                       |                     | Casing Water<br>Depth Depth<br>(m) (m) | Level<br>mOD | Depth<br>(m)                       | Legend      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Desc                                                                                                                                                    | ription                                                                                                                     |                                                                       | 1              | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |
| 0.50 ES1 0.50 B4 0.00 ES2 0.00 - 1.08 SPT (C) 0.00 0.50 ES3 0.50 Water | Ublow=94 70% Recove PID = 2.30ppm  50 (25 for 75mm/50 fo Hammer SN = AI2 PID = 9.70ppm PID = 1.40ppm  Strikes Time (min) Rose to (r | r Omm)              | ing Detail                             | eter Ir      | emarks spection polygon or groundw | oit machine | MADE GROUND: Gr GRAVEL. Sand is fin MADE GROUND: Gr coarse GRAVEL with Cobbles are angular MADE GROUND: Ve angular fine to coar sized fragments of steel a coarse. Cobbles are 0.40 - 0.40 Terram at 0.40 exercises of the coarse.  The coarse of the coarse of the coarse of the coarse.  The coarse of the coarse of the coarse of the coarse.  The coarse of | rey sandy very e to coarse. rey slightly san h high cobble of r. ery dense dark see GRAVEL wit wood, red bric and glass and a subangular. m End of Bore | silty subrounder<br>dy very silty sub-<br>content. Sand is si-<br>grey slightly san<br>th low cobble co-<br>k and concrete, | angular fir<br>fine to coa<br>ndy very sil<br>ntent and<br>course gra | ty<br>cobble   | New York Control of the Control of t | J. C. A. H. J. J. C. A. H. J. J. C. A. H. | 0.5  1.0 -  1.5  2.0 -  3.5  4.0 -  4.5  5.0 -  6.5  7.0 -  8.5  9.0 - |
|                                                                        |                                                                                                                                     |                     |                                        |              | <b>erminatio</b><br>erminated      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                             |                                                                       | <b>Last Up</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I                                                                      |

|                                        |                       | GEOTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                        |                       | 22-1                 | ct No.<br><b>041A</b>      | Client:     |                                                                                                            | ort Compai                |                    | PC Lands            |            | BH126A                                                                                  |
|----------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|-----------------------|----------------------|----------------------------|-------------|------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|---------------------|------------|-----------------------------------------------------------------------------------------|
| <b>Metho</b><br>Dynamic Sa             |                       | Plant Used Premier 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Top (m)</b> 0.00 | _                      | <b>(m)</b><br>50      | 71939                | 95.11 E<br>4.52 N          | Final De    |                                                                                                            |                           | 01/12/2022         | Driller:<br>Logger: | JM         | Sheet 1 of 1<br>Scale: 1:50<br>DRAFT                                                    |
| Depth<br>(m)                           | Sample /<br>Tests     | Field Records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD         | Depth<br>(m)               | Legend      |                                                                                                            | Des                       | cription           | ļ                   | Water      | Backfill                                                                                |
| .00 - 1.45<br>.00 - 1.45<br>.45 - 1.68 | VI1  SPT (C)  SPT (C) | N=22 (1,1/2,10,4,6) Ha = Al2 50 (9,16/50 for 75mm) SN = Al2 Time (min) Rose to (n) Rose to | mmer SN Hammer      | sing [                 | Dry Dry Dry           | 4.09<br>3.79<br>3.39 | - 0.80<br>- 1.10<br>- 1.50 | nspection p | MADE GROUND: De with cobbles and fri subangular.  CONCRETE  MADE GROUND: De dit excavated to 1.20muntered. | ense greenish End of Bord | ass and plastic. C | Cobbles are         | RAVEL      | 2.5<br>2.6<br>3.6<br>3.6<br>3.6<br>4.6<br>4.7<br>4.7<br>4.7<br>4.8<br>4.8<br>4.9<br>4.9 |
|                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                        |                       | Te                   | erminati                   | on Reaso    | า                                                                                                          |                           |                    |                     | Last Updat | ed                                                                                      |

|                     |                   | GEOT                              | ECH                 | T               |                        |              | 041A                        | Client:    |                                        | ort Compar      | y (DPC)           |               |            |       | BH127                                |
|---------------------|-------------------|-----------------------------------|---------------------|-----------------|------------------------|--------------|-----------------------------|------------|----------------------------------------|-----------------|-------------------|---------------|------------|-------|--------------------------------------|
| Metho<br>ynamic Sar |                   | Plant Used<br>Premier 110         | <b>Top (m)</b> 0.00 | <b>Base</b> 3.0 |                        |              | linates                     | Final De   | <b>epth:</b> 3.00 m                    | Start Date:     | 01/12/2022        | Driller:      | JM         |       | heet 1 of<br>Scale: 1:5              |
|                     |                   |                                   |                     |                 |                        |              | 12.16 E<br>39.93 N          | Elevatio   | on: 4.65 mOD                           | End Date:       | 01/12/2022        | Logger:       | RS         |       | DRAFT                                |
| Depth<br>(m)        | Sample /<br>Tests | Field Records                     | ;                   | Depth           | Water<br>Depth<br>(m)  | Level<br>mOD | Depth<br>(m)                | Legend     | 1                                      | Desc            | ription           |               |            | Water | Backfill                             |
| 00                  | В7                |                                   |                     |                 |                        | 4.25         | - 0.20                      |            | MADE GROUND: Da<br>with fragments of g |                 | ck angular fine t | o coarse G    | RAVEL      |       | 1000<br>1000<br>1000<br>1000<br>1000 |
| 50                  | ES1               |                                   |                     |                 |                        | 4.35<br>4.25 | - 0.30<br>- 0.40            |            | MADE GROUND: La<br>MADE GROUND: Da     |                 | ck ASH with frag  | ments of r    | ed brick,  |       | •• ••                                |
| 60                  |                   | PID = 2.70ppm                     |                     |                 |                        |              | -                           |            | plastic and timber.                    | 0 ,             |                   |               |            |       |                                      |
|                     | B8                |                                   |                     |                 |                        | 3.75         | 0.90                        |            | MADE GROUND: Ve                        |                 |                   |               |            |       |                                      |
|                     | ES2<br>SPT (C)    | N=4 (1,0/1,0,1,2) Ham             | mer SN =            |                 |                        |              |                             |            | Gravel is subangula                    |                 |                   | a is fille to | coarse.    |       |                                      |
| 0                   |                   | AI2<br>PID = 2.70ppm              |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
| 0<br>0              | ES3               | PID = 6.40ppm                     |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
| 10<br>10            | B9<br>ES4         |                                   |                     |                 |                        | 2.65         | 2.00                        |            | MADE GROUND: M                         |                 |                   | silty suban   | gular fine |       |                                      |
|                     |                   | N=17 (1,2/3,3,6,5) Har<br>Al2     | nmer SN =           |                 |                        |              | -                           |            | to coarse GRAVEL. S                    | sand is fine to | coarse.           |               |            | _     |                                      |
| 50                  | ES5               |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
| 0                   | ES6               |                                   |                     |                 |                        | 1.65         | - 3.00                      |            |                                        |                 |                   |               |            |       |                                      |
|                     | 1                 | N=16 (0,1/9,5,1,1) Har<br>AI2     | mmer SN =           |                 |                        |              | -                           |            |                                        | End of Bore     | hole at 3.00m     |               |            |       |                                      |
| - 200               | CDT (C)           | Water strike at 3.00m             |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
| 5 - 3.90            | SPT (C)           | N=50 (2,6/12,16,11,11<br>SN = AI2 | .) Hammer           |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | _                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              |                             |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              |                             |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | [                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              |                             |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | -                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              | F                           |            |                                        |                 |                   |               |            |       |                                      |
|                     | \A/=+:            | r Striker                         |                     | .i              | ota"                   | ,  -         |                             |            |                                        |                 |                   |               |            |       |                                      |
|                     | sing to (m        | r Strikes  Time (min) Rose to (   |                     | ing D           | <b>etails</b><br>Diame |              | <b>emarks</b><br>and dug ir | spection p | it excavated to 1.20m                  | n.              |                   |               |            |       |                                      |
| 3.00                | 3.00              | 20 2.50                           |                     |                 | -                      |              | J                           |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              |                             |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              |                             |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        |              |                             |            |                                        |                 |                   |               |            |       |                                      |
|                     |                   |                                   |                     |                 |                        | L            |                             | D          |                                        |                 |                   |               | Last Up    | مادر  |                                      |
| - 1                 |                   | 1 1                               | i                   | 1               |                        | 16           | erminatio                   | on Reaso   | 1                                      |                 |                   |               | Last Up    | aate  | O I                                  |

|                                                 | GEOTI                                                                                                                                                                            | ECH                            |                        | 22-1                 | ect No.<br>1 <b>041A</b> | Client:          |                                                                                        | ort Compan                                                           |                               |                         |         |       | orehole ID<br>BH128                                  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|----------------------|--------------------------|------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|-------------------------|---------|-------|------------------------------------------------------|
| Method Inspection Pit Dynamic Sampling          | Plant Used 3t Excavator Premier 110                                                                                                                                              | <b>Top (m)</b><br>0.00<br>1.50 | 1.50<br>2.60           |                      | 73.75 E                  | Final Depth      | 2.60 m                                                                                 | Start Date:                                                          | 23/11/2022                    | Driller:                | JM      |       | heet 1 of 1<br>Scale: 1:50                           |
|                                                 |                                                                                                                                                                                  |                                |                        |                      | 62.43 N                  | Elevation:       | 4.71 mOD                                                                               | End Date:                                                            | 01/12/2022                    | Logger:                 | RS      |       | DRAFT                                                |
| Depth Sample / Tests                            | Field Records                                                                                                                                                                    |                                | Casing Depth (m) Water | Level<br>mOD         | Depth<br>(m)             | Legend M.        | ADE GROUND: Gr                                                                         |                                                                      | ription<br>silty angular fine | e to coarse             | GRAVEL. | Water | Backfill                                             |
| .00<br>.50 ES3<br>.50 EW1<br>.00 - 2.45 SPT (C) | PID = 0.40ppm  N=9 (1,2/2,2,3,2) Hamral2  PID = 2.40ppm  PID = 0.10ppm  Slow flow at 1.50m  N=30 (1,2/12,15,2,1) H  SN = AI2  Seepage at 2.00m  50 (2,17/50 for 0mm) H  SN = AI2 | ammer                          |                        | 4.06<br>3.21<br>2.11 | 2.60                     | M. co fin        | ADE GROUND: Lo arse GRAVEL with e to coarse.  ADE GROUND: Ve timber and glass. coarse. | ose dark grey on coarse gravel erry stiff grey saif. Sand is fine to | sized fragments               | of wood.<br>Y with frag | Sand is | ¥ .   | 2.5<br>3.0<br>3.5<br>4.0<br>4.5<br>5.0<br>6.5<br>7.0 |
|                                                 | r Strikes<br>a) Time (min) Rose to (n                                                                                                                                            |                                | ing Detain) Dian       |                      | demarks                  | ig inspection pi | it excavated to 1.5                                                                    | 50m.                                                                 |                               |                         |         |       | 8.5                                                  |

|                           | C                 | AUSEW                              | /AY          |                 |                |              | ect No.<br>L <b>041A</b> | Project<br>Client: | : <b>Name:</b> 3FM Plai<br>Dublin P      | nning Desig<br>ort Compar |                   | PC Land    | S         |       | orehole<br>BH130  |          |
|---------------------------|-------------------|------------------------------------|--------------|-----------------|----------------|--------------|--------------------------|--------------------|------------------------------------------|---------------------------|-------------------|------------|-----------|-------|-------------------|----------|
|                           |                   | GEOT                               | ECH          |                 |                |              |                          | Client's           | Rep: RPS                                 |                           |                   |            |           |       |                   |          |
| Metho                     |                   | Plant Used                         | Top (m)      | _               |                | Coor         | dinates                  | Final De           | enth: 21.00 m                            | Start Date                | 05/01/2023        | Driller:   | CC .      | S     | heet 1 o          | of 3     |
| Inspection<br>Cable Percu |                   | 3T Excavator<br>Dando 3000         | 0.00<br>1.50 | 1.5<br>21.      |                |              | 97.32 E<br>93.66 N       | Elevatio           | •                                        |                           | 11/01/2023        | Logger:    |           | :     | Scale: 1:<br>DRAF |          |
| Depth<br>(m)              | Sample /<br>Tests | Field Records                      | S            | Casing<br>Depth | Water<br>Depth | Level<br>mOD | Depth<br>(m)             | Legend             | '                                        | Des                       | cription          |            | -         | Water | Backfill          | Т        |
| (,                        | 1.03.0            |                                    |              | (m)             | (m)            | 3.35         | . 0.07                   |                    | BITMAC                                   |                           |                   |            |           | >     |                   |          |
|                           |                   |                                    |              |                 |                | 3.17         | 0.25                     |                    | CONCRETE  MADE GROUND: Br                |                           |                   |            |           |       |                   |          |
| .50                       | B1                |                                    |              |                 |                |              | -                        |                    | SAND with cobble or<br>rounded.          | ontent. Grave             | el is subrounded. | Cobbles a  | re        |       |                   | 0.5      |
| .50<br>.50                | ES2               | PID = 1.00ppm                      |              |                 |                |              | -                        |                    | Tourided.                                |                           |                   |            |           |       |                   |          |
| 30                        |                   | 1.00ppm                            |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | ı        |
| .00                       | B3<br>ES4         |                                    |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 1.0      |
| 00                        | L34               | PID = 1.70ppm                      |              |                 |                | 2.12         | 1.30                     |                    |                                          |                           |                   |            |           |       |                   | 1        |
| 50                        | DE.               |                                    |              |                 |                |              | -                        |                    | MADE GROUND: Gr<br>low cobble content    |                           |                   |            |           |       |                   |          |
| .50<br>.50                | B5<br>ES6         |                                    |              |                 |                | 1.92         | - 1.50<br>-              |                    | MADE GROUND: M                           | edium dense               | locally dense bro | wn fine to | coarse    |       |                   | 1.5      |
| 50 - 2.50<br>50           | B26               | PID = 1.90ppm                      |              |                 |                |              | F                        |                    | SAND and subangul<br>and fragments of re |                           |                   |            | e content |       |                   |          |
| .00                       | D27               | 1.90ррпі                           |              |                 |                |              | _                        |                    | una maginiento or re                     | 21.0111 2022              | ico are sasanga.  | <b></b>    |           |       |                   | 2.0      |
| .00                       | ES7               |                                    |              |                 |                |              |                          |                    |                                          |                           |                   |            |           |       |                   | 1        |
| .00 - 2.45                | SP1 (C)           | N=36 (3,4/7,9,9,11) H:<br>= 0197   | ammer SN     | 2.00            | 1.60           |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 1        |
| .00                       | ECO               | PID = 0.10ppm                      |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 2.5      |
| 50<br>50                  | ES8               | PID = 0.30ppm                      |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   |          |
|                           |                   |                                    |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 1        |
| .00<br>.00                | D28<br>ES9        |                                    |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 3.0      |
| .00 - 4.00                | B29               |                                    |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 1        |
| .00 - 3.45                | SPT (C)           | N=21 (2,3/4,5,5,7) Hai<br>0197     | mmer SN =    | 3.00            | 1.90           |              |                          |                    |                                          |                           |                   |            |           |       |                   |          |
| .00                       |                   | PID = 0.30ppm                      |              |                 |                |              | F                        |                    |                                          |                           |                   |            |           |       |                   | 3.5      |
| .50<br>.50                | ES10              | PID = 0.20ppm                      |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 1        |
| .00                       | D30               | b = 0.20ppiii                      |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 4.0      |
| .00                       | ES11              |                                    |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | •        |
| .00 - 5.00<br>.00 - 4.45  | B31<br>SPT (C)    | N=12 (2,3/3,3,3,3) Hai             | mmer SN =    | 4.00            | 2.10           |              |                          |                    |                                          |                           |                   |            |           |       |                   | 1        |
|                           |                   | 0197                               | 2. 3         |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 4.5      |
| .00                       |                   | PID = 0.20ppm<br>Seepage at 4.40m  |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 1        |
| .50                       | ES12              |                                    |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 1        |
| i.50<br>i.00              | D32               | PID = 0.20ppm                      |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 5.0      |
| .00<br>.00 - 5.45         | ES13<br>SPT (C)   | N=13 (1,2/3,3,4,3) Hai             | mmer SN =    | 5.00            | 1.50           |              |                          |                    |                                          |                           |                   |            |           |       |                   |          |
| .00                       |                   | PID = 0.10ppm                      |              |                 |                |              | ŀ                        |                    |                                          |                           |                   |            |           |       |                   | 5.5      |
| 5.50<br>5.50              | ES14              | PID = 0.20ppm                      |              |                 |                |              | ŀ                        |                    |                                          |                           |                   |            |           |       |                   | ı        |
| .80 - 7.00                | B33               | b – 0.20ppiii                      |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 1        |
| 5.00<br>5.00              | ES15              | PID = 0.10ppm                      |              |                 |                |              | F                        |                    |                                          |                           |                   |            |           |       |                   | 6.0      |
|                           |                   |                                    |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 1        |
| 5.50                      | D34               |                                    |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 6.5      |
| 5.50                      | ES16              | N 40 /4 2 /2 2 2 2 3               |              | [ _ [           |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 1        |
| .50 - 6.95                | SP1 (C)           | N=10 (1,2/2,2,3,3) Hai<br>0197     | ııımer SN =  | 0.50            | 3.10           |              | ŀ                        |                    |                                          |                           |                   |            |           |       |                   |          |
| 5.50                      | FC47              | PID = 0.30ppm                      |              |                 |                |              | -                        |                    |                                          |                           |                   |            |           |       |                   | 7.0      |
| .00<br>.00                | ES17              | PID = 0.10ppm                      |              |                 |                |              | F                        |                    |                                          |                           |                   |            |           |       |                   | 1        |
|                           |                   |                                    |              |                 |                |              | -                        | LXXXXXXX           |                                          |                           |                   |            |           |       |                   | 1        |
|                           |                   | r Strikes                          |              |                 |                | Details      |                          | Remarks            |                                          |                           |                   |            |           |       |                   | _        |
| uck at (m) Ca<br>4.40     | sing to (m        | 7) Time (min) Rose to (<br>20 3.00 | m) From (    |                 | To (n          |              | ne (hh:mm)<br>01:30      | Machine o          | dug inspection pit exc                   | avated to 1.50            | Om.               |            |           |       |                   |          |
| 8.60                      | 8.60              | 20 3.00                            | 1.30         |                 | 1.30           |              | J1.JU                    |                    |                                          |                           |                   |            |           |       |                   |          |
|                           |                   |                                    |              |                 |                |              |                          |                    |                                          |                           |                   |            |           |       |                   |          |
| Casing De                 |                   | Water Added                        |              |                 |                |              |                          |                    |                                          |                           |                   |            |           |       |                   |          |
|                           | Diameter          | From (m) To (m)                    | 1 I          |                 |                |              |                          |                    |                                          |                           |                   |            |           |       |                   |          |
| 13.50                     | 250               | 0.50 21.00                         |              |                 |                |              |                          |                    |                                          |                           |                   |            |           |       |                   |          |
|                           |                   |                                    |              |                 |                |              |                          | Terminat           | tion Reason                              |                           |                   |            | Last Up   | date  | d E               | <b>_</b> |

|                                              | _                             | GEOT                                     | ECH                     |                    |               | 22-1         | ot No.                              | Project Name: 3FM Planning Design GI - Lot A DPC Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS                                                                                                                                      | Borehole<br>BH130        |
|----------------------------------------------|-------------------------------|------------------------------------------|-------------------------|--------------------|---------------|--------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Metho<br>Inspection<br>Cable Percu           | n Pit                         | Plant Used<br>3T Excavator<br>Dando 3000 | 7op (m)<br>0.00<br>1.50 | Base<br>1.5<br>21. | 50            |              | 97.32 E                             | Final Depth: 21.00 m Start Date: 05/01/2023 Driller: CC                                                                                                                                                                                           | Sheet 2 of<br>Scale: 1:4 |
|                                              | la , ,                        |                                          |                         | Casing             | Water         |              | 93.66 N                             | Elevation: 3.42 mOD End Date: 11/01/2023 Logger: RS                                                                                                                                                                                               | DRAFT                    |
| Depth<br>(m)                                 | Sample /<br>Tests             | Field Record                             | ls                      | Depth<br>(m)       | Depth<br>(m)  | Level<br>mOD | Depth<br>(m)                        | Legend Description  MADE GROUND: Medium dense locally dense brown fine to coa                                                                                                                                                                     | ਬੱਢ Backfill             |
| .50<br>.50 - 8.50<br>.50                     | ES18<br>B35                   | PID = 0.10ppm                            |                         |                    |               | -4.08        | 7.50                                | SAND and subangular fine to coarse GRAVEL with low cobble co<br>and fragments of red brick. Cobbles are subangular.  MADE GROUND: Medium dense brown very sandy slightly silty<br>subangular fine to coarse GRAVEL with fragments of red brick ar | ntent                    |
| .00<br>.00<br>.00 - 8.45                     | D36<br>ES19<br>SPT (C)        | N=14 (2,2/3,3,4,4) Ha                    | ımmer SN =              | 8.00               | 5.60          |              | -<br>-<br>-                         | concrete. Sand is fine to coarse.                                                                                                                                                                                                                 |                          |
| 00<br>50<br>50 - 9.50<br>50                  | ES20<br>B37                   | PID = 0.30ppm PID = 0.10ppm              |                         |                    |               |              | -<br>-<br>-                         |                                                                                                                                                                                                                                                   |                          |
| 00<br>00                                     | ES21                          | Seepage at 8.60m PID = 0.20ppm           |                         |                    |               |              | -                                   |                                                                                                                                                                                                                                                   |                          |
| 50<br>50<br>50 - 9.95                        | D38<br>ES22<br>SPT (C)        | N=19 (3,3/5,7,4,3) Ha                    | ımmer SN =              | 9.50               | 5.10          |              | -                                   |                                                                                                                                                                                                                                                   |                          |
| 50<br>0.00<br>0.00 - 11.00<br>0.00           | ES23<br>B39                   | PID = 0.40ppm PID = 0.30ppm              |                         |                    |               |              | -<br> -<br> -<br> -                 |                                                                                                                                                                                                                                                   | 3                        |
| 0.50<br>0.50                                 | ES24                          | PID = 0.20ppm                            |                         |                    |               |              | -                                   |                                                                                                                                                                                                                                                   | 2                        |
| 1.00<br>1.00<br>1.00 - 12.00<br>1.00 - 11.45 | D40<br>ES25<br>B53<br>SPT (C) | N=23 (3,4/4,5,6,8) Ha                    | ımmer SN =              | 11.0               | 4.70          | -7.58        | -<br>-<br>11.00<br>-<br>-<br>-<br>- | MADE GROUND: Medium dense becoming dense grey sandy slig<br>sitly subangular fine to coarse GRAVEL with low cobble content<br>fragments of red brick and concrete. Sand is fine to coarse. Cobb<br>are subrounded.                                | and                      |
| 1.00<br>1.50<br>2.00                         | ES41<br>ES42                  | PID = 0.30ppm                            |                         |                    |               |              | -<br>-<br>-<br>-<br>-               |                                                                                                                                                                                                                                                   | 1                        |
| .2.50<br>.2.50<br>.2.50 - 12.95              | D54<br>ES43<br>SPT (C)        | N=29 (4,5/7,9,7,6) Ha                    | nmer SN =               | 12.5               | 5.60          |              | -<br>-<br>-<br>-                    |                                                                                                                                                                                                                                                   |                          |
| 3.00<br>3.00 - 14.00                         | ES44<br>B55                   |                                          |                         |                    |               |              | -                                   |                                                                                                                                                                                                                                                   | 2                        |
| 3.50                                         | ES45                          |                                          |                         |                    |               |              | -                                   |                                                                                                                                                                                                                                                   | i                        |
| 4.00<br>4.00<br>4.00 - 14.45                 | D56<br>ES46<br>SPT (C)        | N=32 (6,7/7,9,11,5) F<br>= 0197          | lammer SN               | 14.0               | 7.60          |              | -<br>-<br>-                         |                                                                                                                                                                                                                                                   |                          |
| 4.50                                         | ES47                          |                                          |                         |                    |               |              | -                                   |                                                                                                                                                                                                                                                   |                          |
|                                              |                               | r Strikes                                |                         |                    |               | Details      |                                     | Remarks                                                                                                                                                                                                                                           |                          |
| ruck at (m) Ca<br>4.40<br>8.60               | 4.40<br>8.60                  | n) Time (min) Rose to 20 3.00 20 2.10    | 1.50                    |                    | To (m<br>1.90 |              | e (hh:mm)<br>01:30                  | Machine dug inspection pit excavated to 1.50m.                                                                                                                                                                                                    |                          |
|                                              | e <b>tails</b><br>iameter     |                                          |                         |                    |               |              |                                     |                                                                                                                                                                                                                                                   |                          |
| 13.50<br>21.00                               | 250<br>200                    | 0.50 21.00                               |                         |                    |               |              |                                     | Termination Reason Li                                                                                                                                                                                                                             | ast Updated              |
|                                              |                               |                                          |                         |                    |               |              |                                     |                                                                                                                                                                                                                                                   | 12/06/2023               |

|                                              |                                       | CAUSE                                    | WA<br>TEC | <b>Y</b>   |                                   |              | ject No.<br>1041A                       | Project<br>Client:<br>Client's |                                                                         | nning Desigr       |                | PC Land    | ls                            | Borehole<br>BH130                 |                       |
|----------------------------------------------|---------------------------------------|------------------------------------------|-----------|------------|-----------------------------------|--------------|-----------------------------------------|--------------------------------|-------------------------------------------------------------------------|--------------------|----------------|------------|-------------------------------|-----------------------------------|-----------------------|
| Metho<br>Inspection<br>Cable Percu           | n Pit                                 | Plant Used<br>3T Excavator<br>Dando 3000 | 0.        | .00<br>.50 | 1.50<br>21.00                     | 7188         | 897.32 E<br>093.66 N                    | Final De                       |                                                                         | Start Date:        |                | Driller:   |                               | Sheet 3 of<br>Scale: 1:4<br>DRAFT | 40                    |
| Depth<br>(m)                                 | Sample /<br>Tests                     | Field Reco                               | ords      | Ca         | sing Water<br>pth Depth<br>m) (m) | Level<br>mOD | Depth<br>(m)                            | Legend                         | '                                                                       | Descr              | iption         |            | Mater                         | Backfill                          |                       |
| 5.00<br>5.00 - 15.80<br>5.50<br>5.50         | ES48<br>B57<br>D58<br>ES49<br>SPT (C) | N=9 (4,5/3,2,2,2) H<br>0197              | Hammer S  |            |                                   |              | -                                       | ×××<br>×××<br>×××<br>×××       | MADE GROUND: M sitly subangular find fragments of red brare subrounded. | e to coarse GRA    | VEL with low c | obble cont | ly slightly<br>tent and       |                                   | 15.0 · 15.5           |
| 7.00<br>7.00<br>7.00 - 17.45<br>7.10 - 18.00 |                                       | N=19 (1,3/4,5,5,5)<br>0197               | Hammer    | - SN = 1   | 7.0 4.70                          | -13.68       | 3 - 17.10                               | ×××<br>×××<br>××××<br>××××     | Medium dense grees subrounded fine.                                     | y gravelly fine to | o coarse SAND. | Gravel is  |                               |                                   | 17.0 <b>-</b><br>17.5 |
| 8.50<br>8.50 - 18.95                         | D62<br>SPT (C)                        | N=23 (2,2/4,6,6,7)<br>0197               | Hammer    | · SN = 1   | 3.5 5.30                          | -15.48       | -<br>-<br>-<br>-<br>-<br>-<br>3 - 18.90 |                                | Stiff grey silty CLAY.                                                  |                    |                |            |                               |                                   | 18.5                  |
| 9.50 - 19.95                                 | U63                                   | Ublow=21 100% Re                         | ecovery   | 1          | 9.5 7.60                          |              | -<br>-<br>-<br>-<br>-<br>-<br>-         |                                |                                                                         |                    |                |            |                               |                                   | 19.5<br>20.0 -        |
| 1.00 - 21.45                                 | SPT (S)                               | N=21 (3,4/5,5,5,6)<br>0197               | Hammer    | · SN = 2   | 1.0 9.10                          | -17.58       | 3 - 21.00                               |                                |                                                                         | End of Boreh       | ole at 21.00m  |            |                               |                                   | 21.0 -                |
| 4.40<br>8.60                                 | sing to (m<br>4.40<br>8.60            | 20 2. Water Adde                         | 00        |            | То                                | ng Detai     | ils<br>ime (hh:mm)<br>01:30             | Remarks<br>Machine o           | ;<br>dug inspection pit exc                                             | cavated to 1.50r   | n.             |            |                               |                                   |                       |
| 13.50 21.00                                  | 250<br>200                            |                                          | 00        |            |                                   |              |                                         |                                | tion Reason  d at scheduled depth                                       | n.                 |                |            | <b>Last Upda</b><br>12/06/202 |                                   | 4                     |

| Method<br>Inspection                        |                                                                                                                                                     | ——GEOT                                                                                                                                                                                                                                                                                                                                       | AY<br>ECH          |                        |                       | 22-10            | 041A             | Client:  |                                                                                                                                                            | ort Compai                                                                                                                               | ny (DPC)                                                                                                            |                                                        |                           |        | BH13              | 1                                   |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|-----------------------|------------------|------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|--------|-------------------|-------------------------------------|
| •                                           |                                                                                                                                                     | Plant Used                                                                                                                                                                                                                                                                                                                                   | Top (m)            | Base                   | (m)                   | Coordi           | inates           | Final De | 17.00 m                                                                                                                                                    | Start Data:                                                                                                                              | 09/01/2023                                                                                                          | Driller:                                               |                           | S      | Sheet 1 c         | of 3                                |
| Cable Percu                                 |                                                                                                                                                     | 3T Excavator<br>Dando 3000                                                                                                                                                                                                                                                                                                                   | 0.00<br>1.50       | 1.5                    |                       | 718910<br>734091 |                  | Elevatio | •                                                                                                                                                          |                                                                                                                                          | 17/01/2023                                                                                                          | Logger:                                                |                           |        | Scale: 1:<br>DRAF |                                     |
| Depth<br>(m)                                | Sample /<br>Tests                                                                                                                                   | Field Records                                                                                                                                                                                                                                                                                                                                | 5                  | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD     | Depth<br>(m)     | Legend   | ,                                                                                                                                                          | Des                                                                                                                                      | cription                                                                                                            |                                                        | 1                         | Water  | Backfill          | Γ                                   |
| (m)  0.50 0.50 0.50 1.00 1.00 1.50 1.50 1.5 | Tests  B1 ES2  B3 ES4  B5 ES6 ES19  D20 ES7 SPT (C)  ES8  D22 ES9 B21 SPT (C)  ES10  D23 ES11 B24 SPT (C)  ES12  D25 ES13 SPT (C)  D25 ES13 SPT (C) | PID = 6.00ppm  PID = 4.50ppm  PID = 1.10ppm  N=49 (4,6/9,11,13,16) SN = 0197 PID = 0.60ppm  PID = 0.30ppm  N=42 (7,8/9,9,11,13) IS SN = 0197 PID = 0.10ppm  PID = 0.10ppm  PID = 0.10ppm  PID = 0.70ppm  N=30 (4,6/9,6,7,8) Hai 0197 PID = 0.20ppm  PID = 0.10ppm  PID = 0.10ppm  PID = 0.10ppm  PID = 0.10ppm  PID = 0.20ppm  PID = 0.10ppm | Hammer Hammer SN = | 2.00<br>3.00           | 1.00<br>2.30          |                  |                  | Legend   | BITMAC CONCRETE  MADE GROUND: Br SAND. Gravel is rou MADE GROUND: Br cobble content. Gra rounded.  MADE GROUND: M subangular fine to o fragments of red br | ownish yellow<br>nded fine to c<br>own gravelly s<br>avel is rounded<br>to constitute the constitute of the<br>edium dense coarse GRAVEI | y gravelly silty ve<br>oarse.<br>silty fine to coarse<br>d fine to coarse.<br>greyish brown sa<br>L with low cobble | se SAND wi<br>Cobbles ar<br>andy slightle<br>content a | th low e  y silty and ed. | Market |                   | 0.5 1.0 1.5 2.0 2.5 3.0 4.5 5.0 6.5 |
| 00                                          |                                                                                                                                                     | PID = 0.10ppm                                                                                                                                                                                                                                                                                                                                |                    |                        |                       |                  | -                | ******   |                                                                                                                                                            |                                                                                                                                          |                                                                                                                     |                                                        |                           |        |                   | 1                                   |
|                                             | Water                                                                                                                                               | Strikes                                                                                                                                                                                                                                                                                                                                      |                    | Chise                  | elling (              | Details          |                  | Remarks  | <u> </u>                                                                                                                                                   |                                                                                                                                          |                                                                                                                     |                                                        |                           |        | 1                 | _                                   |
| 6.30 Casing De                              | sing to (m<br>6.30                                                                                                                                  | Time (min)   Rose to (                                                                                                                                                                                                                                                                                                                       | 7.60               | (m)                    | To (m<br>8.00         | ) Time           | (hh:mm)<br>01:00 |          | dug inspection pit exc                                                                                                                                     | avated to 1.50                                                                                                                           | )m.                                                                                                                 |                                                        |                           |        |                   |                                     |
|                                             |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                              |                    |                        |                       |                  |                  | Terminat | tion Reason                                                                                                                                                |                                                                                                                                          |                                                                                                                     |                                                        | Last Up                   | date   | ed 🔳              | <b>-</b>                            |
|                                             |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                              |                    |                        |                       |                  |                  |          | ed on refusal.                                                                                                                                             |                                                                                                                                          |                                                                                                                     |                                                        | 12/06/                    |        |                   | ᅻ                                   |

|                                          |                           | CAUSEV                                 |              |                        |                       |              | ect No.<br>1041A     | Project<br>Client:<br>Client's |                                                                                       | nning Desig<br>ort Compar       |                                       | PC Land     | S       | В     | orehole<br>BH13:  |      |
|------------------------------------------|---------------------------|----------------------------------------|--------------|------------------------|-----------------------|--------------|----------------------|--------------------------------|---------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|-------------|---------|-------|-------------------|------|
| Metho                                    |                           | Plant Used                             | Top (m)      | _                      |                       | Cooi         | rdinates             | Final De                       | enth: 17.00 m                                                                         | Start Date:                     | 09/01/2023                            | Driller:    | CC      | S     | heet 2 o          | ıf 3 |
| Inspectio<br>Cable Perc                  |                           | 3T Excavator<br>Dando 3000             | 0.00<br>1.50 |                        | .00                   |              | 910.51 E<br>991.75 N | Elevatio                       |                                                                                       |                                 | 17/01/2023                            | Logger:     |         |       | Scale: 1:<br>DRAF |      |
| Depth<br>(m)                             | Sample /<br>Tests         | Field Record                           | ls           | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)         | Legend                         | ,                                                                                     | Des                             | cription                              | ļ           | ı       | Water | Backfill          |      |
| 7.50<br>7.50                             | ES17                      | PID = 0.10ppm                          |              |                        |                       |              | -                    |                                | MADE GROUND: M<br>subangular fine to o<br>fragments of red br                         | coarse GRAVEI                   | with low cobble                       | e content a | and     |       |                   | 7.5  |
| 3.00<br>3.00<br>3.00 - 8.45              | D29<br>ES18<br>SPT (C)    | N=20 (2,4/5,6,4,5) Ha                  | ımmer SN =   | 8.00                   | 2.30                  | -4.59        | - 8.00               |                                | MADE GROUND: M<br>very sandy slightly s<br>cobble content and<br>to coarse. Cobbles a | silty subangula<br>fragments of | ar fine to coarse<br>red brick and co | GRAVEL w    | ith low |       |                   | 8.0  |
| 3.00<br>3.50<br>3.50 - 9.50<br>3.50      | ES30<br>B43               | PID = 0.10ppm  PID = 0.20ppm           |              |                        |                       |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 8.5  |
| 9.00<br>9.00                             | ES31                      | PID = 0.00ppm                          |              |                        |                       |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 9.0  |
| 9.50<br>9.50<br>9.50 - 9.95              | D44<br>ES32<br>SPT (C)    | N=37 (6,6/7,9,10,11)<br>SN = 0197      | Hammer       | 9.50                   | 4.70                  |              |                      |                                |                                                                                       |                                 |                                       |             |         |       |                   | 9.5  |
| 9.50<br>L0.00<br>L0.00 - 11.00<br>L0.00  | ES33<br>B45               | PID = 0.10ppm                          |              |                        |                       |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 10.0 |
| .0.50<br>.0.50                           | ES34                      | PID = 0.00ppm<br>PID = 0.00ppm         |              |                        |                       |              | -<br>-<br>-          |                                |                                                                                       |                                 |                                       |             |         |       |                   | 10.5 |
| .1.00<br>.1.00<br>.1.00 - 11.45          | D46<br>ES35<br>SPT (C)    | N=20 (7,6/6,5,5,4) Ha                  | ımmer SN =   | = 11.0                 | 6.10                  |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 11.0 |
| 11.00<br>11.50<br>11.50 - 12.50<br>11.50 | ES36<br>B47               | 0197<br>PID = 0.10ppm<br>PID = 0.00ppm |              |                        |                       |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 11.5 |
| 12.00                                    |                           | PID = 0.10ppm                          |              |                        |                       |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 12.0 |
| 12.50<br>12.50<br>12.50 - 12.95          | D48<br>ES37<br>SPT (C)    | N=29 (8,9/9,10,5,5) H<br>= 0197        | lammer SN    | 12.5                   | 7.00                  |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 12.5 |
| 12.50<br>13.00<br>13.00 - 14.00<br>13.00 | ES38<br>B49               | PID = 0.30ppm                          |              |                        |                       |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 13.0 |
| 13.50<br>13.50<br>13.50                  | ES39                      | PID = 0.20ppm                          |              |                        |                       |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 13.5 |
| 14.00<br>14.00<br>14.00 - 14.45          | D50<br>ES40<br>SPT (C)    | N=26 (3,4/5,5,7,9) Ha                  | ımmer SN =   | 14.0                   | 7.30                  |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 14.0 |
| 14.00<br>14.50<br>14.50                  | ES41                      | PID = 0.10ppm PID = 0.10ppm            |              |                        |                       |              | -                    |                                |                                                                                       |                                 |                                       |             |         |       |                   | 14.5 |
|                                          | asing to (m               | r Strikes  n) Time (min) Rose to       |              | (m)                    | To (r                 |              | me (hh:mm)           | Remarks<br>Machine             | i<br>dug inspection pit exc                                                           | avated to 1.50                  | )m.                                   |             |         |       |                   |      |
| 6.30                                     | 6.30                      | 20 1.70                                | 7.6          | 0                      | 8.0                   | 0            | 01:00                |                                |                                                                                       |                                 |                                       |             |         |       |                   |      |
| Casing Do                                | <b>etails</b><br>Diameter | Water Added From (m) To (m             | )            |                        |                       |              |                      |                                |                                                                                       |                                 |                                       |             |         |       |                   |      |
|                                          |                           |                                        |              |                        |                       |              |                      | Terminat                       | tion Reason                                                                           |                                 |                                       |             | Last Up | date  | ed                |      |
|                                          |                           |                                        |              |                        |                       |              |                      | Terminate                      | ed on refusal.                                                                        |                                 |                                       |             | 12/06/  | /2023 | A                 | H    |

|                                                  |                               | CAUSEN                                     | ECH             |                        |                       |              | ct No.<br><b>041A</b>  | Client:              |                                                                                       | nning Desig                                        |                                              | irc Land                | 5                     | В     | orehole         |        |
|--------------------------------------------------|-------------------------------|--------------------------------------------|-----------------|------------------------|-----------------------|--------------|------------------------|----------------------|---------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------|-----------------------|-------|-----------------|--------|
| Metho<br>Inspection                              |                               | Plant Used<br>3T Excavator                 | Top (m)<br>0.00 | Base<br>1.5            | -                     | Coord        | inates                 | Final De             | <b>epth:</b> 17.00 m                                                                  | Start Date:                                        | 09/01/2023                                   | Driller:                | CC                    |       | Sheet 3 c       |        |
| Cable Percu                                      |                               | Dando 3000                                 | 1.50            | 17.                    |                       |              | 0.51 E<br>1.75 N       | Elevatio             | on: 3.41 mOD                                                                          | End Date:                                          | 17/01/2023                                   | Logger:                 | RS                    |       | Scale: 1:  DRAF |        |
| Depth<br>(m)                                     | Sample /<br>Tests             | Field Records                              | 5               | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)           | Legend               | '                                                                                     | Des                                                | cription                                     | *                       |                       | Water | Backfill        |        |
| 15.00<br>15.00                                   | ES42                          | PID = 0.00ppm                              |                 |                        |                       | -11.99       | - 15.40                |                      | MADE GROUND: M<br>very sandy slightly s<br>cobble content and<br>to coarse. Cobbles a | silty subangula<br>I fragments of<br>are subrounde | ar fine to coarse<br>red brick and co<br>ed. | GRAVEL w<br>ncrete. Sai | ith low<br>nd is fine |       |                 | 15.0 — |
| .5.50<br>.5.50<br>.5.50 - 16.50<br>.5.50 - 15.95 | D55<br>ES51<br>B54<br>SPT (C) | N=44 (5,7/9,11,11,13)<br>SN = 0197         | Hammer          | 15.5                   | 3.30                  | 11.33        | -                      |                      | Dense grey sandy s<br>to coarse.                                                      | ubrounded fin                                      | ne to medium GF                              | RAVEL. San              | d is fine             |       |                 | 15.5   |
| .5.50<br>.6.00                                   | ES52                          | PID = 0.10ppm                              |                 |                        |                       |              | -                      |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 |        |
| 16.00                                            |                               | PID = 0.20ppm                              |                 |                        |                       |              | <u> </u>               |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 |        |
| 16.50<br>16.50                                   | ES53                          | PID = 0.20ppm                              |                 |                        |                       |              | -<br>-<br>-<br>-       |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 | 16.5   |
| 17.00<br>17.00 - 17.45                           | D56<br>SPT (C)                | N=45 (4,5/8,12,13,12)<br>SN = 0197         | Hammer          | 17.0                   | 4.70                  | -13.59       | - 17.00<br>-<br>-<br>- |                      |                                                                                       | End of Bore                                        | hole at 17.00m                               |                         |                       |       |                 | 17.0   |
|                                                  |                               |                                            |                 |                        |                       |              | -<br>-<br>-            |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 | 17.5   |
|                                                  |                               |                                            |                 |                        |                       |              | -<br>-<br>-            |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 | 18.0 - |
|                                                  |                               |                                            |                 |                        |                       |              | -<br>-<br>-            |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 | 18.5   |
|                                                  |                               |                                            |                 |                        |                       |              | _<br>_<br>-            |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 | 19.0 — |
|                                                  |                               |                                            |                 |                        |                       |              | -<br>-<br>-            |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 | 19.5   |
|                                                  |                               |                                            |                 |                        |                       |              | -<br>-<br>-<br>-       |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 | 20.0 - |
|                                                  |                               |                                            |                 |                        |                       |              | -<br>-<br>-            |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 | 20.5   |
|                                                  |                               |                                            |                 |                        |                       |              | -<br>-<br>-            |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 | 21.0 - |
|                                                  |                               |                                            |                 |                        |                       |              | -                      |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 | 21.5   |
|                                                  |                               |                                            |                 |                        |                       |              | -                      |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 |        |
| ruck at (m) Ca<br>6.30                           |                               | r Strikes  D) Time (min) Rose to ( 20 1.70 | m) From 7.6     | (m)                    | To (r<br>8.00         |              | e (hh:mm)<br>01:00     | Remarks<br>Machine o | dug inspection pit exc                                                                | cavated to 1.50                                    | Dm.                                          |                         |                       |       |                 |        |
| Casing De                                        | etails                        | Water Added                                |                 |                        |                       |              |                        |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 |        |
| To (m)                                           | Diameter                      | From (m) To (m)                            | -               |                        |                       |              |                        |                      |                                                                                       |                                                    |                                              |                         |                       |       |                 |        |
|                                                  |                               |                                            |                 |                        |                       |              |                        | Terminat             | tion Reason                                                                           |                                                    |                                              |                         | Last Up               | date  | ed              | J      |
|                                                  |                               |                                            |                 |                        |                       |              |                        | Terminate            | d on refusal.                                                                         |                                                    |                                              |                         | 12/06/                | 2023  | $\mathbf{A}$    | H      |



# APPENDIX C CORE PHOTOGRAPHS





BH101 Box 1: 16.50-18.00m



BH101 Box 2: 18.00-19.50m



BH101 Box 3: 19.50-21.00m



BH101 Box 4: 22.00-22.50m



BH101 Box 5: 22.50-24.00m



#### **3FM Planning Design GI Lot A DPC Lands**



BH101 Box 6: 24.00-25.50m



BH101 Box 7: 25.50-27.00m



BH101 Box 8: 27.00-28.50m



BH101 Box 9: 28.50-30.00m



Report No.: 22-1041A



BH120 Box 1: 29.00-30.50m



BH120 Box 2: 30.50-32.00m



BH120 Box 3: 32.00-33.50m



BH120 Box 4: 33.50-35.00m



BH120 Box 5: 35.00-36.50m





BH120 Box 1: 36.50-38.00m



BH120 Box 7: 38.00-39.50m



BH120 Box 8: 39.50-40.50m



BH123 Box 1: 27.50-29.00m



BH123 Box 2: 29.00-30.50m



BH123 Box 3: 30.50-32.00m



BH123 Box 4: 32.00-33.50m



BH123 Box 1: 33.50-35.00m



#### **3FM Planning Design GI Lot A DPC Lands**



BH123 Box 1: 35.00-36.50m



BH123 Box 7: 36.50-38.00m



BH123 Box 8: 38.00-39.50m



BH123 Box 9: 39.50-41.00m



Report No.: 22-1041A



BH124 Box 1: 20.50-23.50m



BH124 Box 2: 23.50-26.50m



BH124 Box 3: 26.50-29.50m



BH124 Box 4: 29.50-32.50m



BH124 Box 5: 32.50-37.00m



### **3FM Planning Design GI Lot A DPC Lands**

BH124 Box 6: 37.00-38.50m



BH124 Box 7: 38.50-40.00m

Report No.: 22-1041A



BH125 Box 1: 21.50-23.00m



BH125 Box 2: 23.00-24.50m



BH125 Box 3: 24.50-26.00m



BH125 Box 4: 26.00-27.50m



BH125 Box 5: 27.50-29.00m & 29.00-30.50m





BH125 Box 6: 30.50-32.00m



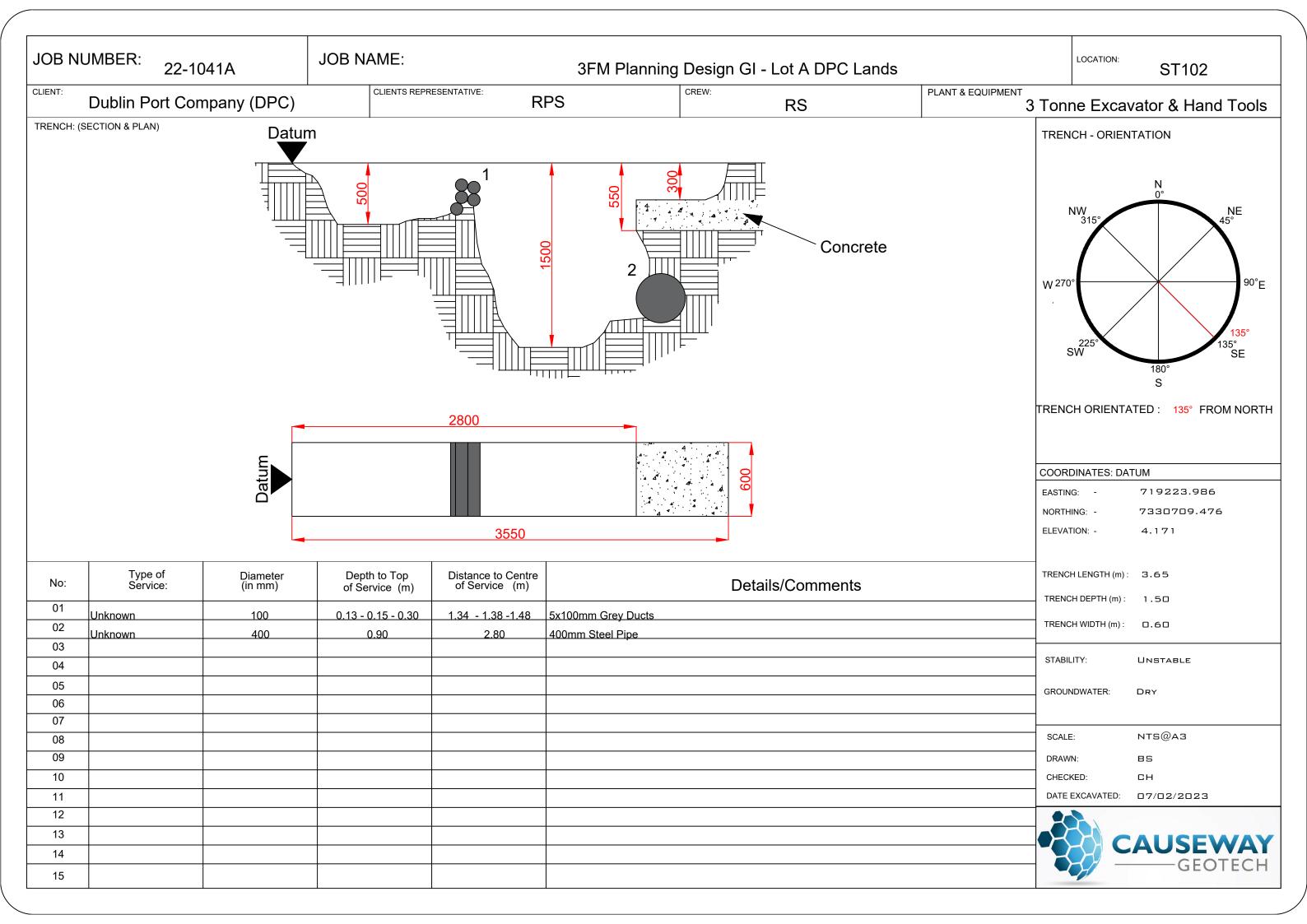
BH125 Box 7: 32.00-33.50m



BH125 Box 8: 33.50-35.00m



BH125 Box 9: 35.00-36.50m






## APPENDIX D SLIT TRENCH LOGS AND DRAWINGS



| 0-0                        |           |                           | Pro      | ject No.                          | Project  | t Name:                                                        | Т            | rial Pit ID |
|----------------------------|-----------|---------------------------|----------|-----------------------------------|----------|----------------------------------------------------------------|--------------|-------------|
|                            | CALL      | CEVA/AV                   |          | -1041A                            | 1        | anning Design GI - Lot A DPC Lands                             |              |             |
| CAUSEWAY<br>GEOTECH        |           | H                         |          | Client: Dublin Port Company (DPC) |          |                                                                | ST102        |             |
| ——GEOTECH                  |           |                           |          |                                   |          |                                                                |              |             |
| Method:                    |           |                           |          | 222.99 E                          | 1        | s Representative:                                              | SI           | neet 1 of 1 |
| Slit Trenching             |           | 7337                      | 709.48 N | RPS                               | ·        |                                                                | Scale: 1:25  |             |
| Plant:                     |           |                           | Ele      | vation                            | Date:    | Logger:                                                        |              |             |
| 3t Tracked Exc             | avator    |                           | 4.1      | 7 mOD                             | 07/02/   |                                                                |              | FINAL       |
| Depth                      | Sample /  | Field Records             | Level    | Depth                             | Legend   | Description                                                    | Water        |             |
| (m)                        | Tests     | Tield Records             | (mOD)    | (m)                               | Zegena   | MADE GROUND: Dark brownish grey sandy silty rounded fine to    |              |             |
|                            |           |                           |          | -                                 |          | GRAVEL with frequent fragments of red brick and concrete. Sand | d fine to    | -           |
|                            |           |                           |          | -                                 |          | coarse.                                                        |              |             |
|                            |           |                           |          | Ē                                 |          |                                                                |              |             |
| 0.50 - 0.50                | B4        |                           |          | -                                 |          |                                                                |              | 0.5 —       |
| 0.50 - 0.50                | ES1       |                           |          | -                                 |          |                                                                |              | _           |
| 0.50                       |           | PID = 0.10ppm             |          | -                                 |          |                                                                |              | -           |
|                            |           |                           |          | -                                 |          |                                                                |              | -           |
| 1.00 - 1.00                | B5        |                           |          | E                                 |          |                                                                |              | 1.0 —       |
| 1.00 - 1.00                | ES2       |                           |          | -                                 |          |                                                                |              | 1.0         |
| 1.00                       |           | PID = 0.00ppm             |          | -                                 |          |                                                                |              | -           |
|                            |           |                           |          | E                                 |          |                                                                |              | -           |
|                            |           |                           |          |                                   |          |                                                                |              | -           |
| 1.50 - 1.50<br>1.50 - 1.50 | B6<br>ES3 |                           | 2.67     | 1.50                              | Paraxxx  | End of trial pit at 1.50m                                      |              | 1.5 —       |
| 1.50                       |           | PID = 0.10ppm             |          | -                                 |          |                                                                |              | -           |
|                            |           |                           |          | Ė                                 |          |                                                                |              | -           |
|                            |           |                           |          |                                   |          |                                                                |              | -           |
|                            |           |                           |          | -                                 |          |                                                                |              | 2.0         |
|                            |           |                           |          | -                                 |          |                                                                |              |             |
|                            |           |                           |          | -                                 |          |                                                                |              | _           |
|                            |           |                           |          | Ė                                 |          |                                                                |              | -           |
|                            |           |                           |          | -                                 |          |                                                                |              | 2.5 —       |
|                            |           |                           |          | -                                 |          |                                                                |              | _           |
|                            |           |                           |          |                                   |          |                                                                |              |             |
|                            |           |                           |          | -                                 |          |                                                                |              | -           |
|                            |           |                           |          | -                                 |          |                                                                |              | 3.0         |
|                            |           |                           |          | -                                 |          |                                                                |              | -           |
|                            |           |                           |          | -                                 |          |                                                                |              |             |
|                            |           |                           |          | -                                 |          |                                                                |              | _           |
|                            |           |                           |          | E                                 |          |                                                                |              | 3.5 —       |
|                            |           |                           |          | -                                 |          |                                                                |              | -           |
|                            |           |                           |          | _                                 |          |                                                                |              | -           |
|                            |           |                           |          | -                                 |          |                                                                |              |             |
|                            |           |                           |          | -                                 |          |                                                                |              | 4.0         |
|                            |           |                           |          | -                                 |          |                                                                |              | -           |
|                            |           |                           |          | Ė                                 |          |                                                                |              |             |
|                            |           |                           |          |                                   |          |                                                                |              |             |
|                            |           |                           |          | -                                 |          |                                                                |              | 4.5 —       |
|                            |           |                           |          | -                                 |          |                                                                |              | -           |
|                            |           |                           |          | -                                 |          |                                                                |              | -           |
|                            |           |                           |          | -                                 |          |                                                                |              |             |
|                            |           |                           |          | -                                 |          |                                                                |              |             |
| Wate                       | r Strikes | Barrell 150               |          | marks:                            |          | <u>I</u>                                                       |              |             |
| Struck at (m)              | Remark    | Depth: 1.50 Width: 0.60   | No       | groundwat                         | er encou | ntered.                                                        |              |             |
|                            |           | Width: 0.60  Length: 3.55 |          |                                   |          |                                                                |              |             |
|                            |           |                           |          | mination R                        |          | Т                                                              | l oct 11:1-1 | .d          |
|                            |           | Stability:                |          |                                   |          |                                                                | Last Update  |             |
| i                          | 1         | Unstable                  | Terr     | ninated at m                      | aximum r | each of excavator.                                             | 14/04/2023   | AGS         |



|                     | Y. Carlotte and the second |                     | Proi           | ect No.               | Project                   | : Name:                                                                       |                     | т         | rial Pit ID  |
|---------------------|----------------------------|---------------------|----------------|-----------------------|---------------------------|-------------------------------------------------------------------------------|---------------------|-----------|--------------|
| A ROA               |                            |                     |                | 1041A                 |                           | anning Design GI - Lot A DPC Lands                                            |                     |           | ilui i i i i |
| CAUSEWAY ——GEOTECH  |                            | Coordinates         |                | Client:               |                           |                                                                               |                     | ST104     |              |
|                     |                            | GEOTECH             |                |                       | Dublin Port Company (DPC) |                                                                               |                     |           |              |
| Method:             |                            |                     |                | 10.72 E               | Client's                  | s Representative:                                                             |                     | Sł        | neet 1 of 1  |
| Slit Trenching      |                            |                     | /338           | 51.66 N               | RPS                       |                                                                               |                     | S         | cale: 1:25   |
| Plant:              |                            |                     |                | vation                | Date:                     |                                                                               | Logger:             |           | FINAL        |
| 3t Tracked Exc      |                            |                     |                | 8 mOD                 | 08/12/                    | 2022                                                                          | RS                  |           | TINAL        |
| Depth<br>(m)        | Sample /<br>Tests          | Field Records       | Level<br>(mOD) | Depth<br>(m)          | Legend                    | Description                                                                   |                     | Water     |              |
|                     |                            |                     | 4.48           | 0.10                  |                           | MADE GROUND: Grey sandy very silty angular fine to<br>Sand is fine to coarse. | coarse GRAVEL       |           | _            |
|                     |                            |                     |                | Ė                     |                           | MADE GROUND: Grey sandy silty angular fine to coar                            |                     |           | -            |
|                     |                            |                     |                | -                     |                           | high cobble content and fragments of concrete and re to coarse.               | ea brick. Sana is   | πne       | -            |
| 0.50 - 0.50         | B1                         |                     | 4.13           | 0.45                  |                           | MADE GROUND: Soft brown slightly gravelly sandy SII                           | LT. Sand is fine to | 0         | 0.5 —        |
| 0.50 - 0.50         | ES2                        |                     |                | <u> </u>              |                           | coarse. Gravel is subrounded fine to coarse.                                  |                     |           | -            |
| 0.50                |                            | PID = 0.50ppm       |                | -                     |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                | -                     |                           |                                                                               |                     |           | -            |
| 1.00 - 1.00         | B4                         |                     |                |                       |                           |                                                                               |                     |           | 1.0          |
| 1.00 - 1.00         | ES3                        | DID 0.20mm          |                |                       |                           |                                                                               |                     |           | _            |
| 1.00                |                            | PID = 0.30ppm       |                | [                     |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                | -                     |                           |                                                                               |                     |           | -            |
| 1.50 - 1.50         | В6                         |                     |                | -                     |                           |                                                                               |                     |           | 1.5 —        |
| 1.50 - 1.50<br>1.50 | ES5                        | PID = 0.50ppm       | 2.98           | 1.60                  |                           | End of trial pit at 1.60m                                                     |                     |           | -            |
| 1.50                |                            | 115 – 0.50ррт       |                | -                     |                           | ·                                                                             |                     |           | -            |
|                     |                            |                     |                | [                     |                           |                                                                               |                     |           |              |
|                     |                            |                     |                | -<br>-                |                           |                                                                               |                     |           | 2.0          |
|                     |                            |                     |                | [                     |                           |                                                                               |                     |           | _            |
|                     |                            |                     |                | E                     |                           |                                                                               |                     |           |              |
|                     |                            |                     |                |                       |                           |                                                                               |                     |           | _            |
|                     |                            |                     |                | -                     |                           |                                                                               |                     |           | 2.5 —        |
|                     |                            |                     |                |                       |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                | -                     |                           |                                                                               |                     |           | _            |
|                     |                            |                     |                | -                     |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                | -                     |                           |                                                                               |                     |           | 3.0          |
|                     |                            |                     |                | [                     |                           |                                                                               |                     |           |              |
|                     |                            |                     |                | ŀ                     |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                |                       |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                |                       |                           |                                                                               |                     |           | 3.5 —        |
|                     |                            |                     |                | Ė.                    |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                | <u> </u>              |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                | _                     |                           |                                                                               |                     |           | 4.0 —        |
|                     |                            |                     |                | Ė                     |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                | <u> </u>              |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                | -                     |                           |                                                                               |                     |           |              |
|                     |                            |                     |                | <u> </u>              |                           |                                                                               |                     |           | 4.5 —        |
|                     |                            |                     |                | [                     |                           |                                                                               |                     |           | -            |
|                     |                            |                     |                | <u> </u>              |                           |                                                                               |                     |           |              |
|                     |                            |                     |                | <u> </u>              |                           |                                                                               |                     |           |              |
|                     |                            |                     |                |                       |                           |                                                                               |                     |           |              |
|                     | er Strikes                 | <b>Depth:</b> 1.60  |                | narks:<br>groundwat   | er encou                  | ntered                                                                        |                     |           |              |
| Struck at (m)       | Remarl                     | <b>Width:</b> 0.50  | NO {           | <sub>B</sub> roundWal | er encou                  | mered.                                                                        |                     |           |              |
|                     |                            | <b>Length:</b> 3.35 |                |                       |                           |                                                                               |                     |           |              |
|                     |                            | Stability:          | Terr           | mination R            | leason                    |                                                                               | Las                 | st Update | d I          |
|                     |                            | Unstable            | Tern           | ninated on p          | oit wall coll             | lapse.                                                                        | 1                   | 4/04/2023 | AGS          |

JOB NUMBER: JOB NAME: LOCATION: 22-1041A 3FM Planning Design GI - Lot A DPC Lands ST104 CLIENT: CLIENTS REPRESENTATIVE: CREW: PLANT & EQUIPMENT **Dublin Port Company (DPC)** RS 3 Tonne Excavator & Hand Tools **RPS** TRENCH: (SECTION & PLAN) TRENCH - ORIENTATION Datum 90°E W 270 225 SW 180° S TRENCH ORIENTATED: 255° FROM NORTH COORDINATES: DATUM 3350 719410.716 EASTING: 733851.662 NORTHING: -ELEVATION: -4.578 Type of Service: Distance to Centre of Service (m) Diameter (in mm) TRENCH LENGTH (m): 3.35 Depth to Top **Details/Comments** No: of Service (m) TRENCH DEPTH (m): 1.60 01 No Services Found 02 TRENCH WIDTH (m): 0.50 03 STABILITY: UNSTABLE 04 05 GROUNDWATER: DRY 06 07 NTS@A3 SCALE: 80 09 DRAWN: BS 10 СН DATE EXCAVATED: 08/12/2022 11 12 13

14 15



# APPENDIX E SLIT TRENCH PHOTOGRAPHS





ST102



ST102





ST102



ST102

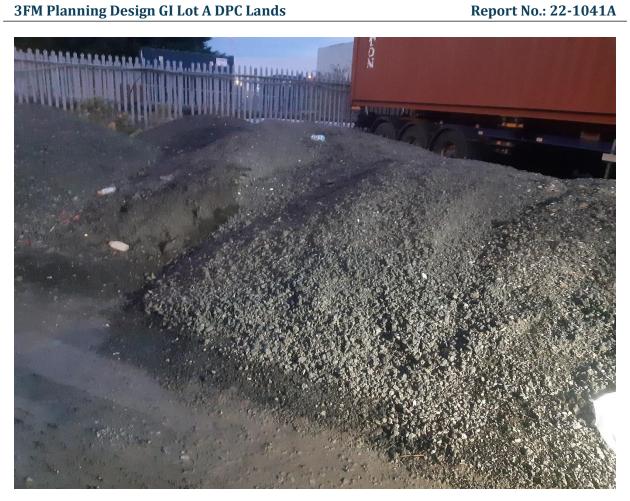




ST102





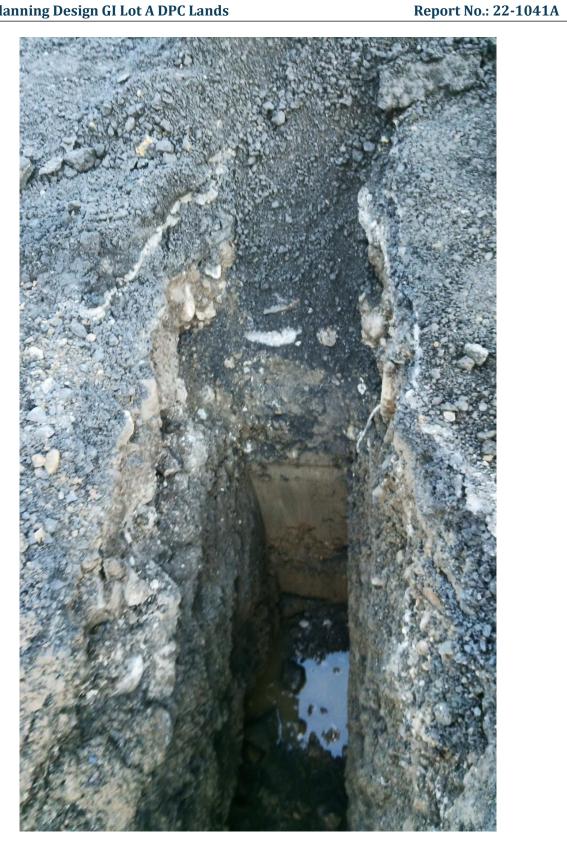

ST102





ST102






ST104



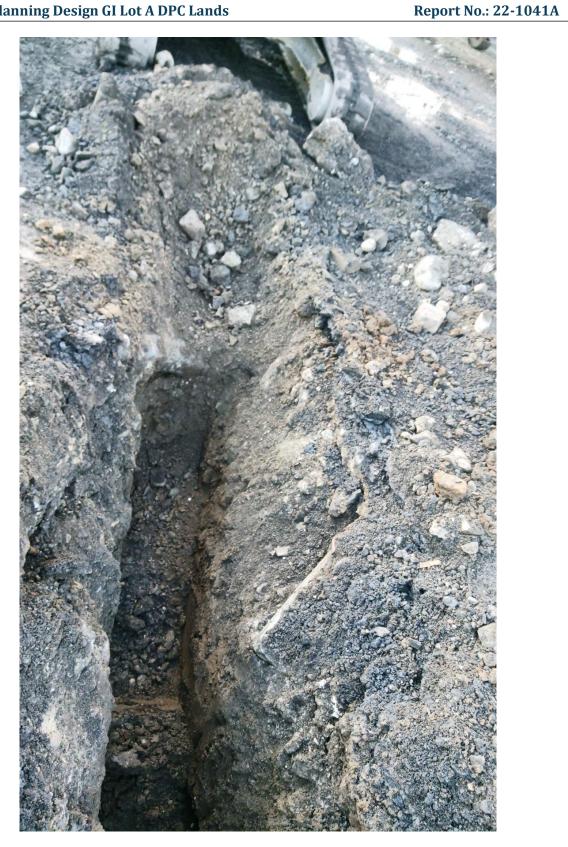
ST104





ST104






ST104



ST104





ST104





ST104



ST104





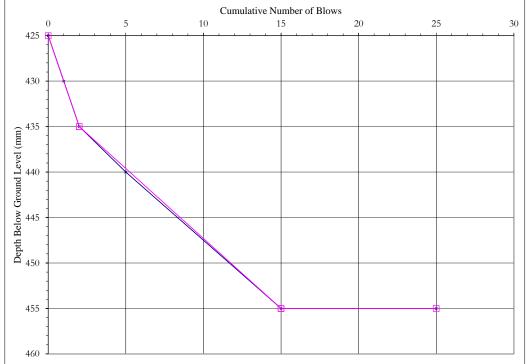
## APPENDIX F INDIRECT IN-SITU CBR TESTS



## **Dynamic Cone Penetrometer (DCP) test results and estimated CBR**

| Project Number | 22-1041A               |  |
|----------------|------------------------|--|
| Project Name   | 3FM Planning Design GI |  |
| Site Location  | Dublin Port South      |  |




| Test Number   | 3FM-RC102 |  |
|---------------|-----------|--|
| Depth bgl (m) | 0.43      |  |

| Date Tested | 14/12/2022   |  |
|-------------|--------------|--|
| Weather     | Dry + Cloudy |  |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |  |
|---------------------|-----------------------------------------------|--|
| Cored TM            | MADE GROUND                                   |  |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 425<br>435                        | 5           | 55         |
| 433                               |             |            |
| 435<br>455                        | 1.5         | >100       |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

CBR Min: #NUM!
Range Max: >100

The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure None

Observations and comments Terminated on refusal.

Approved Name and Appointment

Darren O'Mahony Director Jam O duo 7.

January 2023



## **Dynamic Cone Penetrometer (DCP) test results and estimated CBR**

| Project Number | 22-1041A               |  |
|----------------|------------------------|--|
| Project Name   | 3FM Planning Design GI |  |
| Site Location  | Dublin Port South      |  |




| Test Number   | 3FM-RC104 |  |
|---------------|-----------|--|
| Depth bgl (m) | 0.38      |  |

| Date Tested | 14/12/2022   |  |
|-------------|--------------|--|
| Weather     | Dry + Cloudy |  |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |  |
|---------------------|-----------------------------------------------|--|
| Cored TM            | MADE GROUND                                   |  |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |  |
|-----------------------------------|-------------|------------|--|
| 375                               | 3.8         | 75         |  |
| 405                               | 5.0         | ,,,        |  |
|                                   |             |            |  |
| 405                               | 2.3         | >100       |  |
| 435                               |             |            |  |
| 435                               |             |            |  |
| 495                               | 3           | 95         |  |
|                                   |             |            |  |
| 495                               | 0.3         | >100       |  |
| 498                               | 0.5         | 7100       |  |
|                                   |             |            |  |
|                                   |             |            |  |
|                                   |             |            |  |
|                                   |             |            |  |
|                                   |             |            |  |
|                                   |             |            |  |
|                                   |             |            |  |
|                                   |             |            |  |
|                                   |             |            |  |
|                                   |             |            |  |
|                                   |             |            |  |
|                                   |             |            |  |

| CBR   | Min: 75   |
|-------|-----------|
| Range | Max: >100 |

The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

| Deviation(s) from standard<br>procedure | None |
|-----------------------------------------|------|
|-----------------------------------------|------|

| Observations and comments | Terminated on refusal. |
|---------------------------|------------------------|
|---------------------------|------------------------|

|                             | Approved Name and Appointment |            |
|-----------------------------|-------------------------------|------------|
| Darren O'Mahony<br>Director | Jam O dela 7.                 | April 2023 |





## APPENDIX G PAVEMENT CORES



| _            | RC101              |                            |
|--------------|--------------------|----------------------------|
| Easting      | Northing           | Elevation                  |
| 718186.96    | 734903.82          | 3.68m0D                    |
|              | JSEWAY<br>—GEOTECH |                            |
| Project Name | 1                  | Project Number<br>22–1041A |
| Date 11/4/2  | 3 EH Number        | (C)0)                      |
|              | 0.3                | 0.4 0.5                    |
|              |                    |                            |

| Layer | Depth   | Thickness (mm) | Description                                                                                               | PAK Spray<br>Discoloration |
|-------|---------|----------------|-----------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.198 | 198            | Strong grey CONCRETE. 70-80% aggregate of subangular to subrounded fine to medium gravel. No small voids. | White                      |



|           | RC102     |           |
|-----------|-----------|-----------|
| Easting   | Northing  | Elevation |
| 719243.21 | 733579.44 | 4.18m0D   |



| Layer | Depth     | Thickness (mm) | Description                                                                                                      | PAK Spray<br>Discoloration |
|-------|-----------|----------------|------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.22    | 220            | Strong brownish grey BITMAC. 60-70% aggregate of subangular to subrounded fine to medium gravel. No small voids. | Faint Yellow               |
| 2     | 0.22-0.40 | 180            | Strong black BITMAC. 30-40% aggregate of subangular to subrounded fine to medium gravel. 1-5% small voids        | White                      |





| Layer | Depth  | Thickness | Description                                                                                               | PAK Spray     |
|-------|--------|-----------|-----------------------------------------------------------------------------------------------------------|---------------|
|       |        | (mm)      |                                                                                                           | Discoloration |
| 1     | 0-0.12 | 120       | Strong black BITMAC. 40-50% aggregate of subangular to subrounded fine to medium gravel. 1-5% small voids | Faint Yellow  |



|                       |             | RC104                 |           |                            |                |
|-----------------------|-------------|-----------------------|-----------|----------------------------|----------------|
| Easting               |             | Northing              |           | Elevation                  | 1              |
| 719365.73             |             | 733529.38 3.93m0D     |           | )                          |                |
|                       | CAU         | SEWA<br>GEOTECH       | <b>Y</b>  |                            |                |
| Project               | Name<br>3FM |                       | Pr        | oject Number<br>22 – 1041: | A .            |
| Date                  | 4/4/23      |                       | EH Number | C104                       |                |
| (m)                   | 0.1         | 0.2                   | 0.3       | 0.4                        | 2              |
|                       |             |                       |           |                            |                |
|                       | 413         | and the second second |           |                            | . د.<br>۱۰۰۰ - |
| and the second second |             |                       |           |                            |                |
|                       |             |                       |           |                            |                |
| . 49                  |             |                       |           |                            |                |
|                       | 9.6         | *                     |           |                            |                |
|                       |             |                       |           |                            |                |

| Layer | Depth    | Thickness (mm) | Description                                                                                               | PAK Spray<br>Discoloration |
|-------|----------|----------------|-----------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.21   | 210            | Strong brown CONCRETE. 40-50% aggregate of subangular to subrounded fine to medium gravel. No small voids | Faint Yellow               |
| 2     | 0.21-0.3 | 90             | Strong black BITMAC. 30-40% aggregate of angular to subangular fine to medium gravel. 1-5% small voids.   | Faint Yellow               |





## APPENDIX H GEOTECHNICAL LABORATORY TEST RESULTS





## HEAD OFFICE Causeway Geotech Ltd

8 Drumahiskey Road Ballymoney Co. Antrim, N. Ireland, BT53 7QL NI: +44 (0)28 276 66640

> Registered in Northern Ireland. Company Number: NI610766

#### REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 **ROI**: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

3 April 2023

## SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

| Project Name: | 3FM Planning Design GI - Lot A DPC Lands |
|---------------|------------------------------------------|
| Project No.:  | 22-1041A                                 |
| Client:       | Dublin Port Company (DPC)                |
| Engineer:     | RPS                                      |

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 08/03/2023 and 03/04/2023.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd















**Project Name:** 3FM Planning Design GI - Lot A DPC Lands

**Report Reference:** Schedule 1

The table below details the tests carried out, the specifications used, and the number of tests included in this report. The results contained in this report relate to the sample(s) as received.

Tests marked with\* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

| Material tested | Type of test/Properties<br>measured/Range of<br>measurement                                                                                 | Standard<br>specifications                                                                                | No. of results included in the report |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|
| SOIL            | Moisture Content of Soil                                                                                                                    | BS 1377-2: 1990: Cl 3.2                                                                                   | 18                                    |
| SOIL            | Liquid and Plastic Limits of soil-1 point cone penetrometer method                                                                          | BS 1377-2: 1990: Cl 4.4,<br>5.3 & 5.4                                                                     | 5                                     |
| SOIL            | Liquid and Plastic Limits of soil-4 point cone penetrometer method                                                                          | BS 1377-2: 1990: Cl 4.4,<br>5.3 & 5.4                                                                     | 11                                    |
| SOIL            | Particle size distribution - wet sieving                                                                                                    | BS 1377-2: 1990: Cl 9.2                                                                                   | 21                                    |
| SOIL            | Particle size distribution - sedimentation hydrometer method                                                                                | BS 1377-2: 1990: Cl 9.5                                                                                   | 8                                     |
| SOIL            | California Bearing Ratio (CBR)                                                                                                              | BS 1377-4: 1990: Cl 7                                                                                     | 9                                     |
| SOIL            | Consolidation properties in oedometer - Using 5 pressures (up to 5 days total duration)                                                     | BS 1377-5: 1990: Cl 3: 1                                                                                  | 7                                     |
| SOIL            | Undrained shear strength – triaxial compression without measurement of pore pressure (loads from 0.12 to 24 kN)                             | BS 1377-7: 1990: Cl 8                                                                                     | 7                                     |
| SOIL            | Undrained shear strength – triaxial compression with multistage loading and without measurement of pore pressure (loads from 0.12 to 24 kN) | BS 1377-7: 1990: Cl 9                                                                                     | 1                                     |
| SOIL            | Direct Shear Test using 60mm Small Shearbox (up to 3 days)                                                                                  | BS EN ISO 17892-<br>10:2018                                                                               | 15                                    |
|                 | Extra over days (more than initial 3 days)                                                                                                  |                                                                                                           | 3                                     |
| ROCK            | Point load index                                                                                                                            | ISRM Commission on<br>Testing Methods.<br>Suggested Method for<br>Determining Point Load<br>Strength 1985 | 18                                    |

## **SUB-CONTRACTED TESTS**

In agreement with Client, the following tests were conducted by an approved sub-contractor. All sub-contracting laboratories used are UKAS accredited.

| Material tested                                                 | Type of test/Properties<br>measured/Range of<br>measurement | Standard<br>specifications | No. of results included in the report |
|-----------------------------------------------------------------|-------------------------------------------------------------|----------------------------|---------------------------------------|
| SOIL – Subcontracted to<br>Eurofins Chemtest Ltd (UKAS<br>2183) | pH Value of Soil                                            |                            | 12                                    |
| SOIL – Subcontracted to<br>Eurofins Chemtest Ltd (UKAS<br>2183) | Sulphate Content water extract                              |                            | 12                                    |
| ROCK – subcontracted to<br>MATtest Limited (UKAS 2643)          | Uniaxial Compressive Strength (UCS)                         | ASTM D7012 - 14            | 1                                     |



## **Summary of Classification Test Results**

Project No. Project Name

22-1041A

3FM Planning Design GI - Lot A DPC Lands

|          |     | Sar   | nple  |      |                                                    |              |     | J   | D'               |              | D. | Б  | D1-1-            |                              |
|----------|-----|-------|-------|------|----------------------------------------------------|--------------|-----|-----|------------------|--------------|----|----|------------------|------------------------------|
| Hole No. | Ref | Тор   | Base  | Туре | Specimen Description                               | Dens<br>bulk | dry | W   | Passing<br>425µm | LL           | PL | PI | Particle density | Casagrande<br>Classification |
| BH101    | 15  | 5.00  |       | D    | Grey sandy slightly gravelly silty CLAY.           | Mg/m         | 13  | 16  | 37               | %<br>24 -1pt | 17 | 7  | Mg/m3            | CL                           |
| BH101    | 2   | 19.50 | 21.00 | С    | Grey sandy slightly gravelly silty CLAY.           |              |     | 9.4 | 62               | 29           | 14 | 15 |                  | CL                           |
| BH101    | 4   | 22.50 | 24.00 | С    | Grey sandy slightly gravelly silty CLAY.           |              |     | 7   | 61               | 25           | 12 | 13 |                  | CL                           |
| BH103    | 8   | 3.00  | 3.00  | D    | Grey sandy slightly gravelly silty CLAY.           |              |     | 7.7 | 60               | 26           | 14 | 12 |                  | CL                           |
| BH121    | 32  | 21.50 | 21.95 | U    | Greyish brown sandy slightly gravelly silty CLAY.  |              |     | 21  | 98               | 33           | 17 | 16 |                  | CL                           |
| BH121    | 56  | 25.00 |       | D    | Greyish brown sandy slightly gravelly silty CLAY.  |              |     | 22  | 99               | 34           | 9  | 25 |                  | CL                           |
| BH122    | 9   | 4.00  |       | D    | Greyish brown sandy slightly gravelly clayey SILT. |              |     | 33  | 55               | 53           | 42 | 11 |                  | МН                           |
| BH122    | 44  | 22.00 |       | D    | Greyish brown sandy slightly gravelly silty CLAY.  |              |     | 21  | 98               | 27           | 14 | 13 |                  | CL                           |
| BH123    | 22  | 3.00  |       | D    | Greyish brown sandy gravelly clayey SILT.          |              |     | 20  | 50               | 54           | 38 | 16 |                  | МН                           |
| BH123    | 42  | 19.50 |       | D    | Greyish brown sandy slightly gravelly silty CLAY.  |              |     | 18  | 98               | 31           | 16 | 15 |                  | CL                           |
| BH123    | 44  | 23.00 |       | D    | Greyish brown sandy slightly gravelly silty CLAY.  |              |     | 25  | 100              | 44           | 19 | 25 |                  | CI                           |
| BH124    | 10  | 3.00  |       | D    | Greyish brown sandy slightly gravelly clayey SILT. |              |     | 34  | 51               | 50 -1pt      | 30 | 20 |                  | МІ/МН                        |

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 30/03/2023 wd - water displacement cas - Casagrande method gj - gas jar 10122 wi - immersion in water 1pt - single point test Stephen Watson



## **Summary of Classification Test Results**

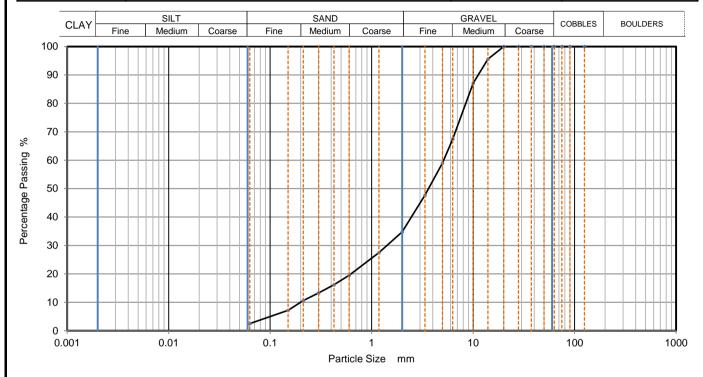
Project Name

22-1041A

3FM Planning Design GI - Lot A DPC Lands

| 22 10    | 1    |            |              |       |                                                                               | I            |            |     |                  |         |    |    |                     |                              |
|----------|------|------------|--------------|-------|-------------------------------------------------------------------------------|--------------|------------|-----|------------------|---------|----|----|---------------------|------------------------------|
| Hole No. | Ref  | Sar<br>Top | nple<br>Base | Туре  | Specimen Description                                                          | Dens<br>bulk | ity<br>dry | W   | Passing<br>425µm | LL      | PL | PI | Particle<br>density | Casagrande<br>Classification |
|          | 1701 | ιορ        | Dasc         | i ype |                                                                               | Mg/m         | 13         | %   | %                | %       | %  | %  | Mg/m3               |                              |
| BH124    | 17   | 5.00       |              | D     | Greyish brown sandy slightly gravelly clayey SILT.                            |              |            | 81  |                  |         |    |    |                     |                              |
| BH125    | 18   | 4.00       |              | D     | Greyish brown sandy slightly gravelly clayey SILT.                            |              |            | 89  | 57               | 56 -1pt | 38 | 18 |                     | МН                           |
| BH125    | 46   | 25.00      |              | D     | Greyish brown sandy slightly gravelly silty CLAY.                             |              |            | 25  | 100              | 42      | 22 | 20 |                     | СІ                           |
| BH130    | 36   | 8.00       |              | D     | Greyish brown slightly sandy slightly silty subangular fine to coarse GRAVEL. |              |            | 5.6 | 17               | 26 -1pt | 15 | 11 |                     | CL                           |
| BH131    | 23   | 4.00       |              | D     | Greyish brown sandy slightly gravelly silty CLAY.                             |              |            | 10  | 17               | 32 -1pt | 23 | 9  |                     | ML/CL                        |
| BH131    | 44   | 9.50       |              | D     | Greyish brown sandy slightly gravelly silty CLAY.                             |              |            | 11  |                  |         |    |    |                     |                              |
|          |      |            |              |       |                                                                               |              |            |     |                  |         |    |    |                     |                              |
|          |      |            |              |       |                                                                               |              |            |     |                  |         |    |    |                     |                              |
|          |      |            |              |       |                                                                               |              |            |     |                  |         |    |    |                     |                              |
|          |      |            |              |       |                                                                               |              |            |     |                  |         |    |    |                     |                              |
|          |      |            |              |       |                                                                               |              |            |     |                  |         |    |    |                     |                              |
|          |      |            |              |       |                                                                               |              |            |     |                  |         |    |    |                     |                              |
|          |      |            |              |       |                                                                               |              |            |     |                  |         |    |    |                     |                              |

All tests performed in accordance with BS1377:1990 unless specified otherwise


LAB 01R Version 6

Stephen Watson

Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 30/03/2023 wd - water displacement cas - Casagrande method gj - gas jar wi - immersion in water 1pt - single point test



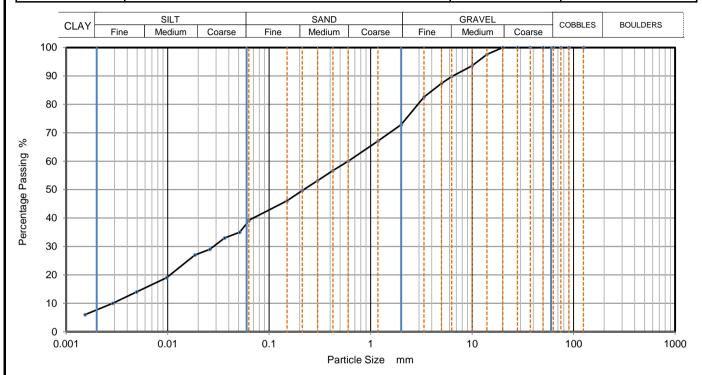
| CAUSEWAY             | DARTICLE CIZE DISTRIBUTION   |                                                            |          |            | Job Ref     |                | 22-1041A |
|----------------------|------------------------------|------------------------------------------------------------|----------|------------|-------------|----------------|----------|
| ——GEOTECH            | PARTICLE SIZE DISTRIBUTION   |                                                            |          | Borehole/P | it No.      | BH101          |          |
| Site Name            | 3FM Planning Design G        | ds                                                         |          | Sample No. |             | 20             |          |
| Specimen Description | Croy slightly grayally sligh | Grey slightly gravelly slightly silty fine to coarse SAND. |          |            |             | Тор            | 8.50     |
| Specimen Description | Grey Siightly gravelly Siigh | itiy siity iiile to coai                                   | se sand. |            | Depth (m)   | Base           | 9.50     |
| Specimen Reference   | 3                            | Specimen<br>Depth                                          | 8.5      | т          | Sample Type |                | В        |
| Test Method          | BS1377:Part 2:1990, clau     |                                                            |          | KeyLAB ID  |             | Caus2023030872 |          |



| Siev             | /ing      | Sedimentation    |           |  |  |  |
|------------------|-----------|------------------|-----------|--|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |  |  |
| 125              | 100       |                  |           |  |  |  |
| 90               | 100       |                  |           |  |  |  |
| 75               | 100       |                  |           |  |  |  |
| 63               | 100       |                  |           |  |  |  |
| 50               | 100       |                  |           |  |  |  |
| 37.5             | 100       |                  |           |  |  |  |
| 28               | 100       |                  |           |  |  |  |
| 20               | 100       |                  |           |  |  |  |
| 14               | 96        |                  |           |  |  |  |
| 10               | 87        |                  |           |  |  |  |
| 6.3              | 68        |                  |           |  |  |  |
| 5                | 59        |                  |           |  |  |  |
| 3.35             | 48        |                  |           |  |  |  |
| 2                | 35        |                  |           |  |  |  |
| 1.18             | 28        |                  |           |  |  |  |
| 0.6              | 20        |                  |           |  |  |  |
| 0.425            | 16        |                  |           |  |  |  |
| 0.3              | 13        |                  |           |  |  |  |
| 0.212            | 11        |                  |           |  |  |  |
| 0.15             | 7         |                  |           |  |  |  |
| 0.063            | 3         |                  |           |  |  |  |

| Dry Mass of sample, g | 509 |
|-----------------------|-----|
|-----------------------|-----|

| Sample Proportions | % dry mass |  |  |  |  |
|--------------------|------------|--|--|--|--|
| Cobbles            | 0.0        |  |  |  |  |
| Gravel             | 65.2       |  |  |  |  |
| Sand               | 32.2       |  |  |  |  |
|                    |            |  |  |  |  |
| Fines <0.063mm     | 3.0        |  |  |  |  |


| Grading Analysis       |    |       |
|------------------------|----|-------|
| D100                   | mm |       |
| D60                    | mm | 5.14  |
| D30                    | mm | 1.42  |
| D10                    | mm | 0.199 |
| Uniformity Coefficient | 26 |       |
| Curvature Coefficient  | 2  |       |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





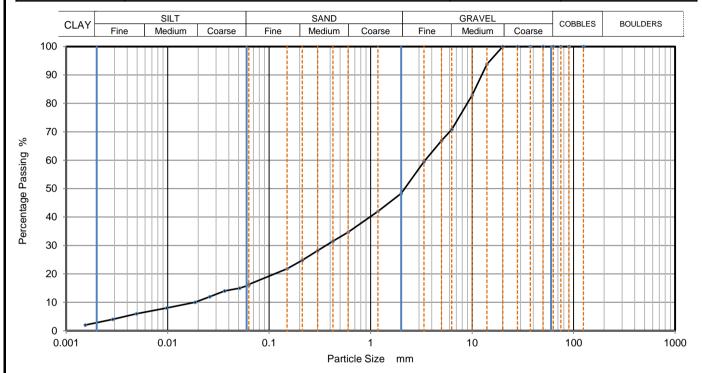
| CAUSEWAY             | DARTICI E CIZE DICEDIDI ITIONI          |                     |            |            | Job Ref     |       | 22-1041A       |
|----------------------|-----------------------------------------|---------------------|------------|------------|-------------|-------|----------------|
| ——GEOTECH            | PARTICLE SIZE DISTRIBUTION              |                     |            | Borehole/F | it No.      | BH101 |                |
| Site Name            | 3FM Planning Design G                   | ds                  | Sample No. |            | 5           |       |                |
| Specimen Description | Grey sandy slightly gravel              | Control III III CAN |            |            |             | Тор   | 24.00          |
| specimen bescription | Grey Saridy Slightly graves             | ily siity CLAT.     |            |            | Depth (m)   | Base  | 25.50          |
| Specimen Reference   | 3                                       | Specimen<br>Depth   | 24         | m          | Sample Type |       | С              |
| Test Method          | BS1377:Part 2:1990, clauses 9.2 and 9.5 |                     |            |            | KeyLAB ID   |       | Caus2023030878 |



| Siev             | ving      | Sedimentation    |           |  |  |
|------------------|-----------|------------------|-----------|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |  |
| 125              | 100       | 0.06300          | 39        |  |  |
| 90               | 100       | 0.05121          | 35        |  |  |
| 75               | 100       | 0.03642          | 33        |  |  |
| 63               | 100       | 0.02606          | 29        |  |  |
| 50               | 100       | 0.01853          | 27        |  |  |
| 37.5             | 100       | 0.00979          | 19        |  |  |
| 28               | 100       | 0.00495          | 14        |  |  |
| 20               | 100       | 0.00289          | 10        |  |  |
| 14               | 98        | 0.00153          | 6         |  |  |
| 10               | 94        |                  |           |  |  |
| 6.3              | 90        |                  |           |  |  |
| 5                | 87        |                  |           |  |  |
| 3.35             | 83        |                  |           |  |  |
| 2                | 73        |                  |           |  |  |
| 1.18             | 67        |                  |           |  |  |
| 0.6              | 60        | Particle density | (assumed) |  |  |
| 0.425            | 57        | 2.65             | Mg/m3     |  |  |
| 0.3              | 53        |                  |           |  |  |
| 0.212            | 50        |                  |           |  |  |
| 0.15             | 46        |                  |           |  |  |
| 0.063            | 39        |                  |           |  |  |

| Dry Mass of sample, g | 505 |
|-----------------------|-----|
|                       | ·   |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 27.1       |
| Sand               | 33.7       |
| Silt               | 31.3       |
| Clay               | 7.9        |


| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 0.601   |
| D30                    | mm | 0.0285  |
| D10                    | mm | 0.00275 |
| Uniformity Coefficient |    | 220     |
| Curvature Coefficient  |    | 0.49    |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





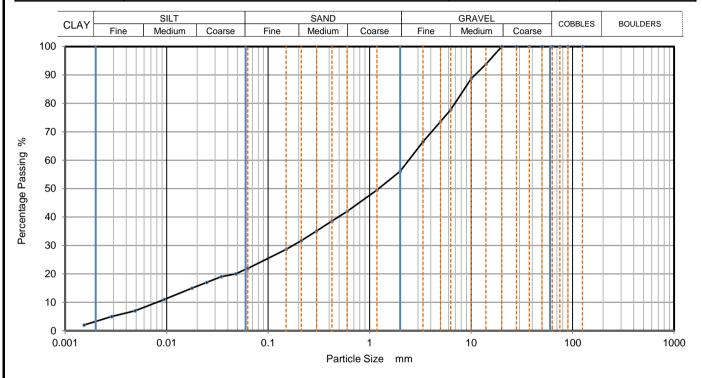
| CAUSEWAY             | DARTICLE SIZE DISTRIBUTION               |                            | Job Ref   |                  | 22-1041A  |       |                |
|----------------------|------------------------------------------|----------------------------|-----------|------------------|-----------|-------|----------------|
| ——GEOTECH            | PARII                                    | PARTICLE SIZE DISTRIBUTION |           | Borehole/Pit No. |           | BH102 |                |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands |                            |           | Sample No.       |           | 8     |                |
| Specimen Description | Constraint and the sile of AV            |                            |           | Sample           | Тор       | 1.20  |                |
| Specimen Description | Grey sandy gravelly silty CLAY.          |                            | Depth (m) | Base             | 2.00      |       |                |
| Specimen Reference   | 3 Specimen 1.2 m                         |                            |           | Sample Typ       | e         | В     |                |
| Test Method          | BS1377:Part 2:1990, clauses 9.2 and 9.5  |                            |           |                  | KeyLAB ID |       | Caus2023030880 |



| Siev             | /ing      | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       | 0.06300          | 16        |
| 90               | 100       | 0.05121          | 15        |
| 75               | 100       | 0.03642          | 14        |
| 63               | 100       | 0.02606          | 12        |
| 50               | 100       | 0.01864          | 10        |
| 37.5             | 100       | 0.00979          | 8         |
| 28               | 100       | 0.00495          | 6         |
| 20               | 100       | 0.00289          | 4         |
| 14               | 94        | 0.00154          | 2         |
| 10               | 83        |                  |           |
| 6.3              | 71        |                  |           |
| 5                | 67        |                  |           |
| 3.35             | 60        |                  |           |
| 2                | 48        |                  |           |
| 1.18             | 42        |                  |           |
| 0.6              | 35        | Particle density | (assumed) |
| 0.425            | 32        | 2.65             | Mg/m3     |
| 0.3              | 28        |                  |           |
| 0.212            | 25        |                  |           |
| 0.15             | 22        |                  |           |
| 0.063            | 16        |                  |           |

| Dry Mass of sample, g | 502 |
|-----------------------|-----|
|                       |     |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 51.7       |
| Sand               | 32.0       |
| Silt               | 13.5       |
| Clay               | 2.8        |


| Grading Analysis       |    |        |
|------------------------|----|--------|
| D100                   | mm |        |
| D60                    | mm | 3.44   |
| D30                    | mm | 0.363  |
| D10                    | mm | 0.0173 |
| Uniformity Coefficient |    | 200    |
| Curvature Coefficient  |    | 2.2    |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





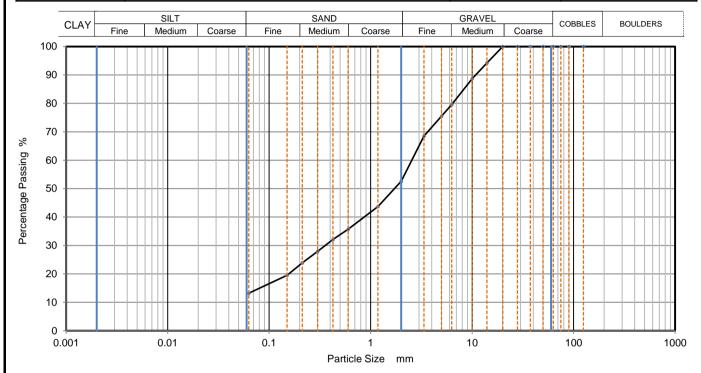
| CAUSEWAY             | DARTICLE SIZE DISTRIBUTION               |                              | Job Ref   |                  | 22-1041A  |       |                |
|----------------------|------------------------------------------|------------------------------|-----------|------------------|-----------|-------|----------------|
| ——GEOTECH            | PARII                                    | PARTICLE SIZE DISTRIBUTION - |           | Borehole/Pit No. |           | BH105 |                |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands |                              |           | Sample No.       |           | 4     |                |
| Specimen Description | Grey sandy slightly gravelly silty CLAY. |                              | Sample    | Тор              | 1.00      |       |                |
| Specimen Description |                                          |                              | Depth (m) | Base             | 1.00      |       |                |
| Specimen Reference   | Specimen 1 m                             |                              |           | Sample Typ       | e         | В     |                |
| Test Method          | BS1377:Part 2:1990, clauses 9.2 and 9.5  |                              |           |                  | KeyLAB ID |       | Caus2023030885 |



| Siev             | /ing      | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       | 0.06300          | 22        |
| 90               | 100       | 0.04803          | 20        |
| 75               | 100       | 0.03443          | 19        |
| 63               | 100       | 0.02482          | 17        |
| 50               | 100       | 0.01778          | 15        |
| 37.5             | 100       | 0.00946          | 11        |
| 28               | 100       | 0.00489          | 7         |
| 20               | 100       | 0.00287          | 5         |
| 14               | 94        | 0.00153          | 2         |
| 10               | 89        |                  |           |
| 6.3              | 78        |                  |           |
| 5                | 74        |                  |           |
| 3.35             | 67        |                  |           |
| 2                | 56        |                  |           |
| 1.18             | 50        |                  |           |
| 0.6              | 42        | Particle density | (assumed) |
| 0.425            | 39        | 2.65             | Mg/m3     |
| 0.3              | 35        |                  |           |
| 0.212            | 32        |                  |           |
| 0.15             | 29        |                  |           |
| 0.063            | 22        |                  |           |

| Dry Mass of sample, g | 312 |
|-----------------------|-----|
|                       |     |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 43.9       |
| Sand               | 34.2       |
| Silt               | 18.7       |
| Clay               | 3.2        |


| Grading Analysis       |    |        |
|------------------------|----|--------|
| D100                   | mm |        |
| D60                    | mm | 2.43   |
| D30                    | mm | 0.176  |
| D10                    | mm | 0.0078 |
| Uniformity Coefficient |    | 310    |
| Curvature Coefficient  |    | 1.6    |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





| CAUSEWAY             |                                                                                          |  |           | Job Ref          |                     | 22-1041A |      |
|----------------------|------------------------------------------------------------------------------------------|--|-----------|------------------|---------------------|----------|------|
| ——GEOTECH            |                                                                                          |  |           | Borehole/Pit No. |                     | BH112    |      |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands                                                 |  |           |                  | Sample No.          |          | 7    |
| Specimen Description | CAND                                                                                     |  |           |                  | Sample<br>Depth (m) | Тор      | 2.00 |
| Specimen Description | Specimen Description Greyish brown slightly gravelly slightly silty fine to coarse SAND. |  | Base      | 4.00             |                     |          |      |
| Specimen Reference   | 3 Specimen 2 m                                                                           |  |           |                  | Sample Typ          | e        | В    |
| Test Method          | BS1377:Part 2:1990, claus                                                                |  | KeyLAB ID |                  | Caus2023030890      |          |      |



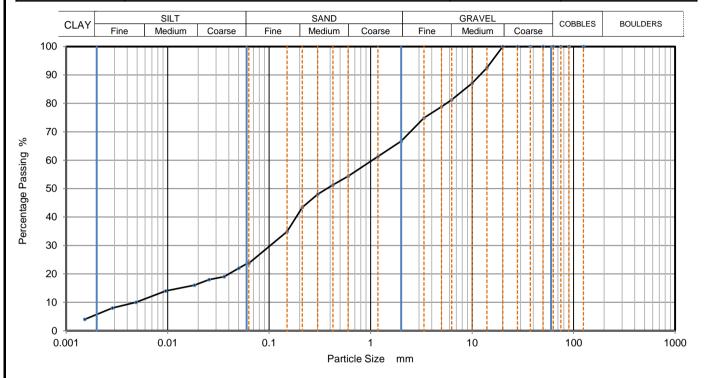
| Siev             | ving      | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 100       |                  |           |
| 63               | 100       |                  |           |
| 50               | 100       |                  |           |
| 37.5             | 100       |                  |           |
| 28               | 100       |                  |           |
| 20               | 100       |                  |           |
| 14               | 94        |                  |           |
| 10               | 89        |                  |           |
| 6.3              | 80        |                  |           |
| 5                | 76        |                  |           |
| 3.35             | 69        |                  |           |
| 2                | 53        |                  |           |
| 1.18             | 44        |                  |           |
| 0.6              | 36        |                  |           |
| 0.425            | 32        |                  |           |
| 0.3              | 28        |                  |           |
| 0.212            | 24        |                  |           |
| 0.15             | 20        |                  |           |
| 0.063            | 13        |                  |           |

| Dry Mass of sample, g 506 | Dry Mass of sample, g | 506 |
|---------------------------|-----------------------|-----|
|---------------------------|-----------------------|-----|

| Sample Proportions | % dry mass |  |  |
|--------------------|------------|--|--|
| Cobbles            | 0.0        |  |  |
| Gravel             | 47.4       |  |  |
| Sand               | 39.4       |  |  |
|                    |            |  |  |
| Fines <0.063mm     | 13.0       |  |  |

| Grading Analysis       |    |       |
|------------------------|----|-------|
| D100                   | mm |       |
| D60                    | mm | 2.54  |
| D30                    | mm | 0.356 |
| D10                    | mm |       |
| Uniformity Coefficient |    |       |
| Curvature Coefficient  |    |       |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below






LAB 05R - Version 6

10122

| CAUSEWAY                                             | DARTICLE CIZE DISTRIBUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |           | Job Ref |                  | 22-1041A |       |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------|---------|------------------|----------|-------|
| ——GEOTECH                                            | PARTICLE SIZE DISTRIBUTION -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |           |         | Borehole/Pit No. |          | BH119 |
| Site Name                                            | 3FM Planning Design GI - Lot A DPC Lands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |           |         | Sample No.       |          | 8     |
| Specimen Description                                 | Construction of the constr |  |           |         | Sample           | Тор      | 1.50  |
| Specimen Description Grey sandy gravelly silty CLAY. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | Depth (m) | Base    | 2.50             |          |       |
| Specimen Reference                                   | Specimen 1.5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |           |         | Sample Typ       | e        | В     |
| Test Method                                          | BS1377:Part 2:1990, clau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | KeyLAB ID |         | Caus2023030895   |          |       |



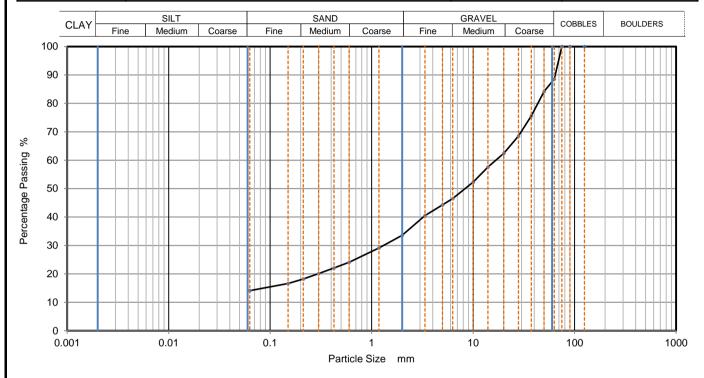
| Sievi            | ng        | Sedimentation    |           |  |  |
|------------------|-----------|------------------|-----------|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |  |
| 125              | 100       | 0.06300          | 24        |  |  |
| 90               | 100       | 0.05028          | 22        |  |  |
| 75               | 100       | 0.03599          | 19        |  |  |
| 63               | 100       | 0.02560          | 18        |  |  |
| 50               | 100       | 0.01832          | 16        |  |  |
| 37.5             | 100       | 0.00957          | 14        |  |  |
| 28               | 100       | 0.00489          | 10        |  |  |
| 20               | 100       | 0.00286          | 8         |  |  |
| 14               | 93        | 0.00153          | 4         |  |  |
| 10               | 87        |                  |           |  |  |
| 6.3              | 81        |                  |           |  |  |
| 5                | 79        |                  |           |  |  |
| 3.35             | 75        |                  |           |  |  |
| 2                | 67        |                  |           |  |  |
| 1.18             | 61        |                  |           |  |  |
| 0.6              | 54        | Particle density | (assumed) |  |  |
| 0.425            | 51        | 2.65             | Mg/m3     |  |  |
| 0.3              | 48        |                  |           |  |  |
| 0.212            | 43        |                  |           |  |  |
| 0.15             | 35        |                  |           |  |  |
| 0.063            | 24        |                  |           |  |  |

| Dry Mass of sample, g | 2775 |
|-----------------------|------|
|-----------------------|------|

| Sample Proportions | % dry mass |  |  |
|--------------------|------------|--|--|
| Cobbles            | 0.0        |  |  |
| Gravel             | 33.3       |  |  |
| Sand               | 43.0       |  |  |
| Silt               | 18.0       |  |  |
| Clay               | 5.7        |  |  |

| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 1.04    |
| D30                    | mm | 0.103   |
| D10                    | mm | 0.00513 |
| Uniformity Coefficient |    | 200     |
| Curvature Coefficient  |    | 2       |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below






LAB 05R - Version 6

10122

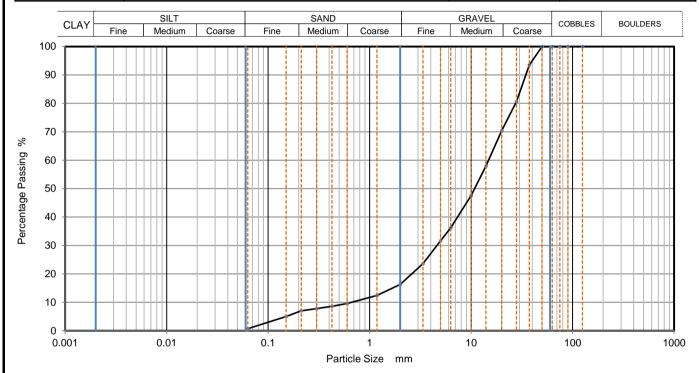
| CAUSEWAY             | PARTICLE SIZE DISTRIBUTION -                                                   |  |           | Job Ref             |                | 22-1041A |
|----------------------|--------------------------------------------------------------------------------|--|-----------|---------------------|----------------|----------|
| ——GEOTECH            |                                                                                |  |           | Borehole/Pit No.    |                | BH120    |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands                                       |  |           | Sample No.          |                | 21       |
| Specimen Description | Greyish brown sandy clayey subangular fine to coarse GRAVEL with some cobbles. |  |           | Sample<br>Depth (m) | Тор            | 3.50     |
| specimen bescription |                                                                                |  |           |                     | Base           | 4.50     |
| Specimen Reference   | Specimen 3.5 m                                                                 |  |           | Sample Typ          | е              | В        |
| Test Method          | BS1377:Part 2:1990, clau                                                       |  | KeyLAB ID |                     | Caus2023030899 |          |



| Siev             | /ing      | Sedimentation    |           |  |  |
|------------------|-----------|------------------|-----------|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |  |
| 125              | 100       |                  |           |  |  |
| 90               | 100       |                  |           |  |  |
| 75               | 100       |                  |           |  |  |
| 63               | 89        |                  |           |  |  |
| 50               | 84        |                  |           |  |  |
| 37.5             | 76        |                  |           |  |  |
| 28               | 69        |                  |           |  |  |
| 20               | 62        |                  |           |  |  |
| 14               | 58        |                  |           |  |  |
| 10               | 52        |                  |           |  |  |
| 6.3              | 47        |                  |           |  |  |
| 5                | 44        |                  |           |  |  |
| 3.35             | 41        |                  |           |  |  |
| 2                | 34        |                  |           |  |  |
| 1.18             | 29        |                  |           |  |  |
| 0.6              | 24        |                  |           |  |  |
| 0.425            | 22        |                  |           |  |  |
| 0.3              | 20        |                  |           |  |  |
| 0.212            | 18        | ]                |           |  |  |
| 0.15             | 17        | ]                |           |  |  |
| 0.063            | 14        |                  |           |  |  |

| Dry Mass of sample, g | 9963 |
|-----------------------|------|
|                       |      |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 11.4       |
| Gravel             | 55.0       |
| Sand               | 19.5       |
|                    |            |
| Fines <0.063mm     | 14.0       |


| Grading Analysis       |    |      |
|------------------------|----|------|
| D100                   | mm |      |
| D60                    | mm | 16.7 |
| D30                    | mm | 1.31 |
| D10                    | mm |      |
| Uniformity Coefficient |    |      |
| Curvature Coefficient  |    |      |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





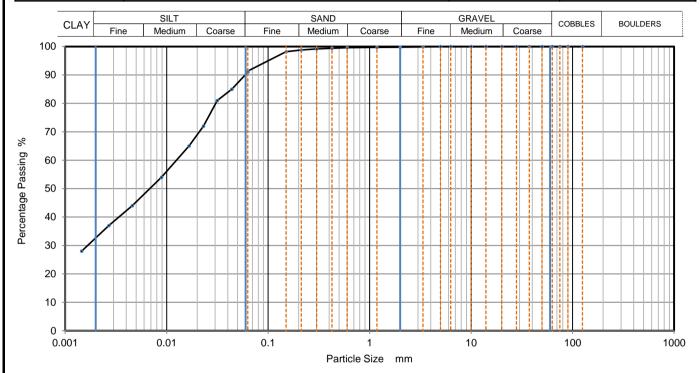
| CAUSEWAY             | DARTICLE CIZE DISTRIBUTION                                                                |                              |                       | Job Ref     |                  | 22-1041A        |       |
|----------------------|-------------------------------------------------------------------------------------------|------------------------------|-----------------------|-------------|------------------|-----------------|-------|
| ——GEOTECH            | PARII                                                                                     | PARTICLE SIZE DISTRIBUTION – |                       |             | Borehole/Pit No. |                 | BH120 |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands                                                  |                              |                       | Sample No.  |                  | 26              |       |
| Specimen Description | Specimen Description Grey slightly sandy slightly silty subangular fine to coarse GRAVEL. |                              |                       | Sample      | Тор              | 6.50            |       |
| Specimen Description | Grey slightly sarity slight                                                               | y siity subangulai ii        | THE TO COURSE GRAVEL. |             | Depth (m) Base   |                 | 7.50  |
| Specimen Reference   | 3 Specimen 6.5 m                                                                          |                              |                       | Sample Type |                  | В               |       |
| Test Method          | BS1377:Part 2:1990, clause 9.2                                                            |                              |                       | KeyLAB ID   |                  | Caus20230308100 |       |



| Siev             | ving      | Sedime           | ntation   |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 100       |                  |           |
| 63               | 100       |                  |           |
| 50               | 100       |                  |           |
| 37.5             | 94        |                  |           |
| 28               | 81        |                  |           |
| 20               | 70        |                  |           |
| 14               | 58        |                  |           |
| 10               | 48        |                  |           |
| 6.3              | 36        |                  |           |
| 5                | 32        |                  |           |
| 3.35             | 24        |                  |           |
| 2                | 16        |                  |           |
| 1.18             | 12        |                  |           |
| 0.6              | 10        |                  |           |
| 0.425            | 9         | ][               |           |
| 0.3              | 8         |                  |           |
| 0.212            | 7         | ]                |           |
| 0.15             | 5         | ][               |           |
| 0.063            | 1         |                  |           |

| Dry Mass of sample, g | 4750 |
|-----------------------|------|
|-----------------------|------|

| Sample Proportions | % dry mass |  |  |
|--------------------|------------|--|--|
| Cobbles            | 0.0        |  |  |
| Gravel             | 83.7       |  |  |
| Sand               | 15.6       |  |  |
|                    |            |  |  |
| Fines <0.063mm     | 1.0        |  |  |


| Grading Analysis       |    |       |
|------------------------|----|-------|
| D100                   | mm |       |
| D60                    | mm | 14.9  |
| D30                    | mm | 4.62  |
| D10                    | mm | 0.654 |
| Uniformity Coefficient | 23 |       |
| Curvature Coefficient  |    | 2.2   |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





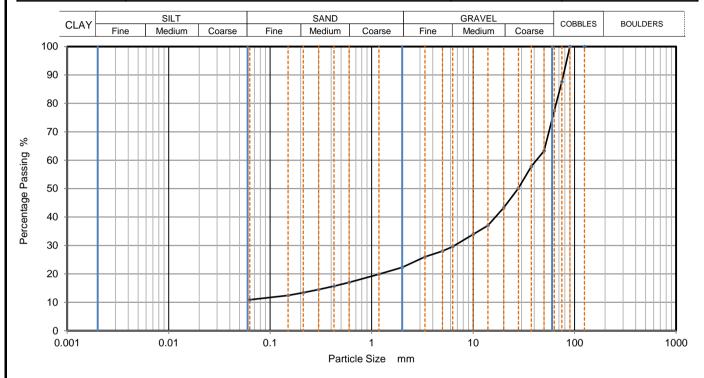
| CAUSEWAY                            | DARTICLE CIZE DISTRIBUTION                             |  |                  | Job Ref     |       | 22-1041A        |
|-------------------------------------|--------------------------------------------------------|--|------------------|-------------|-------|-----------------|
| CAUSEWAY PARTICLE SIZE DISTRIBUTION |                                                        |  | Borehole/Pit No. |             | BH120 |                 |
| Site Name                           | 3FM Planning Design GI - Lot A DPC Lands               |  |                  | Sample No.  |       | 2               |
| Specimen Description                | Specimen Description   Grey slightly sandy silty CLAY. |  |                  | Sample      | Тор   | 20.00           |
| Specimen Description                | Grey slightly sandy slifty CLAY.                       |  |                  | Depth (m)   | Base  |                 |
| Specimen Reference                  | 3 Specimen 20 m                                        |  |                  | Sample Type |       | С               |
| Test Method                         | BS1377:Part 2:1990, clauses 9.2 and 9.5                |  |                  | KeyLAB ID   |       | Caus20230308102 |



| Sievi            | ing       | Sedimentation    |           |  |  |
|------------------|-----------|------------------|-----------|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |  |
| 125              | 100       | 0.06300          | 91        |  |  |
| 90               | 100       | 0.04393          | 85        |  |  |
| 75               | 100       | 0.03156          | 81        |  |  |
| 63               | 100       | 0.02301          | 72        |  |  |
| 50               | 100       | 0.01663          | 65        |  |  |
| 37.5             | 100       | 0.00889          | 54        |  |  |
| 28               | 100       | 0.00459          | 44        |  |  |
| 20               | 100       | 0.00270          | 37        |  |  |
| 14               | 100       | 0.00145          | 28        |  |  |
| 10               | 100       |                  |           |  |  |
| 6.3              | 100       |                  |           |  |  |
| 5                | 100       |                  |           |  |  |
| 3.35             | 100       |                  |           |  |  |
| 2                | 100       |                  |           |  |  |
| 1.18             | 100       |                  |           |  |  |
| 0.6              | 100       | Particle density | (assumed) |  |  |
| 0.425            | 99        | 2.65             | Mg/m3     |  |  |
| 0.3              | 99        |                  |           |  |  |
| 0.212            | 99        | ]                |           |  |  |
| 0.15             | 98        | 1                |           |  |  |
| 0.063            | 91        | 1                |           |  |  |

| Dry Mass of sample, g | 504 |
|-----------------------|-----|
|-----------------------|-----|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 0.2        |
| Sand               | 8.5        |
| Silt               | 58.5       |
| Clay               | 32.8       |


| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 0.0123  |
| D30                    | mm | 0.00164 |
| D10                    | mm |         |
| Uniformity Coefficient |    |         |
| Curvature Coefficient  |    |         |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





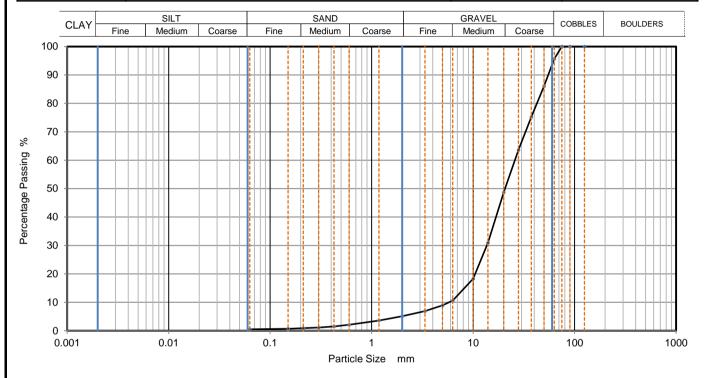
| CAUSEWAY             | DARTICLE SIZE DISTRIBUTION                                                   |                              |     | Job Ref    |        | 22-1041A        |
|----------------------|------------------------------------------------------------------------------|------------------------------|-----|------------|--------|-----------------|
| ——GEOTECH            | PARII                                                                        | PARTICLE SIZE DISTRIBUTION - |     |            | it No. | BH121           |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands                                     |                              |     | Sample No. |        | 24              |
| Specimen Description | Greyish brown slightly sandy slightly silty subangular fine to coarse GRAVEL |                              |     | Sample     | Тор    | 3.00            |
| specimen bescription | wth cobbles.                                                                 |                              |     | Depth (m)  | Base   | 4.00            |
| Specimen Reference   | 3                                                                            | Specimen<br>Depth            | 3 m | Sample Typ | oe     | В               |
| Test Method          | BS1377:Part 2:1990, clause 9.2                                               |                              |     | KeyLAB ID  |        | Caus20230308105 |



| Siev             | /ing      | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 88        |                  |           |
| 63               | 77        |                  |           |
| 50               | 63        |                  |           |
| 37.5             | 58        |                  |           |
| 28               | 50        |                  |           |
| 20               | 43        |                  |           |
| 14               | 37        |                  |           |
| 10               | 34        |                  |           |
| 6.3              | 30        |                  |           |
| 5                | 28        |                  |           |
| 3.35             | 26        |                  |           |
| 2                | 22        |                  |           |
| 1.18             | 20        |                  |           |
| 0.6              | 17        |                  |           |
| 0.425            | 16        |                  |           |
| 0.3              | 15        |                  | •         |
| 0.212            | 13        |                  |           |
| 0.15             | 12        |                  |           |
| 0.063            | 11        |                  |           |

| Dry Mass of sample, g | 13759 |
|-----------------------|-------|
|-----------------------|-------|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 22.6       |
| Gravel             | 55.1       |
| Sand               | 11.5       |
|                    |            |
| Fines <0.063mm     | 11.0       |


| Grading Analysis       |    |      |
|------------------------|----|------|
| D100                   | mm |      |
| D60                    | mm | 42.1 |
| D30                    | mm | 6.55 |
| D10                    | mm |      |
| Uniformity Coefficient |    |      |
| Curvature Coefficient  |    |      |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





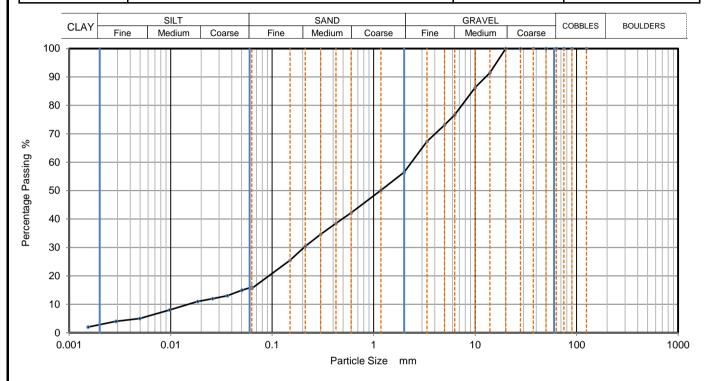
| CAUSEWAY             | PARTICLE SIZE DISTRIBUTION -                                   |  | Job Ref Borehole/Pit No. |            | 22-1041A   |       |                 |
|----------------------|----------------------------------------------------------------|--|--------------------------|------------|------------|-------|-----------------|
| ——GEOTECH            |                                                                |  |                          |            | BH121      |       |                 |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands                       |  |                          | Sample No. |            | 43    |                 |
| Specimen Description | Conside have a distallar and a substitute fire to accord CDAVE |  |                          | Sample     | Тор        | 14.00 |                 |
| specimen bescription | Greyish brown slightly sandy subangular fine to coarse GRAVEL. |  | Depth (m)                | Base       | 15.00      |       |                 |
| Specimen Reference   | Specimen 14 m                                                  |  |                          | m          | Sample Typ | e     | В               |
| Test Method          | 3S1377:Part 2:1990, clause 9.2                                 |  |                          | ·          | KeyLAB ID  |       | Caus20230308108 |



| Sieving          |           | Sedime           | ntation   |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 100       |                  |           |
| 63               | 96        |                  |           |
| 50               | 86        |                  |           |
| 37.5             | 75        |                  |           |
| 28               | 64        |                  |           |
| 20               | 49        |                  |           |
| 14               | 31        |                  |           |
| 10               | 18        |                  |           |
| 6.3              | 11        |                  |           |
| 5                | 9         |                  |           |
| 3.35             | 7         |                  |           |
| 2                | 5         |                  |           |
| 1.18             | 4         |                  |           |
| 0.6              | 2         |                  |           |
| 0.425            | 2         |                  |           |
| 0.3              | 1         |                  | ·         |
| 0.212            | 1         |                  |           |
| 0.15             | 1         |                  |           |
| 0.063            | 1         |                  |           |

| Dry Mass of sample, g 16754 | Dry Mass of sample, g | 16754 |
|-----------------------------|-----------------------|-------|
|-----------------------------|-----------------------|-------|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 4.3        |
| Gravel             | 90.6       |
| Sand               | 4.6        |
|                    |            |
| Fines <0.063mm     | 0.0        |


| Grading Analysis       |    |      |
|------------------------|----|------|
| D100                   | mm |      |
| D60                    | mm | 25.8 |
| D30                    | mm | 13.7 |
| D10                    | mm | 5.8  |
| Uniformity Coefficient |    | 4.5  |
| Curvature Coefficient  |    | 1.2  |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





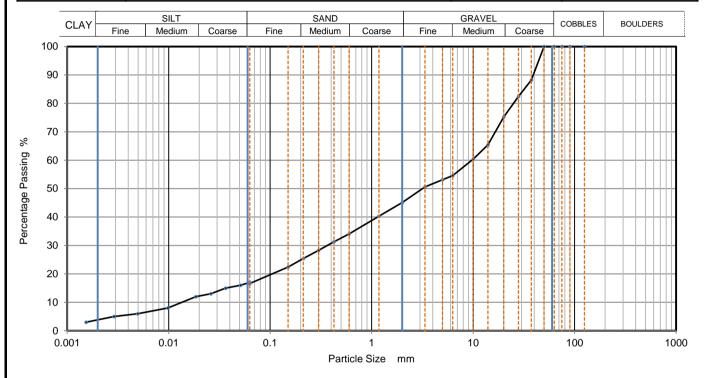
| CAUSEWAY             | PARTICLE SIZE DISTRIBUTION                           |                                                   |  | Job Ref Borehole/Pit No. |            | 22-1041A |                 |
|----------------------|------------------------------------------------------|---------------------------------------------------|--|--------------------------|------------|----------|-----------------|
| ——GEOTECH            |                                                      |                                                   |  |                          |            | BH122    |                 |
| Site Name            | BFM Planning Design GI - Lot A DPC Lands             |                                                   |  | Sample No                |            | 6        |                 |
| Specimen Description | Conside have a sea de aliebable energible dibre CLAV |                                                   |  | Sample                   | Тор        | 2.00     |                 |
| Specimen Description | dreyisii browii sandy                                | Greyish brown sandy slightly gravelly silty CLAY. |  | Depth (m)                | Base       | 3.00     |                 |
| Specimen Reference   | Specimen 2 m                                         |                                                   |  | m                        | Sample Typ | е        | В               |
| Test Method          | BS1377:Part 2:1990, clauses 9.2 and 9.5              |                                                   |  |                          | KeyLAB ID  |          | Caus20230308115 |



| Siev             | ving      | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       | 0.06300          | 16        |
| 90               | 100       | 0.05058          | 15        |
| 75               | 100       | 0.03621          | 13        |
| 63               | 100       | 0.02592          | 12        |
| 50               | 100       | 0.01844          | 11        |
| 37.5             | 100       | 0.00975          | 8         |
| 28               | 100       | 0.00495          | 5         |
| 20               | 100       | 0.00289          | 4         |
| 14               | 92        | 0.00154          | 2         |
| 10               | 86        |                  |           |
| 6.3              | 77        |                  |           |
| 5                | 73        |                  |           |
| 3.35             | 67        |                  |           |
| 2                | 57        |                  |           |
| 1.18             | 50        |                  |           |
| 0.6              | 42        | Particle density | (assumed) |
| 0.425            | 39        | 2.65             | Mg/m3     |
| 0.3              | 35        |                  |           |
| 0.212            | 30        |                  |           |
| 0.15             | 26        |                  |           |
| 0.063            | 16        |                  |           |

| Dry Mass of sample, g 502 | Dry Mass of sample, g | 502 |
|---------------------------|-----------------------|-----|
|---------------------------|-----------------------|-----|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 43.5       |
| Sand               | 40.9       |
| Silt               | 12.6       |
| Clay               | 3.0        |


| Grading Analysis       |    |        |
|------------------------|----|--------|
| D100                   | mm |        |
| D60                    | mm | 2.36   |
| D30                    | mm | 0.206  |
| D10                    | mm | 0.0153 |
| Uniformity Coefficient |    | 150    |
| Curvature Coefficient  |    | 1.2    |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





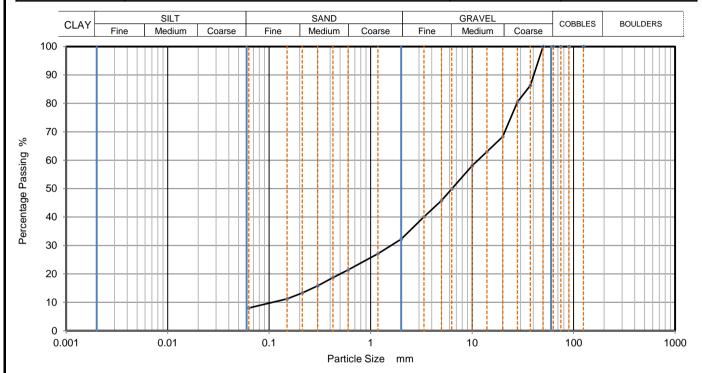
| CAUSEWAY             | DARTICI E CIZE DICTRIBUTIONI             |                                  |  | Job Ref     |                  | 22-1041A        |       |
|----------------------|------------------------------------------|----------------------------------|--|-------------|------------------|-----------------|-------|
| ——GEOTECH            | PARII                                    | PARTICLE SIZE DISTRIBUTION -     |  |             | Borehole/Pit No. |                 | BH124 |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands |                                  |  | Sample No.  |                  | 5               |       |
| Specimen Description | Crovish brown sandy gra                  | C. III. III. III. GAV            |  |             | Sample           | Тор             | 1.80  |
| Specimen Description | Greyisii browii sandy gra                | brown sandy gravelly silty CLAY. |  | Depth (m)   | Base             | 2.00            |       |
| Specimen Reference   | 3 Specimen 1.8 m                         |                                  |  | Sample Type |                  | В               |       |
| Test Method          | BS1377:Part 2:1990, clauses 9.2 and 9.5  |                                  |  | KeyLAB ID   |                  | Caus20230308129 |       |



| Sievi            | ng        | Sedimentation    |           |  |  |
|------------------|-----------|------------------|-----------|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |  |
| 125              | 100       | 0.06300          | 17        |  |  |
| 90               | 100       | 0.05122          | 16        |  |  |
| 75               | 100       | 0.03644          | 15        |  |  |
| 63               | 100       | 0.02608          | 13        |  |  |
| 50               | 100       | 0.01855          | 12        |  |  |
| 37.5             | 88        | 0.00980          | 8         |  |  |
| 28               | 82        | 0.00495          | 6         |  |  |
| 20               | 75        | 0.00289          | 5         |  |  |
| 14               | 65        | 0.00154          | 3         |  |  |
| 10               | 60        |                  |           |  |  |
| 6.3              | 55        |                  |           |  |  |
| 5                | 53        |                  |           |  |  |
| 3.35             | 51        |                  |           |  |  |
| 2                | 45        |                  |           |  |  |
| 1.18             | 40        |                  |           |  |  |
| 0.6              | 34        | Particle density | (assumed) |  |  |
| 0.425            | 31        | 2.65             | Mg/m3     |  |  |
| 0.3              | 28        |                  |           |  |  |
| 0.212            | 25        | 1                |           |  |  |
| 0.15             | 22        |                  |           |  |  |
| 0.063            | 17        |                  |           |  |  |

| 2797 |
|------|
|      |

| Sample Proportions | % dry mass |  |  |
|--------------------|------------|--|--|
| Cobbles            | 0.0        |  |  |
| Gravel             | 54.9       |  |  |
| Sand               | 28.5       |  |  |
| Silt               | 13.1       |  |  |
| Clay               | 3.5        |  |  |


| Grading Analysis       |    |        |
|------------------------|----|--------|
| D100                   | mm |        |
| D60                    | mm | 9.66   |
| D30                    | mm | 0.366  |
| D10                    | mm | 0.0131 |
| Uniformity Coefficient |    | 730    |
| Curvature Coefficient  |    | 1.1    |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





| CAUSEWAY             | DARTI                                    | DARTICLE CIZE DISTRIBUTION                        |  |                  | Job Ref |                 | 22-1041A |
|----------------------|------------------------------------------|---------------------------------------------------|--|------------------|---------|-----------------|----------|
| ——GEOTECH            | PARII                                    | TICLE SIZE DISTRIBUTION -                         |  | Borehole/Pit No. |         | BH127           |          |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands |                                                   |  | Sample No.       |         | 9               |          |
| Specimen Description | Crovich brown gravally si                | Greyish brown gravelly silty fine to coarse SAND. |  |                  | Sample  | Тор             | 2.00     |
| specimen bescription | dreyisii browii gravelly si              | elly slity fine to coarse SAND.                   |  | Depth (m)        | Base    |                 |          |
| Specimen Reference   | 3 Specimen 2 m                           |                                                   |  | Sample Type      |         | В               |          |
| Test Method          | BS1377:Part 2:1990, clause 9.2           |                                                   |  | KeyLAB ID        |         | Caus20230308141 |          |

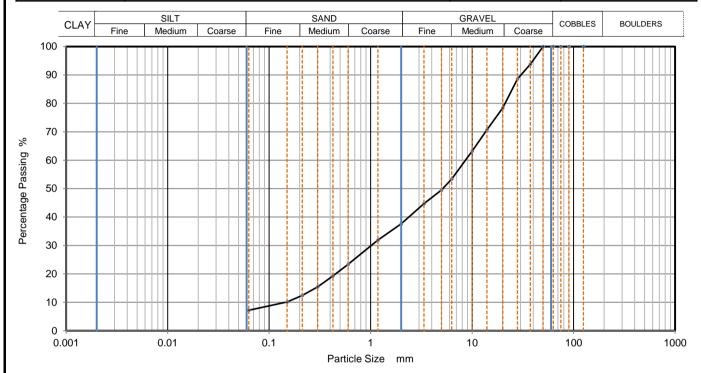


| Sieving          |           | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 100       |                  |           |
| 63               | 100       |                  |           |
| 50               | 100       |                  |           |
| 37.5             | 86        |                  |           |
| 28               | 81        |                  |           |
| 20               | 68        |                  |           |
| 14               | 63        |                  |           |
| 10               | 58        |                  |           |
| 6.3              | 50        |                  |           |
| 5                | 46        |                  |           |
| 3.35             | 40        |                  |           |
| 2                | 32        |                  |           |
| 1.18             | 27        |                  |           |
| 0.6              | 21        |                  |           |
| 0.425            | 19        |                  |           |
| 0.3              | 16        |                  |           |
| 0.212            | 13        |                  |           |
| 0.15             | 11        |                  |           |
| 0.063            | 8         |                  |           |

| Dry Mass of sample, g | 1317 |
|-----------------------|------|
|-----------------------|------|

| Sample Proportions | % dry mass |  |  |  |
|--------------------|------------|--|--|--|
| Cobbles            | 0.0        |  |  |  |
| Gravel             | 67.8       |  |  |  |
| Sand               | 24.1       |  |  |  |
|                    |            |  |  |  |
| Fines <0.063mm     | 8.0        |  |  |  |

| Grading Analysis       |    |       |
|------------------------|----|-------|
| D100                   | mm |       |
| D60                    | mm | 11.4  |
| D30                    | mm | 1.59  |
| D10                    | mm | 0.107 |
| Uniformity Coefficient |    | 110   |
| Curvature Coefficient  |    | 2.1   |


Preparation and testing in accordance with BS1377-2 :1990 unless noted below





LAB 05R - Version 6

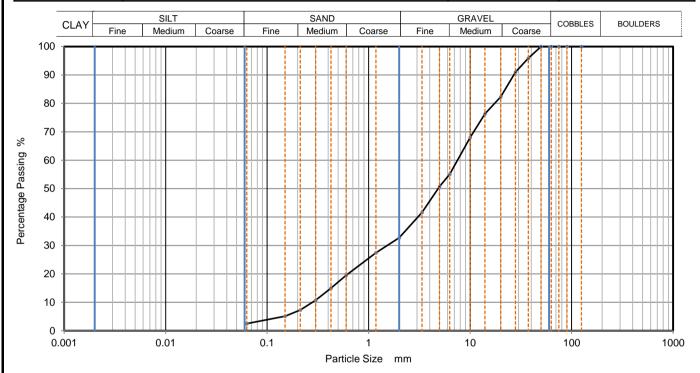
| CAUSEWAY             | DARTI                                    | DADTICLE CIZE DISTRIBUTION                        |  |                  | Job Ref |                 | 22-1041A |
|----------------------|------------------------------------------|---------------------------------------------------|--|------------------|---------|-----------------|----------|
| ——GEOTECH            | PARII                                    | TICLE SIZE DISTRIBUTION –                         |  | Borehole/Pit No. |         | BH128           |          |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands |                                                   |  | Sample No.       |         | 4               |          |
| Specimen Description | Gravich brown gravally sil               | Greyish brown gravelly silty fine to coarse SAND. |  |                  | Sample  | Тор             | 1.00     |
| Specimen Description | dievisii biowii gravelly sii             | avelly slity fine to coarse SAND.                 |  | Depth (m)        | Base    | 1.00            |          |
| Specimen Reference   | 3 Specimen 1 m                           |                                                   |  | Sample Type      |         | В               |          |
| Test Method          | nod BS1377:Part 2:1990, clause 9.2       |                                                   |  | KeyLAB ID        |         | Caus20230308142 |          |



| Siev             | /ing      | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 100       |                  |           |
| 63               | 100       |                  |           |
| 50               | 100       |                  |           |
| 37.5             | 94        |                  |           |
| 28               | 89        |                  |           |
| 20               | 78        |                  |           |
| 14               | 71        |                  |           |
| 10               | 63        |                  |           |
| 6.3              | 53        |                  |           |
| 5                | 50        |                  |           |
| 3.35             | 45        |                  |           |
| 2                | 38        |                  |           |
| 1.18             | 32        |                  |           |
| 0.6              | 23        |                  |           |
| 0.425            | 19        |                  |           |
| 0.3              | 15        |                  |           |
| 0.212            | 12        |                  |           |
| 0.15             | 10        |                  |           |
| 0.063            | 7         |                  |           |

| Dry Mass of sample, g 2919 | Dry Mass of sample, g | 2919 |
|----------------------------|-----------------------|------|
|----------------------------|-----------------------|------|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 62.4       |
| Sand               | 30.4       |
|                    |            |
| Fines <0.063mm     | 7.0        |


| Grading Analysis       |    |       |
|------------------------|----|-------|
| D100                   | mm |       |
| D60                    | mm | 8.62  |
| D30                    | mm | 1.01  |
| D10                    | mm | 0.144 |
| Uniformity Coefficient |    | 60    |
| Curvature Coefficient  |    | 0.83  |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





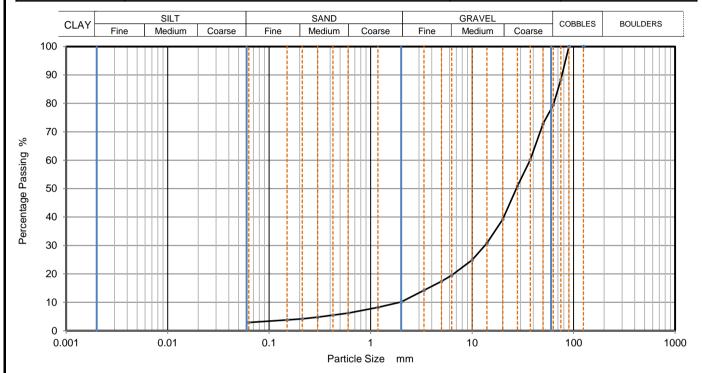
| CAUSEWAY             | PARTICLE SIZE DISTRIBUTION                  |  |  | Job Ref Borehole/Pit No. |           | 22-1041A |                 |
|----------------------|---------------------------------------------|--|--|--------------------------|-----------|----------|-----------------|
| ——GEOTECH            |                                             |  |  |                          |           | BH130    |                 |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands    |  |  | Sample No.               |           | 37       |                 |
| Specimen Description | Crowish brown grouply fine to sparse CAND   |  |  | Sample                   | Тор       | 8.50     |                 |
| specimen bescription | Greyish brown gravelly fine to coarse SAND. |  |  | Depth (m)                | Base      | 9.50     |                 |
| Specimen Reference   | Specimen 8.5 m                              |  |  | Sample Typ               | e         | В        |                 |
| Test Method          | BS1377:Part 2:1990, clause 9.2              |  |  |                          | KeyLAB ID |          | Caus20230308146 |



| Siev             | /ing      | Sedime           | ntation   |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 100       |                  |           |
| 63               | 100       |                  |           |
| 50               | 100       |                  |           |
| 37.5             | 96        |                  |           |
| 28               | 91        |                  |           |
| 20               | 82        |                  |           |
| 14               | 76        |                  |           |
| 10               | 68        |                  |           |
| 6.3              | 55        |                  |           |
| 5                | 51        |                  |           |
| 3.35             | 42        |                  |           |
| 2                | 33        |                  |           |
| 1.18             | 27        |                  |           |
| 0.6              | 20        |                  |           |
| 0.425            | 15        |                  |           |
| 0.3              | 11        |                  |           |
| 0.212            | 7         |                  |           |
| 0.15             | 5         |                  |           |
| 0.063            | 3         |                  |           |

| Dry Mass of sample, g 3100 |
|----------------------------|
|----------------------------|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 67.3       |
| Sand               | 30.2       |
|                    |            |
| Fines <0.063mm     | 3.0        |


| Grading Analysis       |    |      |
|------------------------|----|------|
| D100                   | mm |      |
| D60                    | mm | 7.5  |
| D30                    | mm | 1.53 |
| D10                    | mm | 0.28 |
| Uniformity Coefficient |    | 27   |
| Curvature Coefficient  |    | 1.1  |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





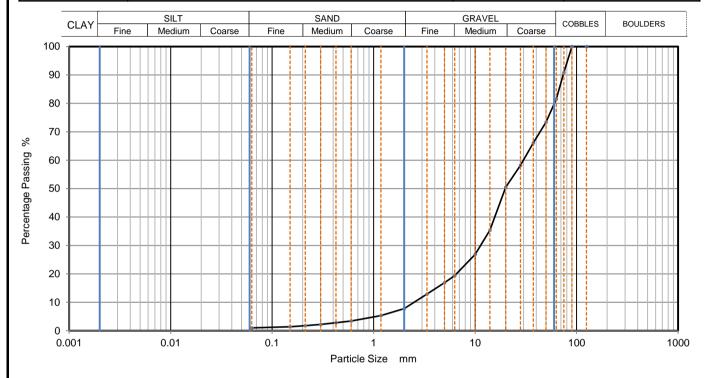
| CAUSEWAY             | PARTICLE SIZE DISTRIBUTION -                                                 |  |  | Job Ref Borehole/Pit No. |      | 22-1041A        |
|----------------------|------------------------------------------------------------------------------|--|--|--------------------------|------|-----------------|
| ——GEOTECH            |                                                                              |  |  |                          |      | BH130           |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands                                     |  |  | Sample No.               |      | 55              |
| Specimen Description | Greyish brown slightly sandy slightly silty subangular fine to coarse GRAVEL |  |  | Sample                   | Тор  | 13.00           |
| specimen bescription | with cobbles.                                                                |  |  | Depth (m)                | Base | 14.00           |
| Specimen Reference   | Specimen 13 m                                                                |  |  | Sample Typ               | е    | В               |
| Test Method          | BS1377:Part 2:1990, clause 9.2                                               |  |  | KeyLAB ID                |      | Caus20230308148 |



| Siev             | /ing      | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 88        |                  |           |
| 63               | 79        |                  |           |
| 50               | 73        |                  |           |
| 37.5             | 60        |                  |           |
| 28               | 51        |                  |           |
| 20               | 39        |                  |           |
| 14               | 31        |                  |           |
| 10               | 25        |                  |           |
| 6.3              | 20        |                  |           |
| 5                | 17        |                  |           |
| 3.35             | 14        |                  |           |
| 2                | 10        |                  |           |
| 1.18             | 8         |                  |           |
| 0.6              | 6         |                  |           |
| 0.425            | 6         |                  |           |
| 0.3              | 5         |                  | _         |
| 0.212            | 4         |                  |           |
| 0.15             | 4         |                  |           |
| 0.063            | 3         |                  |           |

| Dry Mass of sample, g | 14788 |
|-----------------------|-------|
|-----------------------|-------|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 20.6       |
| Gravel             | 69.3       |
| Sand               | 7.3        |
|                    |            |
| Fines <0.063mm     | 3.0        |


| Grading Analysis       |    |      |
|------------------------|----|------|
| D100                   | mm |      |
| D60                    | mm | 37.3 |
| D30                    | mm | 13.4 |
| D10                    | mm | 1.94 |
| Uniformity Coefficient |    | 19   |
| Curvature Coefficient  |    | 2.5  |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





| CAUSEWAY             | DARTICLE CIZE DISTRIBUTION                                                                 |                            | Job Ref    |                  | 22-1041A |                 |
|----------------------|--------------------------------------------------------------------------------------------|----------------------------|------------|------------------|----------|-----------------|
| ——GEOTECH            | PARII                                                                                      | PARTICLE SIZE DISTRIBUTION |            | Borehole/Pit No. |          | BH131           |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands                                                   |                            | Sample No. |                  | 21       |                 |
| Specimen Description | Greyish brown slightly sandy slightly silty subangular fine to coarse GRAVEL with cobbles. |                            | Sample Top | Тор              | 3.00     |                 |
| specimen bescription |                                                                                            |                            | Depth (m)  | Base             | 4.00     |                 |
| Specimen Reference   | Specimen 3 m                                                                               |                            |            | Sample Typ       | oe       | В               |
| Test Method          | BS1377:Part 2:1990, clause 9.2                                                             |                            |            | KeyLAB ID        |          | Caus20230308152 |



| Sieving          |           | Sedime           | ntation   |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 91        |                  |           |
| 63               | 82        |                  |           |
| 50               | 73        |                  |           |
| 37.5             | 66        |                  |           |
| 28               | 58        |                  |           |
| 20               | 51        |                  |           |
| 14               | 35        |                  |           |
| 10               | 27        |                  |           |
| 6.3              | 19        |                  |           |
| 5                | 17        |                  |           |
| 3.35             | 13        |                  |           |
| 2                | 8         |                  |           |
| 1.18             | 5         |                  |           |
| 0.6              | 3         |                  |           |
| 0.425            | 3         |                  |           |
| 0.3              | 2         |                  | •         |
| 0.212            | 2         | ]                |           |
| 0.15             | 1         | ][               |           |
| 0.063            | 1         |                  |           |

| 13551 |
|-------|
|       |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 18.5       |
| Gravel             | 73.7       |
| Sand               | 6.8        |
|                    |            |
| Fines <0.063mm     | 1.0        |

| Grading Analysis       |    |      |
|------------------------|----|------|
| D100                   | mm |      |
| D60                    | mm | 29.9 |
| D30                    | mm | 11.3 |
| D10                    | mm | 2.5  |
| Uniformity Coefficient |    | 12   |
| Curvature Coefficient  |    | 1.7  |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





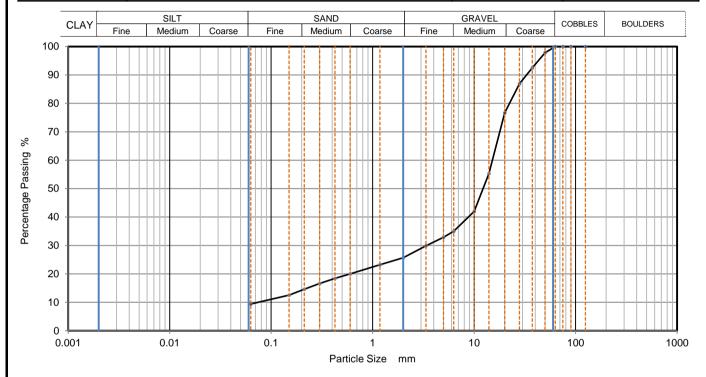
| CAUSEWAY             | DARTICLE CIZE DISTRIBUTION                                                                 |                            | Job Ref    |                  | 22-1041A |                 |
|----------------------|--------------------------------------------------------------------------------------------|----------------------------|------------|------------------|----------|-----------------|
| ——GEOTECH            | PARII                                                                                      | PARTICLE SIZE DISTRIBUTION |            | Borehole/Pit No. |          | BH131           |
| Site Name            | 3FM Planning Design GI - Lot A DPC Lands                                                   |                            | Sample No. |                  | 47       |                 |
| Specimen Description | Greyish brown slightly sandy slightly silty subangular fine to coarse GRAVEL with cobbles. |                            | Sample     | Тор              | 11.50    |                 |
| Specimen Description |                                                                                            |                            | Depth (m)  | Base             | 12.50    |                 |
| Specimen Reference   | Specimen 11.5 m                                                                            |                            |            | Sample Typ       | е        | В               |
| Test Method          | BS1377:Part 2:1990, clause 9.2                                                             |                            |            | KeyLAB ID        |          | Caus20230308155 |



| Siev             | /ing      | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 91        |                  |           |
| 63               | 85        |                  |           |
| 50               | 81        |                  |           |
| 37.5             | 75        |                  |           |
| 28               | 69        |                  |           |
| 20               | 63        |                  |           |
| 14               | 55        |                  |           |
| 10               | 49        |                  |           |
| 6.3              | 41        |                  |           |
| 5                | 38        |                  |           |
| 3.35             | 33        |                  |           |
| 2                | 30        |                  |           |
| 1.18             | 24        |                  |           |
| 0.6              | 15        |                  |           |
| 0.425            | 10        |                  |           |
| 0.3              | 5         |                  |           |
| 0.212            | 3         |                  |           |
| 0.15             | 2         |                  |           |
| 0.063            | 1         |                  |           |

| Dry Mass of sample, g | 9141 |
|-----------------------|------|
|                       |      |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 15.1       |
| Gravel             | 55.4       |
| Sand               | 28.2       |
|                    |            |
| Fines <0.063mm     | 1.0        |


| Grading Analysis       |    |      |
|------------------------|----|------|
| D100                   | mm |      |
| D60                    | mm | 17.6 |
| D30                    | mm | 2.14 |
| D10                    | mm | 0.44 |
| Uniformity Coefficient |    | 40   |
| Curvature Coefficient  |    | 0.59 |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





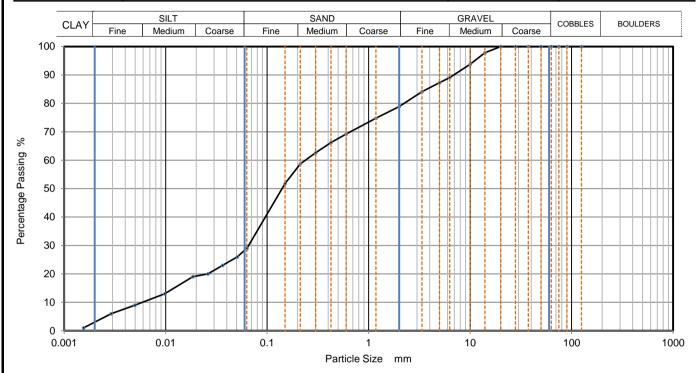
| CAUSEWAY PARTICLE SIZE DISTRIBUTION |                                                                                       |                                                                  |             | Job Ref |                  | 22-1041A |                 |  |
|-------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|---------|------------------|----------|-----------------|--|
| ——GEOTECH                           | PARTICLE SIZE DISTRIBUTION -                                                          |                                                                  |             |         | Borehole/Pit No. |          | ST102           |  |
| Site Name                           | 3FM Planning Design G                                                                 | ds                                                               | Sample No.  |         | 5                |          |                 |  |
| Specimen Description                | Dark brownish grov yory                                                               | who have unich group or group live on a situation to access CAND |             |         |                  | Тор      | 1.00            |  |
| Specimen Description                | Specimen Description Dark brownish grey very gravelly very silty fine to coarse SAND. |                                                                  |             |         | Depth (m)        | Base     | 1.00            |  |
| Specimen Reference                  | 3                                                                                     | 1                                                                | Sample Type |         | В                |          |                 |  |
| Test Method                         | BS1377:Part 2:1990, clause 9.2                                                        |                                                                  |             |         | KeyLAB ID        |          | Caus20230308159 |  |



| Siev             | /ing      | Sedimentation    |           |  |  |
|------------------|-----------|------------------|-----------|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |  |
| 125              | 100       |                  |           |  |  |
| 90               | 100       |                  |           |  |  |
| 75               | 100       |                  |           |  |  |
| 63               | 100       |                  |           |  |  |
| 50               | 98        |                  |           |  |  |
| 37.5             | 93        |                  |           |  |  |
| 28               | 87        |                  |           |  |  |
| 20               | 77        |                  |           |  |  |
| 14               | 55        |                  |           |  |  |
| 10               | 42        |                  |           |  |  |
| 6.3              | 35        |                  |           |  |  |
| 5                | 33        |                  |           |  |  |
| 3.35             | 30        |                  |           |  |  |
| 2                | 26        |                  |           |  |  |
| 1.18             | 23        |                  |           |  |  |
| 0.6              | 20        |                  |           |  |  |
| 0.425            | 18        |                  |           |  |  |
| 0.3              | 17        |                  |           |  |  |
| 0.212            | 15        |                  |           |  |  |
| 0.15             | 13        |                  |           |  |  |
| 0.063            | 9         |                  |           |  |  |

| Dry Mass of sample, g | 7083 |
|-----------------------|------|
|-----------------------|------|

| Sample Proportions | % dry mass |  |  |  |
|--------------------|------------|--|--|--|
| Cobbles            | 0.0        |  |  |  |
| Gravel             | 74.3       |  |  |  |
| Sand               | 16.2       |  |  |  |
|                    |            |  |  |  |
| Fines <0.063mm     | 9.0        |  |  |  |


| Grading Analysis       |    |        |
|------------------------|----|--------|
| D100                   | mm |        |
| D60                    | mm | 15.1   |
| D30                    | mm | 3.38   |
| D10                    | mm | 0.0739 |
| Uniformity Coefficient |    | 200    |
| Curvature Coefficient  |    | 10     |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below





| CAUSEWAY PARTICLE SIZE DISTRIBUTION |                                                                                 |     | Job Ref     |            | 22-1041A        |       |  |
|-------------------------------------|---------------------------------------------------------------------------------|-----|-------------|------------|-----------------|-------|--|
| ——GEOTECH                           | PARTICLE SIZE DISTRIBUTION                                                      |     |             | Borehole/F | it No.          | ST104 |  |
| Site Name                           | 3FM Planning Design GI - Lot A DPC Lands                                        |     |             |            |                 | 4     |  |
| Specimen Description                |                                                                                 |     |             | Sample     | Тор             | 1.00  |  |
| Specimen Description                | Specimen Description Greyish brown slightly gravelly silty fine to coarse SAND. |     |             |            | Base            | 1.00  |  |
| Specimen Reference                  | 3                                                                               | 1 m | Sample Type |            | В               |       |  |
| Test Method                         | BS1377:Part 2:1990, clau                                                        |     | KeyLAB ID   |            | Caus20230308161 |       |  |



| Siev             | /ing      | Sedimentation    |           |  |  |
|------------------|-----------|------------------|-----------|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |  |
| 125              | 100       | 0.06300          | 29        |  |  |
| 90               | 100       | 0.05090          | 26        |  |  |
| 75               | 100       | 0.03644          | 23        |  |  |
| 63               | 100       | 0.02608          | 20        |  |  |
| 50               | 100       | 0.01855          | 19        |  |  |
| 37.5             | 100       | 0.00980          | 13        |  |  |
| 28               | 100       | 0.00498          | 9         |  |  |
| 20               | 100       | 0.00291          | 6         |  |  |
| 14               | 98        | 0.00155          | 1         |  |  |
| 10               | 94        |                  |           |  |  |
| 6.3              | 89        |                  |           |  |  |
| 5                | 87        |                  |           |  |  |
| 3.35             | 84        |                  |           |  |  |
| 2                | 79        |                  |           |  |  |
| 1.18             | 75        |                  |           |  |  |
| 0.6              | 69        | Particle density | (assumed) |  |  |
| 0.425            | 66        | 2.65             | Mg/m3     |  |  |
| 0.3              | 63        |                  |           |  |  |
| 0.212            | 59        |                  |           |  |  |
| 0.15             | 52        |                  |           |  |  |
| 0.063            | 29        |                  |           |  |  |

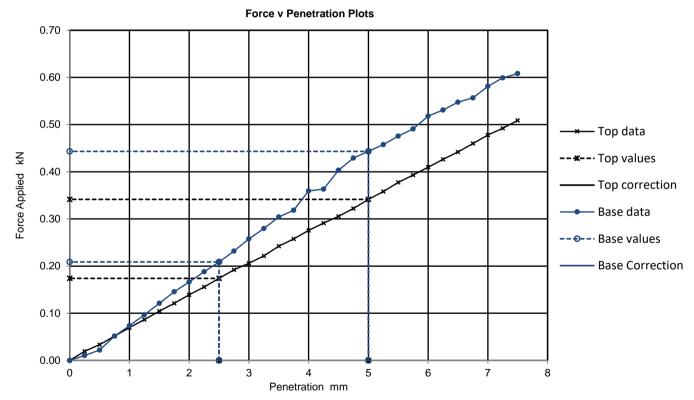
| Dry Mass of sample, g | 502 |
|-----------------------|-----|
|                       |     |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 21.1       |
| Sand               | 50.0       |
| Silt               | 25.7       |
| Clay               | 3.2        |

| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 0.238   |
| D30                    | mm | 0.0657  |
| D10                    | mm | 0.00613 |
| Uniformity Coefficient |    | 39      |
| Curvature Coefficient  |    | 3       |

Preparation and testing in accordance with BS1377-2 :1990 unless noted below






| CALISEMAY                      | California Pagring Patio ( CPP )           |                                            |       | Job Ref         | 22-1041A       |  |
|--------------------------------|--------------------------------------------|--------------------------------------------|-------|-----------------|----------------|--|
| California Bearing Ratio (CBR) |                                            | Borehole/Pit No.                           | BH102 |                 |                |  |
| Site Name                      | 3FM Planning Design GI - Lot A DPC Lands   |                                            |       | Sample No.      | 3              |  |
| Soil Description               | Brown gravelly clayey f                    | Brown gravelly clayey fine to coarse SAND. |       |                 | 0.30           |  |
| Specimen<br>Reference          |                                            | Specimen m                                 |       | Sample Type     | В              |  |
| Specimen Description           | Brown gravelly clayey fine to coarse SAND. |                                            |       | KeyLAB ID       | Caus2023030879 |  |
| Test Method                    | BS1377 : Part 4 : 1990,                    | , clause 7                                 |       | CBR Test Number | 1              |  |

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 26 Dry density after soaking Material retained on 20mm sieve removed % Mg/m3 Initial Specimen details Bulk density 2.10 Mg/m3 4.5 Surcharge applied kg

Dry density 1.81 Mg/m3

Moisture content 16 %



| Results |  | Curve              | CBR Values, % |     |         |         |  | Moisture     |  |
|---------|--|--------------------|---------------|-----|---------|---------|--|--------------|--|
|         |  | correction applied | 2.5mm         | 5mm | Highest | Average |  | Content<br>% |  |
| TOP     |  | No                 | 1.3           | 1.7 | 1.7     |         |  | 16           |  |
| BASE    |  | No                 | 1.6           | 2.2 | 2.2     |         |  | 17           |  |

| General remarks | Test specific remarks                                                               | Approved |
|-----------------|-------------------------------------------------------------------------------------|----------|
|                 | Average result may be reported if within 10% of the mean CBR value of top and base. |          |

UKAS TESTING

kPa

| CAUSEWAY              | California Bearing Ratio ( CBR )           | Job Ref          | 22-1041A       |
|-----------------------|--------------------------------------------|------------------|----------------|
| GEOTECH               | Camornia Bearing Ratio ( CBR )             | Borehole/Pit No. | BH103          |
| Site Name             | 3FM Planning Design GI - Lot A DPC Lands   | Sample No.       | 3              |
| Soil Description      | Brown gravelly clayey fine to coarse SAND. | Depth m          | 1.00           |
| Specimen<br>Reference | Specimen m Depth                           | Sample Type      | В              |
| Specimen Description  | Brown gravelly clayey fine to coarse SAND. | KeyLAB ID        | Caus2023030881 |
| Test Method           | BS1377 : Part 4 : 1990, clause 7           | CBR Test Number  | 1              |

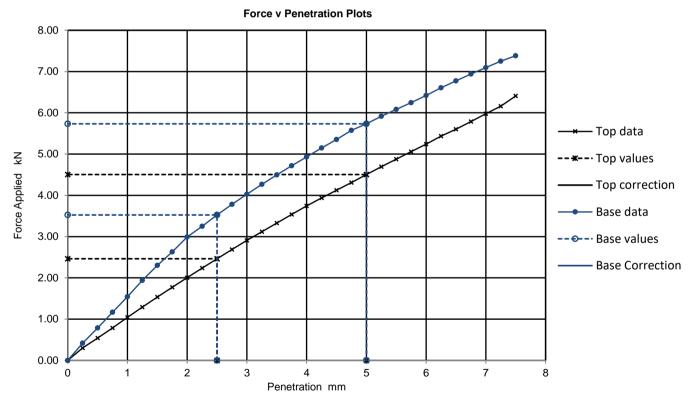
Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 22 Dry density after soaking Material retained on 20mm sieve removed % Mg/m3 Initial Specimen details 2.33 Mg/m3 4.5 Bulk density Surcharge applied kg

Dry density 2.12 Mg/m3 3 kPa
Moisture content 9.9 %

# Force v Penetration Plots 16.00 14.00 12.00 Top data 10.00 Force Applied kN -· Top values - Top correction 8.00 Base data 6.00 ••-- Base values Base Correction 4.00 2.00 0.00 6 5 Penetration mm

| Results | Curve              |       | CBR Va | lues, % |         | Moisture     |
|---------|--------------------|-------|--------|---------|---------|--------------|
|         | correction applied | 2.5mm | 5mm    | Highest | Average | Content<br>% |
| TOP     | No                 | 10.0  | 19.0   | 19.0    |         | 9.9          |
| BASE    | No                 | 28.0  | 43.0   | 43.0    |         | 9.5          |

| General remarks | Test specific remarks                                                               | Approved |  |
|-----------------|-------------------------------------------------------------------------------------|----------|--|
|                 | Average result may be reported if within 10% of the mean CBR value of top and base. |          |  |


UKAS TESTING

| CAUSEWAY              | California Bearing Ratio ( CBR )           |            |           | Job Ref          | 22-1041A |
|-----------------------|--------------------------------------------|------------|-----------|------------------|----------|
| GEOTECH               |                                            |            |           | Borehole/Pit No. | BH105    |
| Site Name             | 3FM Planning Design GI - Lot A DPC Lands   |            |           | Sample No.       | 2        |
| Soil Description      | Brown gravelly clayey fine to coarse SAND. |            | Depth m   | 0.50             |          |
| Specimen<br>Reference |                                            | Specimen m |           | Sample Type      | В        |
| Specimen Description  | Brown gravelly clayey fine to coarse SAND. |            | KeyLAB ID | Caus2023030884   |          |
| Test Method           | BS1377 : Part 4 : 1990                     | , clause 7 |           | CBR Test Number  | 1        |

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 19 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 Initial Specimen details 2.22 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.97 Mg/m3 kPa

13

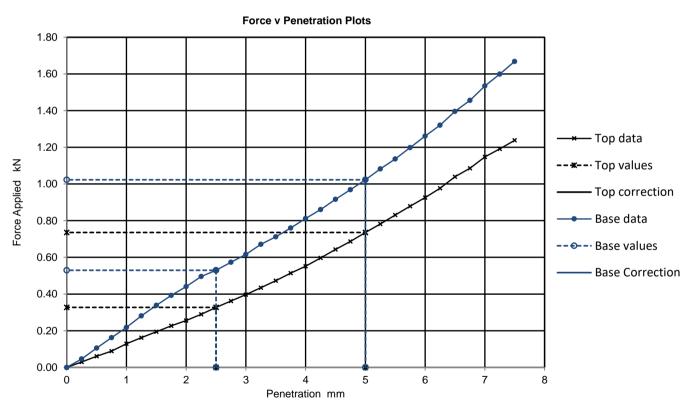
%



Results Moisture CBR Values, % Curve Content correction 2.5mm 5mm Highest Average applied % 19.0 23.0 23.0 13 TOP No BASE No 27.0 29.0 29.0 11

Moisture content

| General remarks | Test specific remarks                                                               | Approved |  |
|-----------------|-------------------------------------------------------------------------------------|----------|--|
|                 | Average result may be reported if within 10% of the mean CBR value of top and base. |          |  |


UKAS
TESTING
10122

| CAUSEWAY              | California Bearing Ratio ( CBR )           | Job Ref          | 22-1041A       |
|-----------------------|--------------------------------------------|------------------|----------------|
| GEOTECH               | Camornia Bearing Ratio ( CBR )             | Borehole/Pit No. | BH112          |
| Site Name             | 3FM Planning Design GI - Lot A DPC Lands   | Sample No.       | 6              |
| Soil Description      | Brown gravelly clayey fine to coarse SAND. | Depth m          | 1.00           |
| Specimen<br>Reference | Specimen m Depth                           | Sample Type      | В              |
| Specimen Description  | Brown gravelly clayey fine to coarse SAND. | KeyLAB ID        | Caus2023030888 |
| Test Method           | BS1377 : Part 4 : 1990, clause 7           | CBR Test Number  | 1              |

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 14 % Dry density after soaking Mg/m3 2.09 4.5 Initial Specimen details Bulk density Mg/m3 Surcharge applied kg Dry density 1.80 Mg/m3 kPa

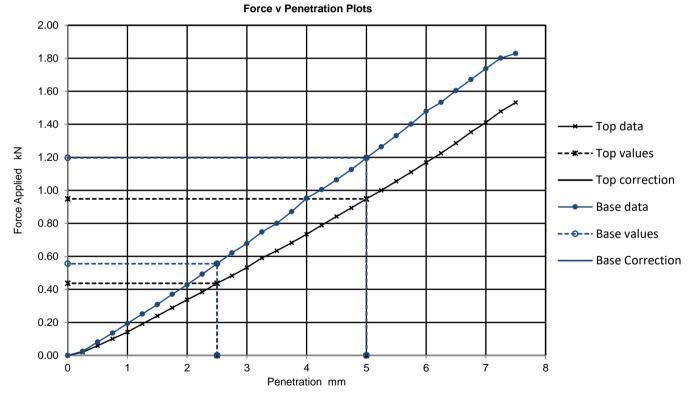
16

%



Results CBR Values, % Moisture Curve Content correction 2.5mm 5mm Highest Average applied % 2.5 3.7 TOP No 3.7 16 BASE No 4.0 5.1 5.1 16

Moisture content


| General remarks | Test specific remarks                                                               | Approved |  |
|-----------------|-------------------------------------------------------------------------------------|----------|--|
|                 | Average result may be reported if within 10% of the mean CBR value of top and base. |          |  |

UKAS TESTING

| CAUSEWAY              | California Bearing                         | Potic / CPP \ | Job Ref          | 22-1041A       |
|-----------------------|--------------------------------------------|---------------|------------------|----------------|
| GEOTECH               | Camornia Bearing                           | Ratio (CBR)   | Borehole/Pit No. | BH117          |
| Site Name             | 3FM Planning Design GI - Lot A DPC         | Lands         | Sample No.       | 3              |
| Soil Description      | Brown gravelly clayey fine to coarse SAND. |               | Depth m          | 1.00           |
| Specimen<br>Reference | Specimen m                                 |               | Sample Type      | В              |
| Specimen Description  | Brown gravelly clayey fine to coarse S     | AND.          | KeyLAB ID        | Caus2023030892 |
| Test Method           | BS1377 : Part 4 : 1990, clause 7           |               | CBR Test Number  | 1              |

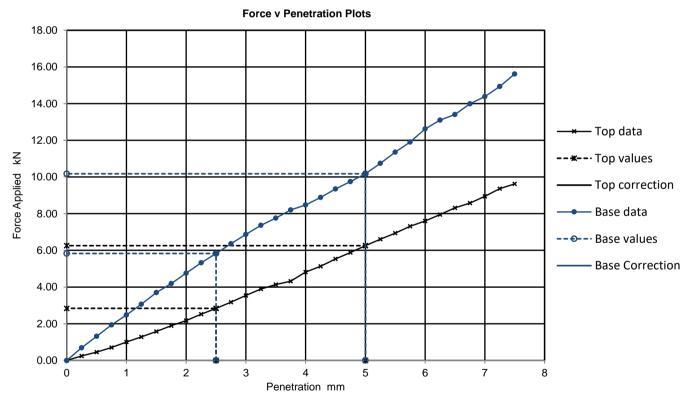
Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 24 % Dry density after soaking Mg/m3 2.21 4.5 Initial Specimen details Bulk density Mg/m3 Surcharge applied kg Dry density 1.97 Mg/m3 kPa

Moisture content 12 %



Results CBR Values, % Moisture Curve Content correction 2.5mm 5mm Highest Average applied % 3.3 4.7 4.7 12 TOP No BASE No 4.2 6.0 6.0 12

| General remarks | Test specific remarks                                                               | Approved |  |  |
|-----------------|-------------------------------------------------------------------------------------|----------|--|--|
|                 | Average result may be reported if within 10% of the mean CBR value of top and base. |          |  |  |


UKAS
TESTING
10122

| CAUSEWAY              | California Bearing                         | Potic / CPP \ | Job Ref          | 22-1041A       |
|-----------------------|--------------------------------------------|---------------|------------------|----------------|
| GEOTECH               | Camornia Bearing                           | Ratio (CBR)   | Borehole/Pit No. | BH119          |
| Site Name             | 3FM Planning Design GI - Lot A DPC         | Lands         | Sample No.       | 3              |
| Soil Description      | Brown gravelly clayey fine to coarse SAND. |               | Depth m          | 1.00           |
| Specimen<br>Reference | Specimen m                                 |               | Sample Type      | В              |
| Specimen Description  | Brown gravelly clayey fine to coarse S     | AND.          | KeyLAB ID        | Caus2023030893 |
| Test Method           | BS1377 : Part 4 : 1990, clause 7           |               | CBR Test Number  | 1              |

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 32 Dry density after soaking Material retained on 20mm sieve removed % Mg/m3 Initial Specimen details 2.07 Mg/m3 4.5 Bulk density Surcharge applied kg Dry density 1.90 Mg/m3 kPa

8.7

%



| Results | Curve              |       | CBR Va | lues, % |         | Moisture     |
|---------|--------------------|-------|--------|---------|---------|--------------|
|         | correction applied | 2.5mm | 5mm    | Highest | Average | Content<br>% |
| TOP     | No                 | 22.0  | 31.0   | 31.0    |         | 8.7          |
| BASE    | No                 | 44.0  | 51.0   | 51.0    |         | 8.8          |

Moisture content

| General remarks | Test specific remarks                                                               | Approved |
|-----------------|-------------------------------------------------------------------------------------|----------|
|                 | Average result may be reported if within 10% of the mean CBR value of top and base. |          |

UKAS TESTING

| CAUSEWAY              | California Bearing Ratio ( CBR )           | Job Ref          | 22-1041A        |   |
|-----------------------|--------------------------------------------|------------------|-----------------|---|
| GEOTECH               | California Bearing Ratio ( CBR )           | Borehole/Pit No. | BH120           |   |
| Site Name             | 3FM Planning Design GI - Lot A DPC Lands   | Sample No.       | 16              |   |
| Soil Description      | Brown gravelly clayey fine to coarse SAND. | Depth m          | 0.50            |   |
| Specimen<br>Reference | Specimen Depth                             | m                | Sample Type     | В |
| Specimen Description  | Brown gravelly clayey fine to coarse SAND. | KeyLAB ID        | Caus2023030897  |   |
| Test Method           | BS1377 : Part 4 : 1990, clause 7           |                  | CBR Test Number | 1 |

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 46 % Dry density after soaking Mg/m3 Initial Specimen details 2.10 Mg/m3 4.5 kg Bulk density Surcharge applied

Dry density

1.81 Mg/m3

3 kPa

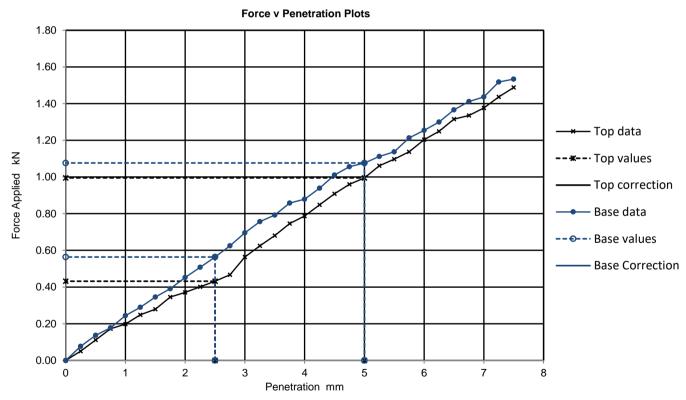
Moisture content

16 %

# Force v Penetration Plots 2.00 1.80 1.60 1.40 Top data Force Applied kN -· Top values 1.20 - Top correction 1.00 - Base data 0.80 - •-- Base values 0.60 Base Correction 0.40 0.20 0.00 6 5 Penetration mm

| Results | Curve              |       | CBR Va | lues, % |         |   | Moisture     |
|---------|--------------------|-------|--------|---------|---------|---|--------------|
|         | correction applied | 2.5mm | 5mm    | Highest | Average |   | Content<br>% |
| TOP     | No                 | 3.0   | 4.4    | 4.4     |         | • | 16           |
| BASE    | No                 | 3.5   | 5.7    | 5.7     |         |   | 14           |

| General remarks | Test specific remarks                                                               | Approved |
|-----------------|-------------------------------------------------------------------------------------|----------|
|                 | Average result may be reported if within 10% of the mean CBR value of top and base. |          |


UKAS
TESTING
10122

| CAUSEWAY              | Californ                                   | California Bearing Ratio ( CBR ) |               |                  | 22-1041A        |
|-----------------------|--------------------------------------------|----------------------------------|---------------|------------------|-----------------|
| GEOTECH               | Californ                                   | ia bearing r                     | Kallo ( CBK ) | Borehole/Pit No. | ST102           |
| Site Name             | 3FM Planning Design GI - Lot A DPC Lands   |                                  |               | Sample No.       | 4               |
| Soil Description      | Brown gravelly clayey fine to coarse SAND. |                                  |               | Depth m          | 0.50            |
| Specimen<br>Reference |                                            | Specimen<br>Depth                | m             | Sample Type      | В               |
| Specimen Description  | Brown gravelly clayey fine to coarse SAND. |                                  |               | KeyLAB ID        | Caus20230308158 |
| Test Method           | BS1377 : Part 4 : 1990                     | , clause 7                       |               | CBR Test Number  | 1               |

Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 27 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 Initial Specimen details 2.02 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.78 Mg/m3 kPa

13

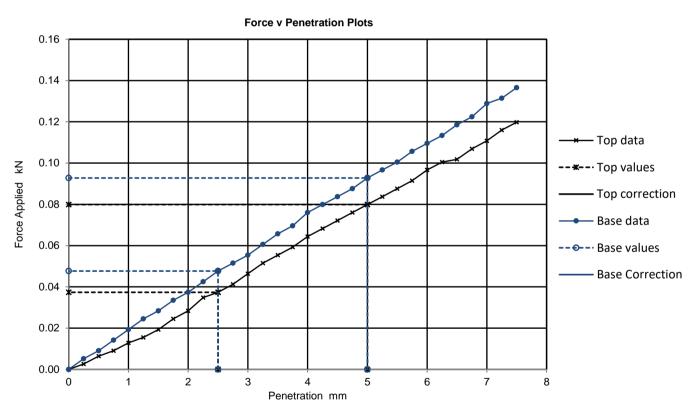
%



Results Moisture CBR Values, % Curve Content correction 2.5mm 5mm Highest Average applied % 3.3 5.0 13 TOP No 5.0 5.2 BASE No 4.3 5.4 5.4 13

Moisture content

| General remarks | Test specific remarks                                                               | Approved       |
|-----------------|-------------------------------------------------------------------------------------|----------------|
|                 | Average result may be reported if within 10% of the mean CBR value of top and base. | Stephen Watson |

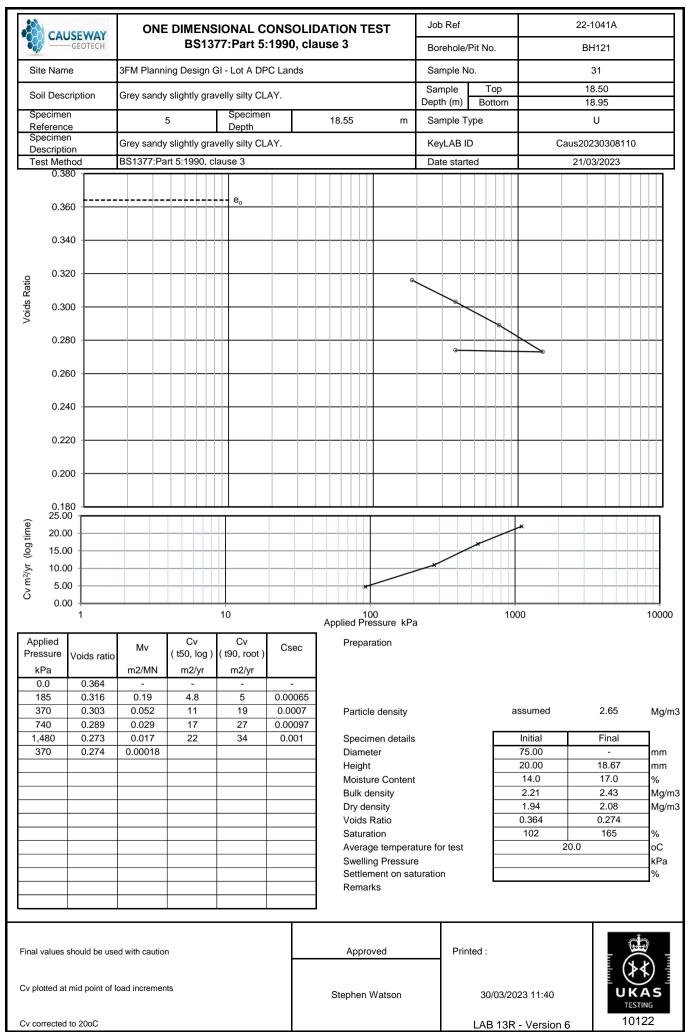

UKAS TESTING

| CAUSEWAY              | California Bearing Ratio ( CBR )         |                  | Job Ref         | 22-1041A |
|-----------------------|------------------------------------------|------------------|-----------------|----------|
| GEOTECH               | Camornia Bearing Ratio (CBR)             | Borehole/Pit No. | ST104           |          |
| Site Name             | 3FM Planning Design GI - Lot A DPC Lands | Sample No.       | 1               |          |
| Soil Description      | Grey sandy slightly gravelly silty CLAY. | Depth m          | 0.50            |          |
| Specimen<br>Reference | Specimen<br>Depth                        | m                | Sample Type     | В        |
| Specimen Description  | Grey sandy slightly gravelly silty CLAY. | KeyLAB ID        | Caus20230308160 |          |
| Test Method           | BS1377 : Part 4 : 1990, clause 7         |                  | CBR Test Number | 1        |

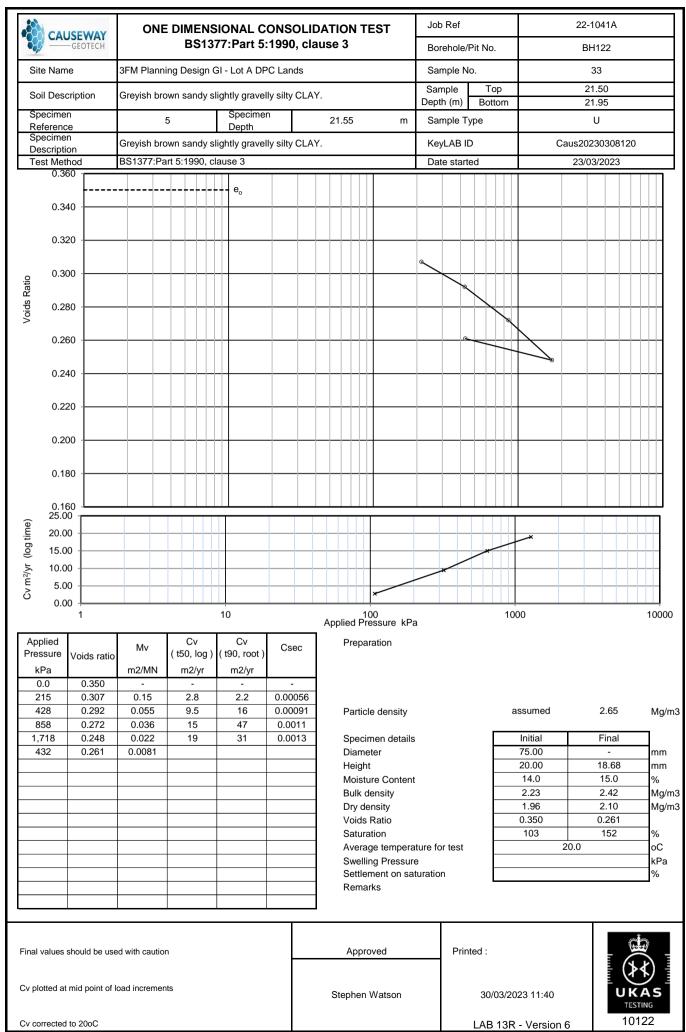
Condition REMOULDED Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 13 % Dry density after soaking Mg/m3 Initial Specimen details 1.95 4.5 Bulk density Mg/m3 Surcharge applied kg Dry density 1.58 Mg/m3 kPa

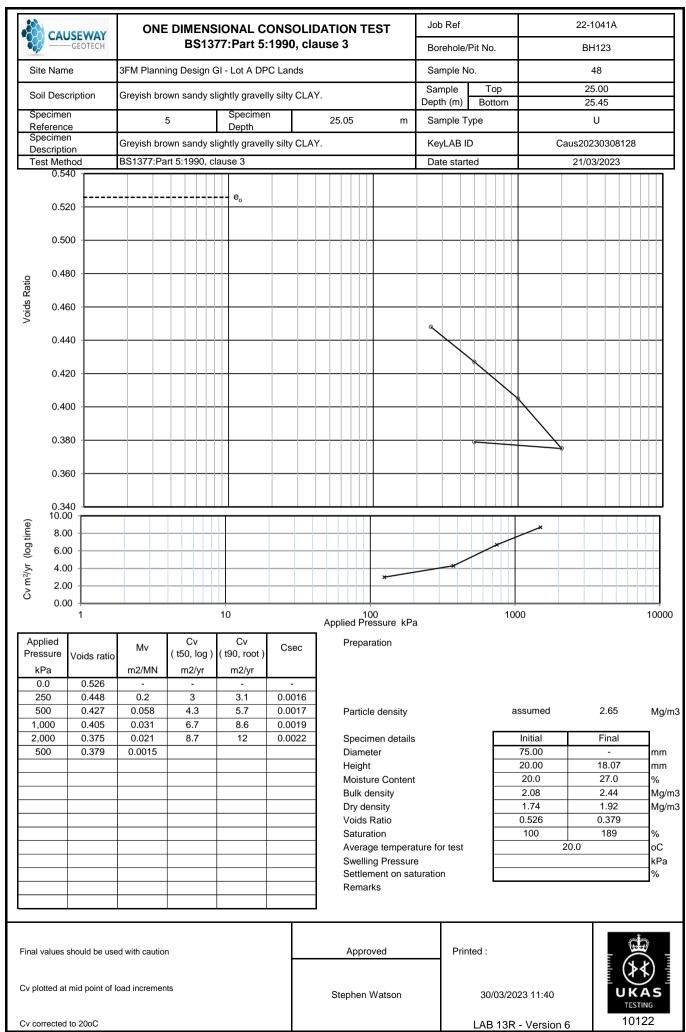
23

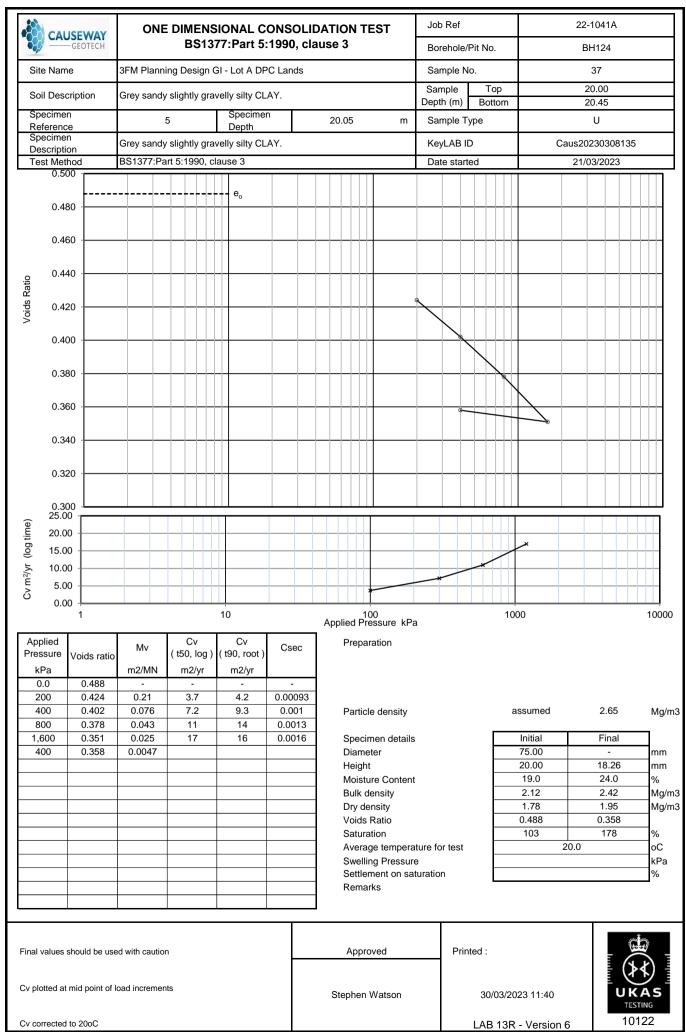
%

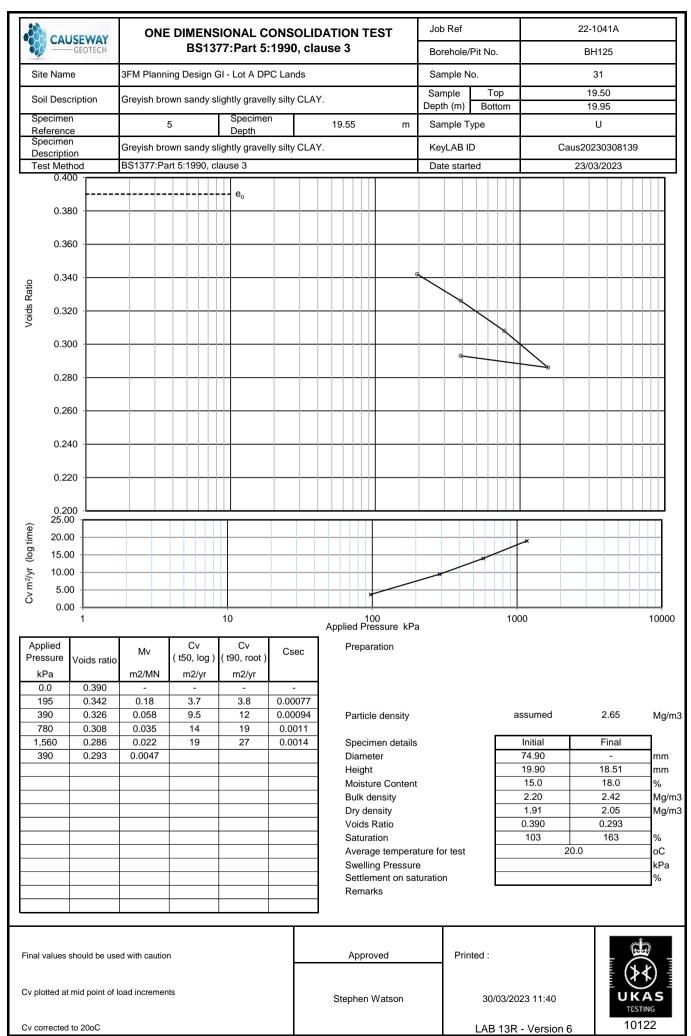


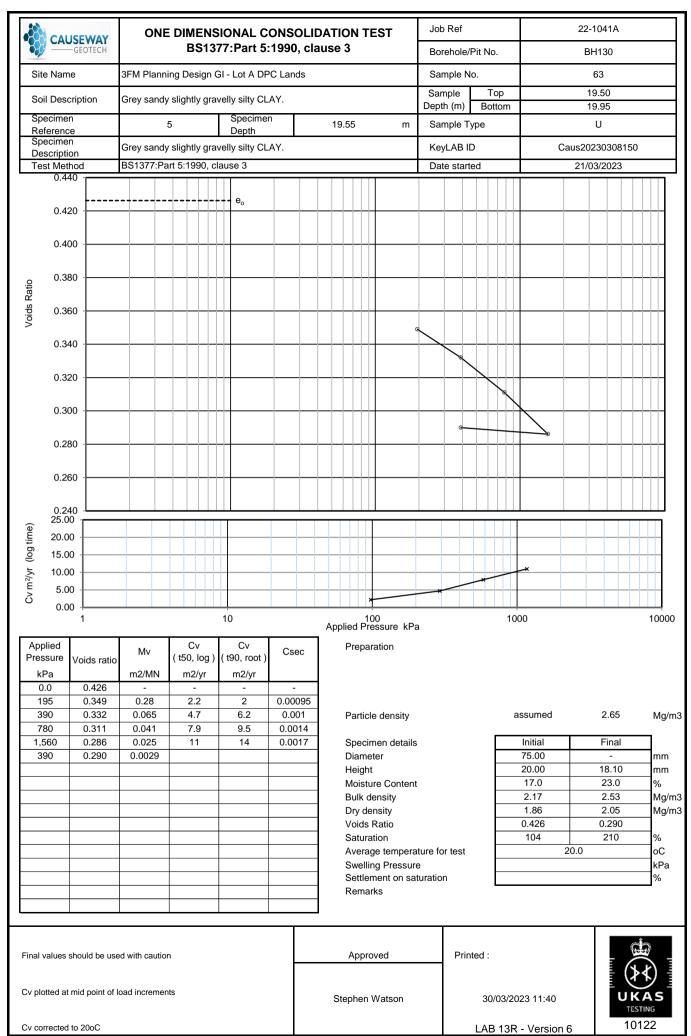

Results CBR Values, % Moisture Curve Content correction 2.5mm 5mm Highest Average applied % 0.4 23 TOP No 0.3 0.4 0.4 BASE No 0.4 0.5 0.5 23


Moisture content


| General remarks | Test specific remarks                                                               | Approved |
|-----------------|-------------------------------------------------------------------------------------|----------|
|                 | Average result may be reported if within 10% of the mean CBR value of top and base. |          |


10122





| CAUSEWAY                    |                                | ONE DIMENSIONAL CONSOLIDATION TEST Jo    |                                                  |                                        | 2                | 22-1041A       |             |
|-----------------------------|--------------------------------|------------------------------------------|--------------------------------------------------|----------------------------------------|------------------|----------------|-------------|
| GEOTECH                     | BS1377:P                       | rt 5:1990, claus                         | Borehole/Pit No                                  | ).                                     | BH121            |                |             |
| Site Name                   | 3FM Planning Design GI - Lo    | 3FM Planning Design GI - Lot A DPC Lands |                                                  |                                        |                  | 60             |             |
| Soil Description            | Grey sandy slightly gravelly s | ty CLAY.                                 |                                                  |                                        | op<br>tom        | 30.50<br>30.95 |             |
| Specimen                    | 5                              | cimen                                    | 30.55 m                                          | Sample Type                            |                  | U              |             |
| Reference<br>Specimen       | Grey sandy slightly gravelly s | -                                        |                                                  | KeyLAB ID                              | Caus             | 20230308114    |             |
| Description Test Method     | BS1377:Part 5:1990, clause     |                                          |                                                  | Date started                           |                  | 3/03/2023      |             |
| 0.550                       |                                |                                          |                                                  |                                        |                  |                |             |
|                             | ·                              |                                          |                                                  |                                        |                  |                |             |
| 0.500                       |                                |                                          |                                                  |                                        |                  |                | $\dashv$    |
| 0.450                       |                                |                                          |                                                  |                                        |                  |                | Щ           |
|                             |                                |                                          |                                                  |                                        |                  |                |             |
| 0.400                       |                                |                                          |                                                  |                                        |                  |                | +           |
| 0.350                       |                                |                                          |                                                  |                                        |                  |                |             |
| 0.350                       |                                |                                          |                                                  |                                        |                  |                | 7           |
| 0.300                       |                                |                                          |                                                  |                                        |                  |                | 4           |
|                             |                                |                                          |                                                  |                                        |                  |                |             |
| 0.250                       | <del></del>                    |                                          | <del>                                     </del> |                                        |                  |                | +           |
| 0.200                       |                                |                                          |                                                  |                                        |                  |                |             |
| 0.200                       |                                |                                          |                                                  |                                        |                  |                |             |
| 0.150                       |                                |                                          |                                                  |                                        |                  |                | $\dashv$    |
|                             |                                |                                          |                                                  |                                        |                  |                |             |
| 0.100                       |                                |                                          |                                                  |                                        |                  |                | $\dashv$    |
| 0.050                       |                                |                                          |                                                  |                                        |                  |                |             |
| 25.00                       |                                |                                          |                                                  |                                        |                  |                |             |
| 20.00                       |                                |                                          |                                                  |                                        |                  |                | $\parallel$ |
| 5 10.00                     |                                |                                          |                                                  |                                        | *                |                | П           |
| 5.00                        |                                |                                          |                                                  | ************************************** |                  |                | $\coprod$   |
| 0.00                        |                                |                                          | ***                                              |                                        | 1000             |                | Щ           |
| 1                           | 10                             | A                                        | 100<br>Applied Pressure kP                       | a                                      | 1000             |                | 100         |
| Applied Pressure Voids rati | Cv<br>( t50, log ) ( t90       |                                          | Preparation                                      |                                        |                  |                |             |
| Pressure Voids rati         | m2/MN m2/yr m                  |                                          |                                                  |                                        |                  |                |             |
| 0.0 0.523                   |                                | -                                        |                                                  |                                        |                  |                |             |
| 300 0.434<br>600 0.408      |                                | 0.0014                                   | Particle density                                 |                                        | assumed          | 2.65           | M           |
| 1,200 0.375                 | 0.038 9.4                      | 0.0022                                   | •                                                |                                        |                  |                | _           |
| 2,400 0.337<br>600 0.352    | 0.023 13<br>0.0065             | 0.0029                                   | Specimen details  Diameter                       | 5                                      | Initial<br>75.00 | Final<br>-     | m           |
|                             |                                |                                          | Height                                           |                                        | 20.00            | 17.76          | m           |
|                             |                                |                                          | Moisture Conten<br>Bulk density                  | t                                      | 19.0<br>2.07     | 25.0<br>2.45   | %<br>M      |
|                             |                                |                                          | Dry density                                      |                                        | 1.74             | 1.96           | M           |
|                             |                                |                                          | Voids Ratio                                      |                                        | 0.523            | 0.352          |             |
|                             |                                |                                          | Saturation                                       |                                        | 96               | 188            | %           |
|                             |                                |                                          | Average temperature for test                     |                                        | 20.0             | )              | oC<br>kF    |
|                             |                                |                                          | Swelling Pressur Settlement on sa                |                                        |                  |                | KF          |
|                             |                                |                                          | Remarks                                          |                                        |                  |                | <b>_</b>    |
|                             |                                |                                          |                                                  |                                        |                  |                |             |
|                             |                                |                                          |                                                  |                                        |                  |                | ~           |
| nal values should be u      | sed with caution               |                                          | Approved                                         | Printed :                              |                  |                | *           |
|                             |                                |                                          |                                                  |                                        |                  | <b> </b>       | (∤          |
| v plotted at mid point o    | f load increments              |                                          | Stephen Watson                                   | 30/                                    | /03/2023 11:40   | UK             | ÁS          |
|                             |                                |                                          | _10p5/1 11 at 100/1                              | 30/                                    | 15,2020 11.10    | TEST           |             |
|                             |                                |                                          |                                                  |                                        |                  | 101            |             |







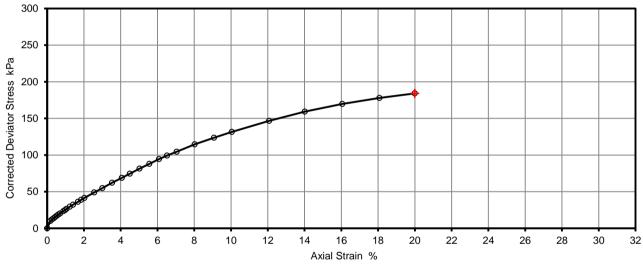




|                       | Unconsolid                                                            |                                                                        |                    |              |        | Job Ref  |                                    | 2                       | 22-1041A                                   |
|-----------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------|--------------|--------|----------|------------------------------------|-------------------------|--------------------------------------------|
| CAUSEWAY ——GEOTECH    | =                                                                     | compression Test without measurement f pore pressure - single specimen |                    |              |        |          |                                    | BH101                   |                                            |
| Site Name             | 3FM Planning De                                                       | esign GI - Lot A                                                       | DPC Land           | st           |        | Sample   | No.                                |                         | 1                                          |
| Soil Description      | Grey sandy slight                                                     | tly gravelly silty                                                     | CLAY.              |              |        | Depth    |                                    |                         | 16.50                                      |
| Specimen<br>Reference | 5                                                                     | 5 Specimen 16.55 m                                                     |                    |              |        | Sample   | Туре                               |                         | С                                          |
| Specimen Description  | Stiff grey sandy slightly gravelly silty CLAY.                        |                                                                        |                    |              | KeyLAB | ID       | Caus                               | s2023030874             |                                            |
| Test Method           | BS1377 : Part 7 :                                                     | 1990, clause 8                                                         | 3, single sp       | ecimen       |        | Date of  | test                               | 1                       | 4/03/2023                                  |
|                       | Sample Condition<br>Test Number<br>Length<br>Diameter<br>Bulk Density |                                                                        |                    |              |        | 2°<br>1( | TURBED<br>1<br>10.0<br>05.0<br>.45 | mm<br>mm<br>Mg/m3       |                                            |
|                       | Moisture Content<br>Dry Density                                       |                                                                        |                    |              |        |          | 9.5<br>.24                         | %<br>Mg/m3              |                                            |
|                       | Rate of Strain Cell Pressure                                          |                                                                        |                    |              |        |          | 2.0                                | %/min<br>kPa            |                                            |
|                       | At failure                                                            | Axial Strai                                                            |                    |              |        | 1        | 7.7                                | %                       |                                            |
|                       |                                                                       | Deviator S<br>Undrained                                                |                    |              |        |          | 72                                 | kPa<br>kPa ½(√          | ກ1 - ຫ3 \f                                 |
|                       |                                                                       | Mode of F                                                              |                    | engin, cu    |        |          | pound                              | KFa /2()                | 01-03 )1                                   |
| 500                   |                                                                       |                                                                        |                    |              | + 00   |          |                                    |                         |                                            |
| 400                   |                                                                       |                                                                        |                    |              |        |          |                                    |                         |                                            |
|                       |                                                                       |                                                                        |                    |              |        |          |                                    |                         |                                            |
| 300                   |                                                                       |                                                                        |                    |              |        |          |                                    |                         |                                            |
| 200                   |                                                                       |                                                                        |                    |              |        |          |                                    |                         |                                            |
| 100                   |                                                                       |                                                                        |                    |              |        |          |                                    |                         |                                            |
|                       |                                                                       |                                                                        |                    |              |        |          |                                    |                         |                                            |
| 0 2                   | 4 6 8                                                                 | 3 10                                                                   | 12 14              | 16           | 18     | 20 22    | 24                                 | 26 2                    | 28 30                                      |
| hr Circles            |                                                                       |                                                                        |                    | Axial Strain | %      |          |                                    |                         |                                            |
| 500                   |                                                                       |                                                                        |                    |              |        |          |                                    |                         | stress corrected<br>hange and<br>e effects |
| 400                   |                                                                       |                                                                        |                    |              |        |          |                                    |                         | es and their<br>tion is not cover          |
|                       |                                                                       |                                                                        |                    |              |        |          |                                    | by BS137<br>This is pro | 7.<br>ovided for                           |
| 300                   |                                                                       |                                                                        |                    |              |        |          |                                    | informatio              | n only.                                    |
|                       |                                                                       |                                                                        |                    |              |        |          |                                    |                         |                                            |
| 200                   |                                                                       |                                                                        |                    |              |        |          |                                    |                         |                                            |
|                       |                                                                       |                                                                        |                    |              |        |          |                                    |                         |                                            |
| 200                   | 200 300 40                                                            |                                                                        | 500 70<br>Stresses | kPa          | 900 1  | 000 110  | 00 1200                            |                         |                                            |
| 100                   | 200 300 40                                                            |                                                                        | Stresses<br>Appi   |              | _      | Printed  | 00 1200                            | ]                       | UKAS                                       |

| CALISEWAY             |                                                   | ited Undrained<br>n Test without |                  | ont   | Job Ref      | 22-1041A        |
|-----------------------|---------------------------------------------------|----------------------------------|------------------|-------|--------------|-----------------|
| —— GEOTECH            | •                                                 | sure - single s                  | Borehole/Pit No. | BH121 |              |                 |
| Site Name             | 3FM Planning Des                                  | sign GI - Lot A DPC L            | Sample No.       | 31    |              |                 |
| Soil Description      | Grey sandy slightly gravelly silty CLAY.          |                                  |                  |       | Depth        | 18.50           |
| Specimen<br>Reference | 6                                                 | Specimen<br>Depth                | 18.55            | m     | Sample Type  | U               |
| Specimen Description  | Stiff grey sandy slightly gravelly silty CLAY.    |                                  |                  |       | KeyLAB ID    | Caus20230308110 |
| Test Method           | BS1377 : Part 7 : 1990, clause 8, single specimen |                                  |                  |       | Date of test | 14/03/2023      |

Sample Condition Test Number Length Diameter **Bulk Density** Moisture Content Dry Density


Rate of Strain Cell Pressure At failure

Axial Strain Deviator Stress, ( $\sigma$ 1 -  $\sigma$ 3)f Undrained Shear Strength, cu Mode of Failure

| UNDISTURBED |       |
|-------------|-------|
| 1           |       |
| 188.6       | mm    |
| 105.5       | mm    |
| 2.12        | Mg/m3 |
| 16          | %     |
| 1.83        | Mg/m3 |
|             | -     |

| 2.0  | %/min             |
|------|-------------------|
| 185  | kPa               |
| 20.0 | %                 |
| 184  | kPa               |
| 92   | kPa ½( σ1 - σ3 )f |
|      |                   |

### **Deviator Stress v Axial Strain**





Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks

No failure defined. Testing terminated at 20% axial strain.

Approved Stephen Watson

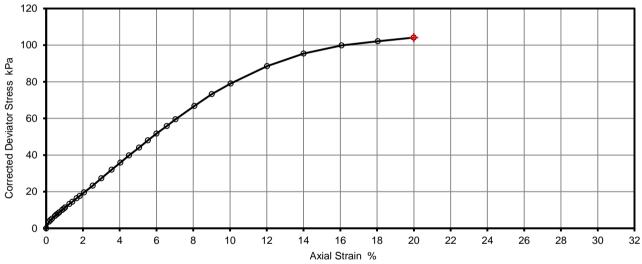
Printed

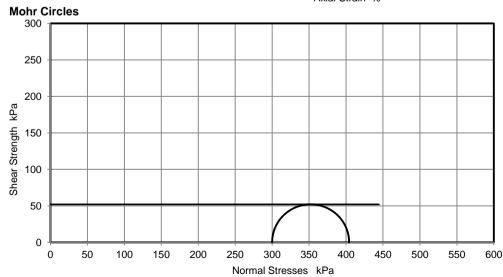
30/03/2023 11:41



| CAUSEWAY GEOTECH  Compression Test without measurement of pore pressure - single specimen |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Job Ref                                                                                                                                                                                                                         | 22-1041A                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Borehole/Pit No.                                                                                                                                                                                                                | BH121                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |
| 3FM Planning Design GI - Lot A DPC Lands                                                  |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample No.                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |
| Grey sandy slightly gravelly silty CLAY.                                                  |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth                                                                                                                                                                                                                           | 30.50                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |
| 6 Specimen 30.55 m                                                                        |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                                                                                                                                                                                                               | Sample Type                                                                                                                                                                                                                          | U                                                                                                                                                                                                                                                                                  |
| Firm grey sandy slightly gravelly silty CLAY.                                             |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | KeyLAB ID                                                                                                                                                                                                                            | Caus20230308114                                                                                                                                                                                                                                                                    |
| BS1377 : Part 7 : 1990, clause 8, single specimen                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date of test                                                                                                                                                                                                                    | 15/03/2023                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |
|                                                                                           | Compression of pore press 3FM Planning Desig Grey sandy slightly 6 Firm grey sandy slig | Compression Test without of pore pressure - single and a sign of the policy of pore pressure - single and a sign of the policy of pore pressure - single and a sign of the policy of polic | Compression Test without measurem of pore pressure - single specimen  3FM Planning Design GI - Lot A DPC Lands  Grey sandy slightly gravelly silty CLAY.  6 Specimen Depth 30.55  Firm grey sandy slightly gravelly silty CLAY. | Compression Test without measurement of pore pressure - single specimen  3FM Planning Design GI - Lot A DPC Lands  Grey sandy slightly gravelly silty CLAY.  6 Specimen Depth 30.55 m  Firm grey sandy slightly gravelly silty CLAY. | Compression Test without measurement of pore pressure - single specimen  Borehole/Pit No.  BrM Planning Design GI - Lot A DPC Lands  Grey sandy slightly gravelly silty CLAY.  Depth  Specimen Depth  Depth  Sample Type  Firm grey sandy slightly gravelly silty CLAY.  KeyLAB ID |

Test Number
Length
Diameter
Bulk Density
Moisture Content
Dry Density


Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, ( $\sigma$ 1 -  $\sigma$ 3)f Undrained Shear Strength, cu Mode of Failure

| UNDISTURBED |       |
|-------------|-------|
| 1           |       |
| 210.0       | mm    |
| 105.4       | mm    |
| 2.01        | Mg/m3 |
| 23          | %     |
| 1.63        | Mg/m3 |

| 2.0 | %/min         |
|-----|---------------|
| 300 | kPa           |
|     | %             |
| 104 | kPa           |
| 52  | kPa ½(σ1-σ3)f |
|     |               |

### **Deviator Stress v Axial Strain**





Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks

No failure defined. Testing terminated at 20% axial strain.

Approved
Stephen Watson

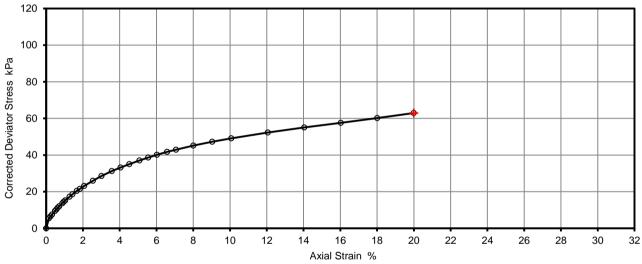
Printed

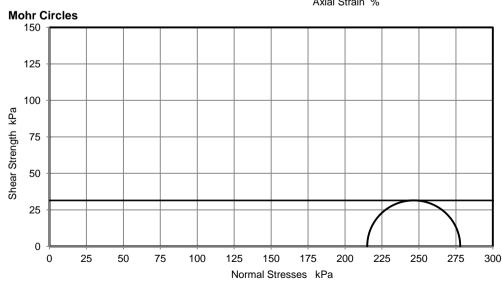
30/03/2023 11:41



| CALISEWAY                          | Unconsolidated Undrained Triaxial Compression Test without measurement |  |                  |              | Job Ref         | 22-1041A |
|------------------------------------|------------------------------------------------------------------------|--|------------------|--------------|-----------------|----------|
| of pore pressure - single specimen |                                                                        |  | Borehole/Pit No. | BH122        |                 |          |
| Site Name                          | 3FM Planning Design GI - Lot A DPC Lands                               |  |                  | Sample No.   | 33              |          |
| Soil Description                   | Greyish brown sandy slightly gravelly silty CLAY.                      |  |                  | Depth        | 21.50           |          |
| Specimen<br>Reference              | 6 Specimen 21.55 m                                                     |  |                  | Sample Type  | U               |          |
| Specimen<br>Description            | Soft greyish brown sandy slightly gravelly silty CLAY.                 |  |                  | KeyLAB ID    | Caus20230308120 |          |
| Test Method                        | BS1377 : Part 7 : 1990, clause 8, single specimen                      |  |                  | Date of test | 15/03/2023      |          |

Sample Condition Test Number Length Diameter **Bulk Density** Moisture Content Dry Density


Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, ( $\sigma$ 1 -  $\sigma$ 3)f Undrained Shear Strength, cu Mode of Failure

| UNDISTURBED |       |
|-------------|-------|
| 1           |       |
| 210.0       | mm    |
| 106.7       | mm    |
| 2.10        | Mg/m3 |
| 19          | %     |
| 1.76        | Mg/m3 |

| 2.0  | %/min             |
|------|-------------------|
| 215  | kPa               |
| 20.0 | %                 |
| 63   | kPa               |
| 31   | kPa ½( σ1 - σ3 )f |
|      |                   |

### **Deviator Stress v Axial Strain**





Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks

No failure defined. Testing terminated at 20% axial strain.

Approved Stephen Watson

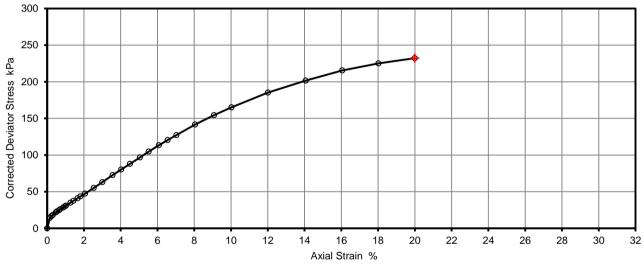
Printed 30/03/2023 11:41

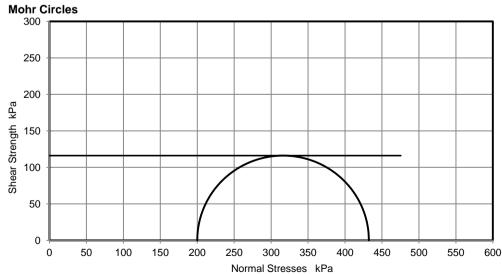
LAB 15R - Version 6



| CALISEWAY             | Unconsolidated Undrained Triaxial Compression Test without measurement |  |  | Job Ref      | 22-1041A         |       |
|-----------------------|------------------------------------------------------------------------|--|--|--------------|------------------|-------|
| ——— GEOTECH           | of pore pressure - single specimen                                     |  |  |              | Borehole/Pit No. | BH124 |
| Site Name             | 3FM Planning Design GI - Lot A DPC Lands                               |  |  | Sample No.   | 37               |       |
| Soil Description      | Grey sandy slightly gravelly silty CLAY.                               |  |  | Depth        | 20.00            |       |
| Specimen<br>Reference | 6 Specimen 20.05 m                                                     |  |  | Sample Type  | U                |       |
| Specimen Description  | Stiff grey sandy slightly gravelly silty CLAY.                         |  |  | KeyLAB ID    | Caus20230308135  |       |
| Test Method           | BS1377 : Part 7 : 1990, clause 8, single specimen                      |  |  | Date of test | 16/03/2023       |       |
|                       | Sample Condition                                                       |  |  |              | UNDISTURBED      |       |

Test Number
Length
Diameter
Bulk Density
Moisture Content
Dry Density


Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, ( $\sigma$ 1 -  $\sigma$ 3)f Undrained Shear Strength, cu Mode of Failure

| UNDISTURBED |       |
|-------------|-------|
| 1           |       |
| 210.0       | mm    |
| 104.8       | mm    |
| 2.10        | Mg/m3 |
| 26          | %     |
| 1.66        | Mg/m3 |

| 2.0  | %/min        |
|------|--------------|
| 200  | kPa          |
| 20.0 | %            |
| 232  | kPa          |
| 116  | kPa ½(σ1-σ3) |
|      |              |

### **Deviator Stress v Axial Strain**





Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Rem<u>arks</u>

No failure defined. Testing terminated at 20% axial strain.

Approved
Stephen Watson

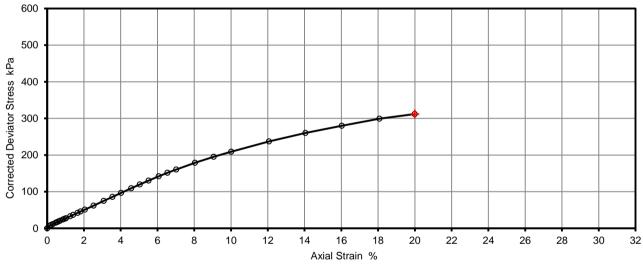
Printed 30/03/2023 11:41

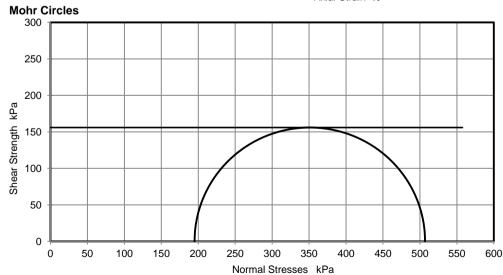
LAB 15R - Version 6



| CALISEWAY                                                                        | Unconsolidat                                            |  | Job Ref          | 22-1041A     |                 |
|----------------------------------------------------------------------------------|---------------------------------------------------------|--|------------------|--------------|-----------------|
| Causeway Compression Test without measurement of pore pressure - single specimen |                                                         |  | Borehole/Pit No. | BH125        |                 |
| Site Name                                                                        | 3FM Planning Design GI - Lot A DPC Lands                |  |                  | Sample No.   | 31              |
| Soil Description                                                                 | Greyish brown sandy slightly gravelly silty CLAY.       |  |                  | Depth        | 19.50           |
| Specimen<br>Reference                                                            | 6 Specimen 19.55 m                                      |  |                  | Sample Type  | U               |
| Specimen Description                                                             | Stiff greyish brown sandy slightly gravelly silty CLAY. |  |                  | KeyLAB ID    | Caus20230308139 |
| Test Method                                                                      | BS1377 : Part 7 : 1990, clause 8, single specimen       |  |                  | Date of test | 16/03/2023      |

Sample Condition Test Number Length Diameter **Bulk Density** Moisture Content Dry Density


Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, ( $\sigma$ 1 -  $\sigma$ 3)f Undrained Shear Strength, cu Mode of Failure

| UNDISTURBED |       |
|-------------|-------|
| 1           |       |
| 210.1       | mm    |
| 105.6       | mm    |
| 2.18        | Mg/m3 |
| 18          | %     |
| 1.84        | Mg/m3 |

| 2.0  | %/min             |
|------|-------------------|
| 195  | kPa               |
| 20.0 | %                 |
| 312  | kPa               |
| 156  | kPa ½( σ1 - σ3 )f |
|      |                   |

### **Deviator Stress v Axial Strain**





Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks

No failure defined. Testing terminated at 20% axial strain.

<u>Approved</u> Stephen Watson

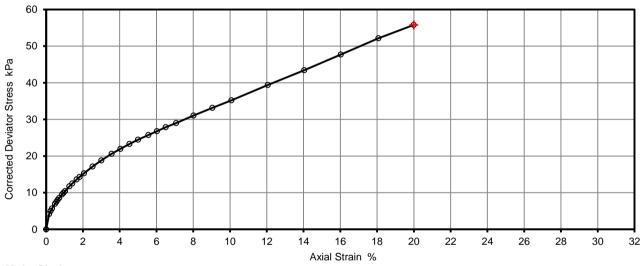
Printed 30/03/2023 11:41

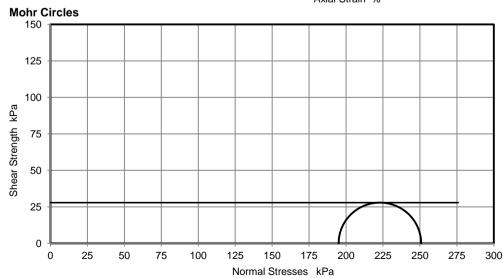
LAB 15R - Version 6



| CAUSEWAY              | Unconsolidated Undrained Triaxial                 |                                                                         |       |              | Job Ref     | 22-1041A        |
|-----------------------|---------------------------------------------------|-------------------------------------------------------------------------|-------|--------------|-------------|-----------------|
| GEOTECH               | •                                                 | Compression Test without measurement of pore pressure - single specimen |       |              |             | BH130           |
| Site Name             | 3FM Planning De                                   | 3FM Planning Design GI - Lot A DPC Lands                                |       |              | Sample No.  | 63              |
| Soil Description      | Grey sandy slightly gravelly silty CLAY.          |                                                                         |       | Depth        | 19.50       |                 |
| Specimen<br>Reference | 6                                                 | Specimen<br>Depth                                                       | 19.55 | m            | Sample Type | U               |
| Specimen Description  | Soft grey sandy s                                 | Soft grey sandy slightly gravelly silty CLAY.                           |       |              |             | Caus20230308150 |
| Test Method           | BS1377 : Part 7 : 1990, clause 8, single specimen |                                                                         |       | Date of test | 20/03/2023  |                 |

Test Number
Length
Diameter
Bulk Density
Moisture Content
Dry Density


Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, ( $\sigma$ 1 -  $\sigma$ 3)f Undrained Shear Strength, cu Mode of Failure

| UNDISTURBED |       |
|-------------|-------|
| 1           |       |
| 210.0       | mm    |
| 105.7       | mm    |
| 2.11        | Mg/m3 |
| 20          | %     |
| 1.75        | Mg/m3 |

| 2.0 | %/min         |
|-----|---------------|
|     | kPa           |
|     | %             |
| 56  | kPa           |
| 28  | kPa ½(σ1-σ3)f |
|     |               |

### **Deviator Stress v Axial Strain**





Deviator stress corrected for area change and membrane effects

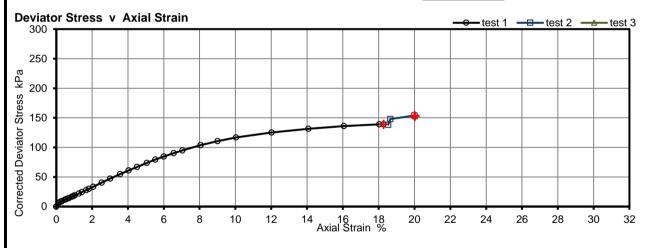
Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

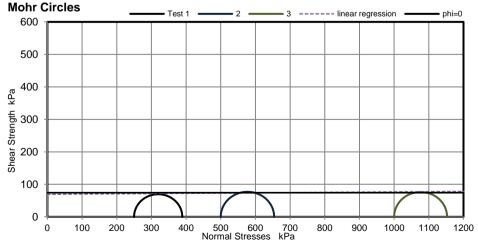
Remarks

No failure defined. Testing terminated at 20% axial strain.

Approved
Stephen Watson

Printed


30/03/2023 11:41


LAB 15R - Version 6



| CAUSEWAY              | Unconsolidate          | ed Triaxial<br>ut measurement | Job Ref                   |               | 22-1041A        |            |
|-----------------------|------------------------|-------------------------------|---------------------------|---------------|-----------------|------------|
| GEOTECH               | of pore pressu         |                               | Borehole                  | /Pit No.      | BH123           |            |
| Site Name             | 3FM Planning Design    | Lands                         | Sample N                  | ١٥.           | 48              |            |
| Soil Description      | Greyish brown sandy    | veilty CLAV                   | Sample                    | Top           | 25.00           |            |
| Soil Description      | Greyisii biowii sandy  | Slightly gravelly             | Silty OLAT.               | Depth (m)     | Base            | 25.45      |
| Specimen<br>Reference | 6 Specimen 25.05 m     |                               |                           | Sample T      | Гуре            | U          |
| Specimen Description  | Stiff greyish brown sa | velly silty CLAY.             | KeyLAB I                  | ID            | Caus20230308128 |            |
| Test Method           | BS1377:Part 7:1990,    | clause 9, multis              | stage test on a single sp | oe Date of te | est             | 15/03/2023 |

UNDISTURBED Sample Condition 210.1 Length mm Diameter 105.8 mm Mg/m3 **Bulk Density** 1.95 Moisture Content 25.0 Dry Density Mg/m3 1.57 2.00 Rate of Strain %/min Stage Number 2 3 1 Cell Pressure kPa 250 500 1000 Axial Strain End of stage 18.3 20.0 20.0 Deviator Stress, ( $\sigma$ 1 -  $\sigma$ 3) corrected for area and membrane kPa 139.0 153.9 152.6 69.5 76.9 76.3 Shear strength, cu kPa Mode of failure





φu = 0

Average cu

74 kPa

Linear Regression

φu cu

0.4 °

Mohr circles and their

interpretation is not covered by BS1377-7: 1990. These are provided for information only.



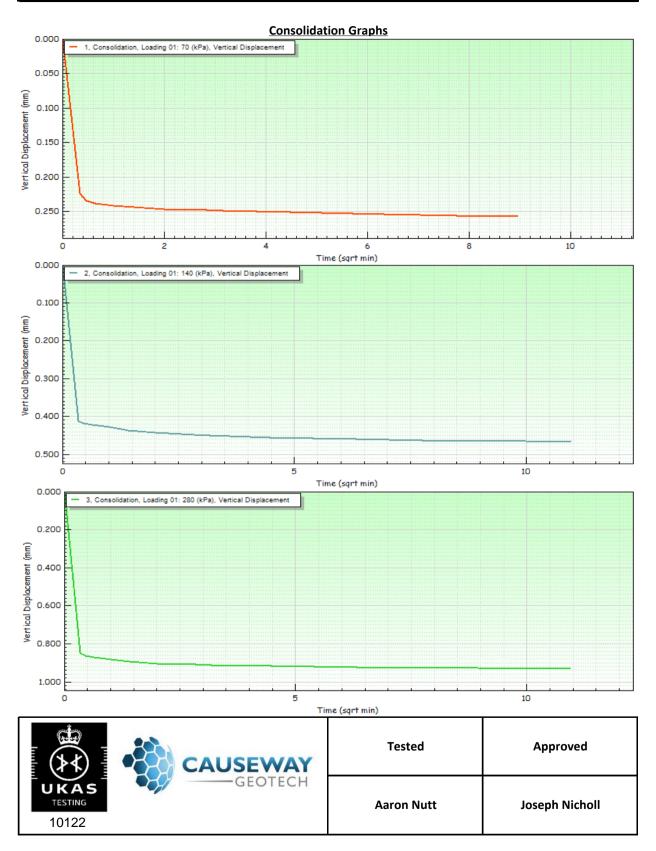
No failure defined. Testing terminated at 20%

axial strain.

Stephen Watson

Approved

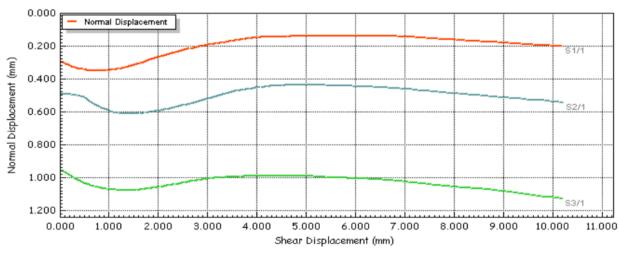
30/03/2023 11:42


Printed

LAB 16R - Version 6

|                                            | Direct Shear        | r Test BS EN ISO 17           | 892-10:2018         |                |            |
|--------------------------------------------|---------------------|-------------------------------|---------------------|----------------|------------|
| Project Number                             | 22-1041A            | Project                       | 3FM Pla             | nning Design ( | GI - Lot A |
| Location Number                            | BH101               | Sample Referer                | 1                   | L8             |            |
| Depth (m)                                  | 7.00                | Sample Submerg                | ged?                | Yes            | No         |
| Sample Type                                | В                   | Particle Density (N           | 1g/m³)              | 2.65           | Assumed    |
| Description                                |                     | Grey slightly gravelly slight | tly silty fine to o | coarse SAND.   |            |
| Sample Preparation                         | Sai                 | mple is recompacted using     | material passin     | g 2mm test sie | eve        |
|                                            |                     | Stage                         | 1                   | 2              | 3          |
|                                            |                     | Initial Conditions            | •                   |                | 1          |
|                                            | Height (mm)         |                               | 20.0                | 20.0           | 20.0       |
|                                            | Diameter (mm)       |                               |                     | 60.0           | 60.0       |
| Water Content (%)                          |                     |                               | 9.1                 | 9.1            | 9.1        |
| Bulk Density (Mg/m³)                       |                     |                               | 1.68                | 1.72           | 1.71       |
| D                                          | Dry Density (Mg/m³) |                               |                     | 1.58           | 1.57       |
|                                            | Voids Ratio         |                               | 0.724               | 0.680          | 0.692      |
|                                            |                     | Consolidation                 |                     |                |            |
| No                                         | ormal Pressure (k   | (Pa)                          | 70                  | 140            | 280        |
| Verti                                      | cal Displacement    | t (mm)                        | 0.257               | 0.467          | 0.931      |
|                                            |                     | Shearing                      |                     |                |            |
| Rat                                        | e of Strain (mm/    | min)                          | 0.600               | 0.600          | 0.600      |
| Pe                                         | ak Shear Stress (   | kPa)                          | 53.6                | 119.5          | 187.0      |
| Hoz Displacement (mm)                      |                     |                               | 10.2                | 10.2           | 10.2       |
| Hoz Displacement at Peak Shear Stress (mm) |                     |                               | 10.083              | 3.603          | 2.403      |
|                                            |                     | Final Conditions              | _                   |                | _          |
| \                                          | Water Content (9    | %)                            | 21.0                | 22.0           | 22.0       |
| D                                          | ry Density (Mg/r    | m <sup>3</sup> )              | 1.55                | 1.64           | 1.72       |
|                                            | Voids Ratio         |                               | 0.706               | 0.634          | 0.596      |

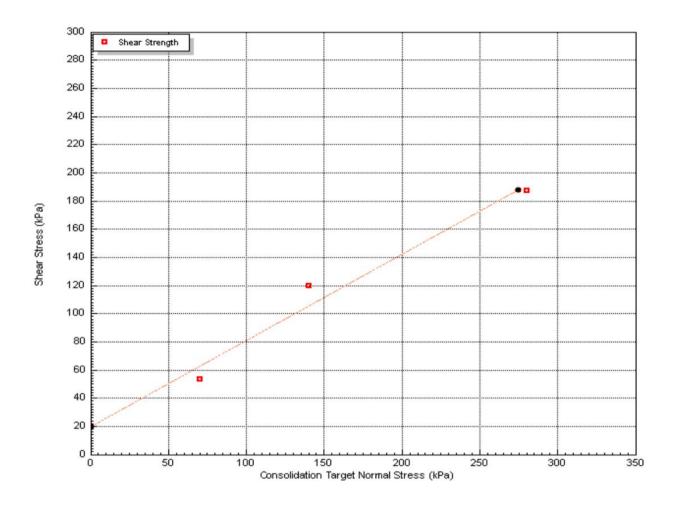
| CAUSEWAY         | Tested     | Approved       |
|------------------|------------|----------------|
| GEOTECH<br>10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178 | 92-10:2018             |         |                |            |
|-----------------|--------------------|--------------------------|---------------|------------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project 3FM Plar         |               | A Project 3FM Planning |         | nning Design G | GI - Lot A |
| Location Number | BH101              | Sample Reference         |               | 1                      | 8       |                |            |
| Depth (m)       | 7.00               | Sample Submerged?        |               | Yes                    | No      |                |            |
| Sample Type     | В                  | Particle Density (Mg/m³) |               | 2.65                   | Assumed |                |            |



|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178 | 92-10:2018 |                |            |
|-----------------|--------------------|--------------------------|---------------|------------|----------------|------------|
| Project Number  | 22-1041A           | Project 3FM              |               | 3FM Pla    | nning Design ( | GI - Lot A |
| Location Number | BH101              | Sample Reference         |               | 1          | 8              |            |
| Depth (m)       | 7.00               | Sample Submerged?        |               | Yes        | No             |            |
| Sample Type     | В                  | Particle Density (Mg/m³) |               | 2.65       | Assumed        |            |

## **Shear Stage**

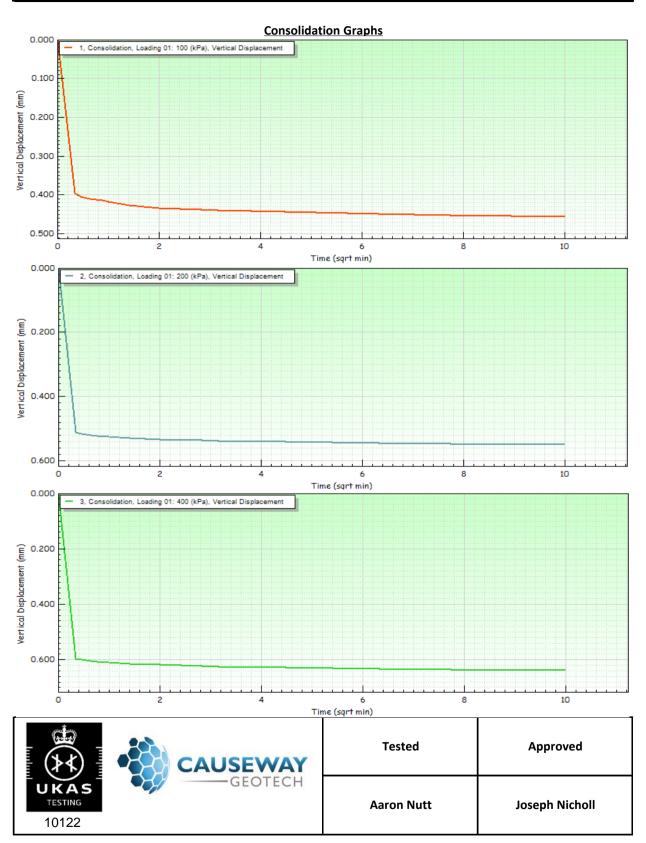





| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

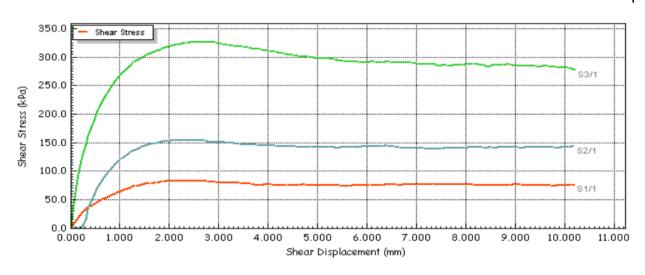
|                 | Direct Shea | r Test                   | BS EN ISO 178 | 92-10:2018     |            |  |
|-----------------|-------------|--------------------------|---------------|----------------|------------|--|
| Project Number  | 22-1041A    | Project 3FM Plan         |               | nning Design ( | GI - Lot A |  |
| Location Number | BH101       | Sample Reference         |               | 1              | 8          |  |
| Depth (m)       | 7.00        | Sample Submerged?        |               | Yes            | No         |  |
| Sample Type     | В           | Particle Density (Mg/m³) |               | 2.65           | Assumed    |  |

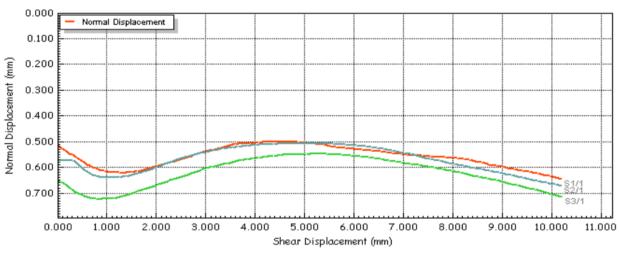
| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 20   |   |
| Angle of Shearing Resistance (°) |   | 31.5 |   |




| CAUSEWAY            | Tested     | Approved       |
|---------------------|------------|----------------|
| UKAS TESTING  10122 | Aaron Nutt | Joseph Nicholl |

|                                            | Direct Shear       | Test BS EN ISO 178                                          | 892-10:2018 |                |            |  |  |  |  |  |
|--------------------------------------------|--------------------|-------------------------------------------------------------|-------------|----------------|------------|--|--|--|--|--|
| Project Number                             | 22-1041A           | Project                                                     | 3FM Pla     | nning Design ( | GI - Lot A |  |  |  |  |  |
| Location Number                            | BH120              | Sample Referer                                              | nce         |                | 1          |  |  |  |  |  |
| Depth (m)                                  | 10.00              | Sample Submerg                                              | ged?        | Yes            | No         |  |  |  |  |  |
| Sample Type                                | С                  | Particle Density (M                                         | lg/m³)      | 2.65           | Assumed    |  |  |  |  |  |
| Description                                |                    | Greyish brown slightly gravelly silty fine to coarse SAND.  |             |                |            |  |  |  |  |  |
| Sample Preparation                         | Sar                | Sample is recompacted using material passing 2mm test sieve |             |                |            |  |  |  |  |  |
|                                            | Stage 1 2 3        |                                                             |             |                |            |  |  |  |  |  |
|                                            |                    | Initial Conditions                                          |             | •              | •          |  |  |  |  |  |
|                                            | Height (mm)        |                                                             | 20.0        | 20.0           | 20.0       |  |  |  |  |  |
|                                            | Diameter (mm)      |                                                             |             |                | 60.0       |  |  |  |  |  |
| Water Content (%)                          |                    |                                                             | 8.4         | 8.4            | 8.4        |  |  |  |  |  |
| Ві                                         | 1.73               | 1.73                                                        | 1.76        |                |            |  |  |  |  |  |
| Dry Density (Mg/m³)                        |                    |                                                             | 1.60        | 1.60           | 1.62       |  |  |  |  |  |
|                                            | Voids Ratio        |                                                             | 0.660       | 0.656          | 0.633      |  |  |  |  |  |
|                                            |                    | Consolidation                                               |             |                |            |  |  |  |  |  |
| No                                         | ormal Pressure (k  | :Pa)                                                        | 100         | 200            | 400        |  |  |  |  |  |
| Verti                                      | cal Displacement   | : (mm)                                                      | 0.456       | 0.549          | 0.638      |  |  |  |  |  |
|                                            |                    | Shearing                                                    |             |                |            |  |  |  |  |  |
| Rat                                        | e of Strain (mm/   | min)                                                        | 0.600       | 0.600          | 0.600      |  |  |  |  |  |
| Pe                                         | ak Shear Stress (I | kPa)                                                        | 82.7        | 154.1          | 326.8      |  |  |  |  |  |
| Hoz Displacement (mm)                      |                    |                                                             | 10.2        | 10.2           | 10.2       |  |  |  |  |  |
| Hoz Displacement at Peak Shear Stress (mm) |                    |                                                             | 2.163       | 2.463          | 2.637      |  |  |  |  |  |
|                                            |                    | Final Conditions                                            | _           |                |            |  |  |  |  |  |
| \                                          | Water Content (%   | 6)                                                          | 20.0        | 20.0           | 20.0       |  |  |  |  |  |
| Dry Density (Mg/m³)                        |                    |                                                             | 1.62        | 1.68           | 1.71       |  |  |  |  |  |
|                                            | Voids Ratio        |                                                             | 0.606       | 0.601          | 0.575      |  |  |  |  |  |

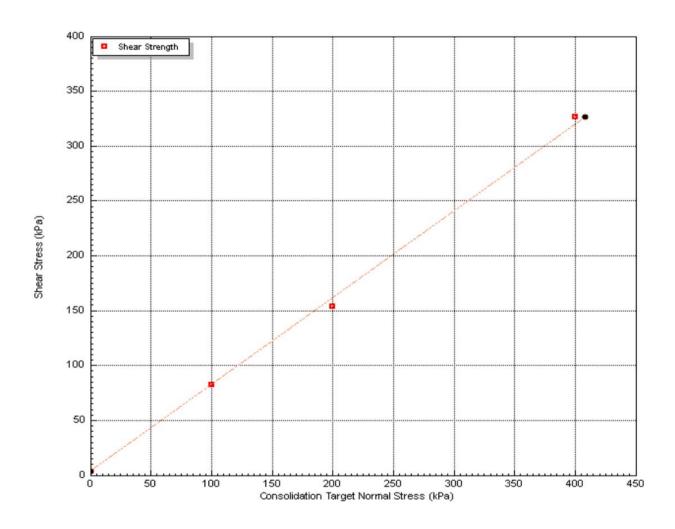

| CAUSEWAY      | Tested     | Approved       |
|---------------|------------|----------------|
| GEOTECH 10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test                   | Test BS EN ISO 17892-10:2018 |         |                           |  |
|-----------------|--------------------|--------------------------|------------------------------|---------|---------------------------|--|
| Project Number  | 22-1041A           | Project 3F               |                              | 3FM Pla | lanning Design GI - Lot A |  |
| Location Number | BH120              |                          | Sample Reference             |         | 1                         |  |
| Depth (m)       | 10.00              | Sample Submerged?        |                              | Yes     | No                        |  |
| Sample Type     | С                  | Particle Density (Mg/m³) |                              | 2.65    | Assumed                   |  |



|                 | <b>Direct Shea</b> | r Test                   | Test BS EN ISO 17892-10:2018 |      |                           |    |
|-----------------|--------------------|--------------------------|------------------------------|------|---------------------------|----|
| Project Number  | 22-1041A           |                          | Project 3FM Plan             |      | lanning Design GI - Lot A |    |
| Location Number | BH120              |                          | Sample Reference             |      | 1                         |    |
| Depth (m)       | 10.00              |                          | Sample Submerged?            |      | Yes                       | No |
| Sample Type     | С                  | Particle Density (Mg/m³) |                              | 2.65 | Assumed                   |    |

## **Shear Stage**

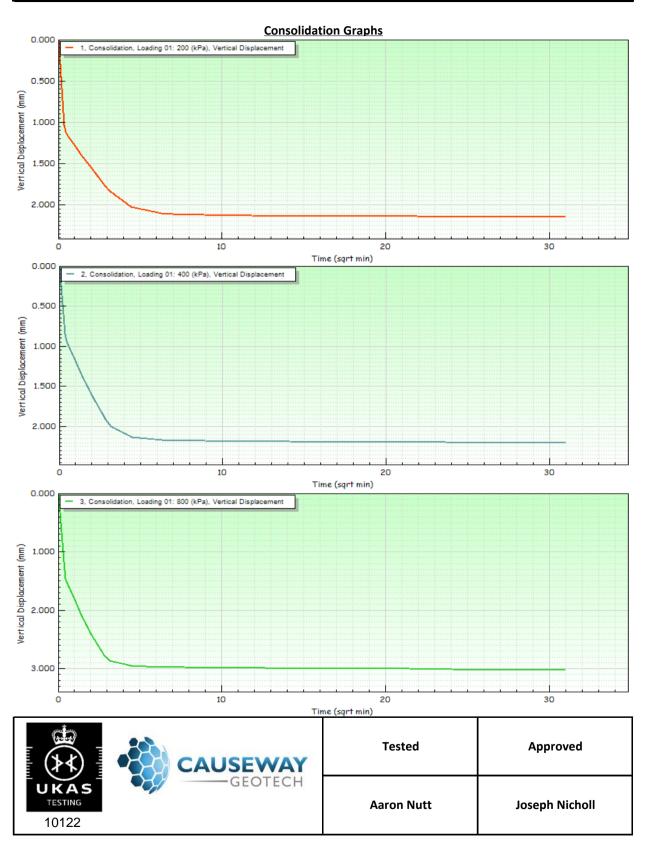





| CAUSEWAY           | Tested     | Approved       |
|--------------------|------------|----------------|
| UKAS TESTING 10122 | Aaron Nutt | Joseph Nicholl |

|                 | Direct Shea | r Test                   |                  |                            |         |  |
|-----------------|-------------|--------------------------|------------------|----------------------------|---------|--|
| Project Number  | 22-1041A    | Project 3FM Plar         |                  | Planning Design GI - Lot A |         |  |
| Location Number | BH120       |                          | Sample Reference |                            | 1       |  |
| Depth (m)       | 10.00       | Sample Submerged?        |                  | Yes                        | No      |  |
| Sample Type     | С           | Particle Density (Mg/m³) |                  | 2.65                       | Assumed |  |

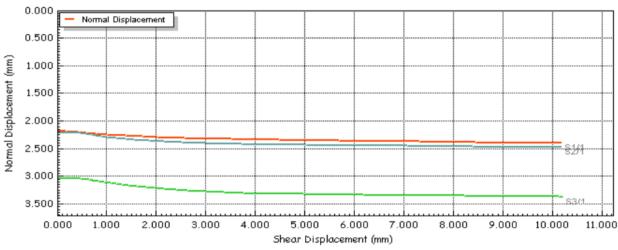
| Sta                              | age | 1 | 2    | 3 |
|----------------------------------|-----|---|------|---|
| Envelope Failure Results         |     |   |      |   |
| Apparent Cohesion (kPa)          |     |   | 4    |   |
| Angle of Shearing Resistance (°) |     |   | 38.5 |   |




| CAUSEWAY            | Tested     | Approved       |
|---------------------|------------|----------------|
| UKAS TESTING  10122 | Aaron Nutt | Joseph Nicholl |

|                                            | Direct Shea         | r Test BS EN ISO 178                                        | 892-10:2018     |              |            |  |  |  |  |  |
|--------------------------------------------|---------------------|-------------------------------------------------------------|-----------------|--------------|------------|--|--|--|--|--|
| Project Number                             | 22-1041A            | Project                                                     | 3FM Pla         | nning Design | GI - Lot A |  |  |  |  |  |
| Location Number                            | BH120               | Sample Referer                                              | nce             |              | 2          |  |  |  |  |  |
| Depth (m)                                  | 20.00               | Sample Submerg                                              | ged?            | Yes          | No         |  |  |  |  |  |
| Sample Type                                | С                   | Particle Density (M                                         | lg/m³)          | 2.65         | Assumed    |  |  |  |  |  |
| Description                                |                     | Grey slightly s                                             | andy silty CLAY |              |            |  |  |  |  |  |
| Sample Preparation                         | Sa                  | Sample is recompacted using material passing 2mm test sieve |                 |              |            |  |  |  |  |  |
|                                            | •                   | Stage                                                       | 1               | 2            | 3          |  |  |  |  |  |
|                                            |                     | Initial Conditions                                          |                 | •            |            |  |  |  |  |  |
|                                            | Height (mm)         | 20.0                                                        | 20.0            | 20.0         |            |  |  |  |  |  |
|                                            | 60.0                | 60.0                                                        | 60.0            |              |            |  |  |  |  |  |
| Water Content (%)                          |                     |                                                             | 21.0            | 21.0         | 21.0       |  |  |  |  |  |
| Bulk Density (Mg/m³)                       |                     |                                                             | 2.09            | 2.06         | 2.10       |  |  |  |  |  |
| D                                          | Dry Density (Mg/m³) |                                                             |                 | 1.71         | 1.74       |  |  |  |  |  |
|                                            | Voids Ratio         |                                                             | 0.527           | 0.550        | 0.520      |  |  |  |  |  |
|                                            |                     | Consolidation                                               |                 |              |            |  |  |  |  |  |
| No                                         | ormal Pressure (l   | kPa)                                                        | 200             | 400          | 800        |  |  |  |  |  |
| Verti                                      | cal Displacemen     | t (mm)                                                      | 2.147           | 2.204        | 3.023      |  |  |  |  |  |
|                                            |                     | Shearing                                                    |                 |              |            |  |  |  |  |  |
| Rat                                        | e of Strain (mm/    | /min)                                                       | 0.062           | 0.062        | 0.062      |  |  |  |  |  |
| Pe                                         | ak Shear Stress (   | kPa)                                                        | 131.9           | 247.4        | 489.9      |  |  |  |  |  |
| Hoz Displacement (mm)                      |                     |                                                             | 10.2            | 10.2         | 10.2       |  |  |  |  |  |
| Hoz Displacement at Peak Shear Stress (mm) |                     |                                                             | 7.431           | 4.323        | 4.857      |  |  |  |  |  |
|                                            |                     | Final Conditions                                            |                 |              |            |  |  |  |  |  |
| \                                          | Water Content (%)   |                                                             |                 | 23.0         | 24.0       |  |  |  |  |  |
| Dry Density (Mg/m³)                        |                     |                                                             | 2.13            | 2.17         | 2.38       |  |  |  |  |  |
|                                            | Voids Ratio         |                                                             | 0.344           | 0.357        | 0.264      |  |  |  |  |  |

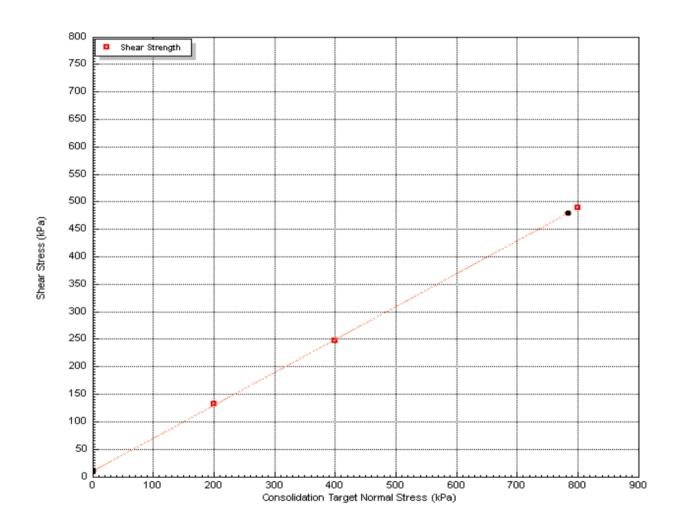

| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test                   |                  |                           |         |  |
|-----------------|--------------------|--------------------------|------------------|---------------------------|---------|--|
| Project Number  | 22-1041A           | Project 3FM Pla          |                  | lanning Design GI - Lot A |         |  |
| Location Number | BH120              |                          | Sample Reference |                           | 2       |  |
| Depth (m)       | 20.00              | Sample Submerged?        |                  | Yes                       | No      |  |
| Sample Type     | С                  | Particle Density (Mg/m³) |                  | 2.65                      | Assumed |  |



|                 | <b>Direct Shea</b> | r Test                   |                  |      |                          |  |
|-----------------|--------------------|--------------------------|------------------|------|--------------------------|--|
| Project Number  | 22-1041A           |                          | Project 3FM Plan |      | anning Design GI - Lot A |  |
| Location Number | BH120              |                          | Sample Reference |      | 2                        |  |
| Depth (m)       | 20.00              | Sample Submerged?        |                  | Yes  | No                       |  |
| Sample Type     | С                  | Particle Density (Mg/m³) |                  | 2.65 | Assumed                  |  |

## **Shear Stage**

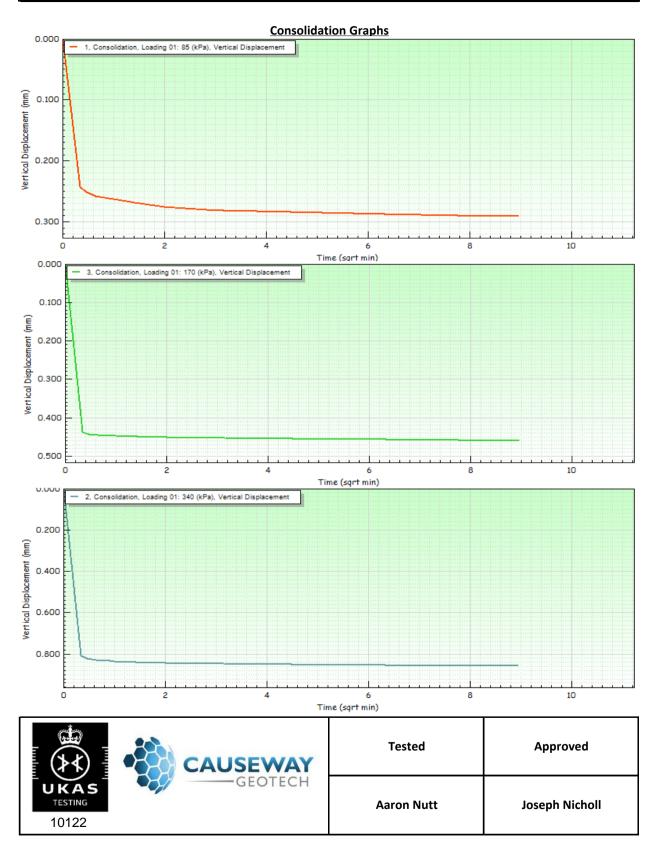





| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

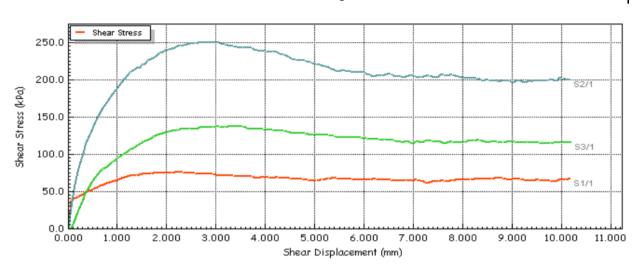
|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178 | 92-10:2018 |                |            |
|-----------------|--------------------|--------------------------|---------------|------------|----------------|------------|
| Project Number  | 22-1041A           |                          | Project       | 3FM Pla    | nning Design ( | GI - Lot A |
| Location Number | BH120              | Sample Reference         |               | 2          |                |            |
| Depth (m)       | 20.00              | Sample Submerged?        |               | Yes        | No             |            |
| Sample Type     | С                  | Particle Density (Mg/m³) |               | 2.65       | Assumed        |            |

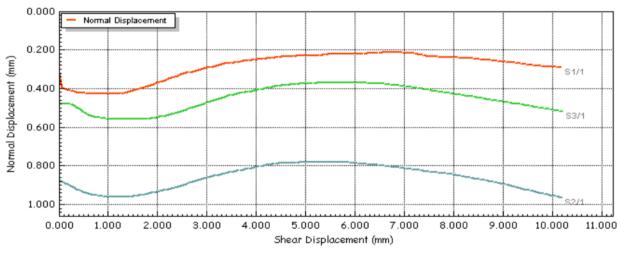
| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 11   |   |
| Angle of Shearing Resistance (°) |   | 31.0 |   |




| CAUSEWAY            | Tested     | Approved       |
|---------------------|------------|----------------|
| UKAS TESTING  10122 | Aaron Nutt | Joseph Nicholl |

|                                            | Direct Shea           | r Test BS EN ISO 178         | 392-10:2018     |                |            |  |  |
|--------------------------------------------|-----------------------|------------------------------|-----------------|----------------|------------|--|--|
| Project Number                             | 22-1041A              | Project                      | 3FM Pla         | nning Design ( | GI - Lot A |  |  |
| Location Number                            | BH121                 | Sample Referen               | 1               | L5             |            |  |  |
| Depth (m)                                  | 8.50                  | Sample Submerg               | ed?             | Yes            | No         |  |  |
| Sample Type                                | В                     | Particle Density (M          | lg/m³)          | 2.65           | Assumed    |  |  |
| Description                                | Gre                   | yish brown slightly sandy su | bangular fine t | o coarse GRA\  | /EL.       |  |  |
| Sample Preparation                         | Sa                    | mple is recompacted using r  | material passin | g 2mm test sie | eve        |  |  |
|                                            |                       | Stage                        | 1               | 2              | 3          |  |  |
|                                            |                       | Initial Conditions           |                 |                |            |  |  |
|                                            | Height (mm)           |                              | 20.0            | 20.0           | 20.0       |  |  |
|                                            | Diameter (mm)         |                              | 60.0            | 60.0           | 60.0       |  |  |
| 1                                          | Water Content (%)     |                              |                 | 6.6            | 6.6        |  |  |
| Вι                                         | Bulk Density (Mg/m³)  |                              |                 | 1.68           | 1.73       |  |  |
| D                                          | ry Density (Mg/r      | m <sup>3</sup> )             | 1.61            | 1.58           | 1.62       |  |  |
|                                            | Voids Ratio           |                              | 0.646           | 0.681          | 0.631      |  |  |
|                                            |                       | Consolidation                |                 |                |            |  |  |
| No                                         | Normal Pressure (kPa) |                              |                 | 170            | 340        |  |  |
| Verti                                      | cal Displacement      | t (mm)                       | 0.291           | 0.460          | 0.856      |  |  |
|                                            |                       | Shearing                     |                 |                |            |  |  |
| Rat                                        | e of Strain (mm/      | min)                         | 0.600           | 0.600          | 0.600      |  |  |
| Pea                                        | ak Shear Stress (     | kPa)                         | 75.9            | 137.4          | 250.3      |  |  |
| Hoz                                        | Hoz Displacement (mm) |                              |                 | 10.2           | 10.2       |  |  |
| Hoz Displacement at Peak Shear Stress (mm) |                       |                              | 2.223           | 3.363          | 2.637      |  |  |
|                                            | Final Conditions      |                              |                 |                |            |  |  |
| \                                          | Nater Content (9      | %)                           | 19.0            | 19.0           | 19.0       |  |  |
| D                                          | ry Density (Mg/r      | m <sup>3</sup> )             | 1.61            | 1.66           | 1.71       |  |  |
|                                            | Voids Ratio           |                              | 0.622           | 0.553          | 0.637      |  |  |

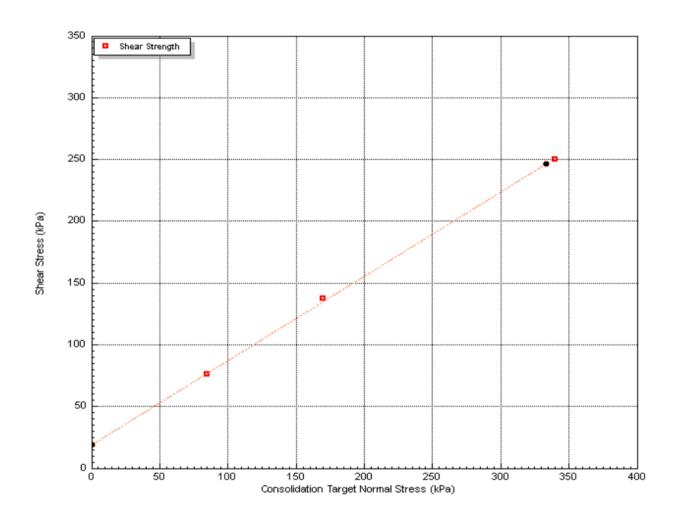

| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178 | 92-10:2018 |                |            |
|-----------------|--------------------|--------------------------|---------------|------------|----------------|------------|
| Project Number  | 22-1041A           |                          | Project       | 3FM Pla    | nning Design ( | GI - Lot A |
| Location Number | BH121              | Sample Reference         |               | 1          | 5              |            |
| Depth (m)       | 8.50               | Sample Submerged?        |               | Yes        | No             |            |
| Sample Type     | В                  | Particle Density (Mg/m³) |               | 2.65       | Assumed        |            |



|                 | <b>Direct Shea</b> | r Test BS EN ISO 17892-10:2018 |  |                           |         |                |            |
|-----------------|--------------------|--------------------------------|--|---------------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project 3FM Plan               |  | A Project 3FM Planning De |         | nning Design ( | GI - Lot A |
| Location Number | BH121              | Sample Reference               |  | 1                         | 5       |                |            |
| Depth (m)       | 8.50               | Sample Submerged?              |  | Yes                       | No      |                |            |
| Sample Type     | В                  | Particle Density (Mg/m³)       |  | 2.65                      | Assumed |                |            |

## **Shear Stage**

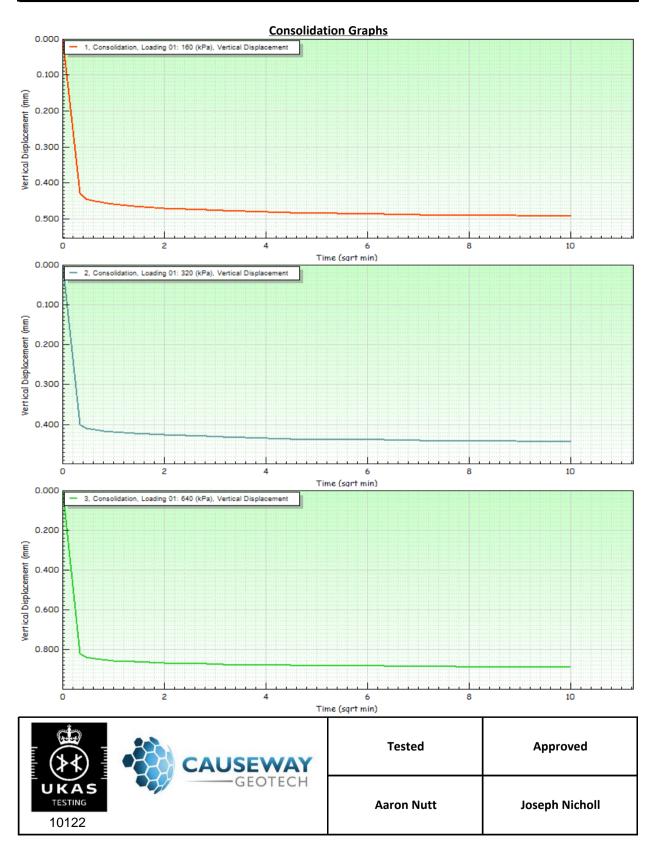





| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178 | 92-10:2018 |                |            |
|-----------------|--------------------|--------------------------|---------------|------------|----------------|------------|
| Project Number  | 22-1041A           |                          | Project       | 3FM Pla    | nning Design ( | GI - Lot A |
| Location Number | BH121              | Sample Reference         |               | 15         |                |            |
| Depth (m)       | 8.50               | Sample Submerged?        |               | Yes        | No             |            |
| Sample Type     | В                  | Particle Density (Mg/m³) |               | 2.65       | Assumed        |            |

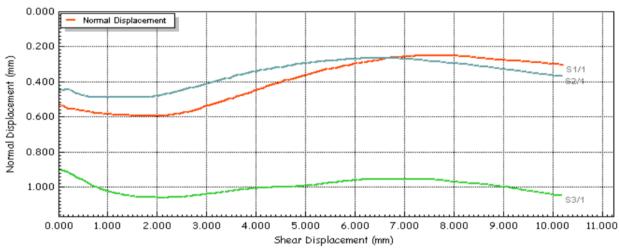
| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 19   |   |
| Angle of Shearing Resistance (°) |   | 34.5 |   |




| CAUSEWAY            | Tested     | Approved       |
|---------------------|------------|----------------|
| UKAS TESTING  10122 | Aaron Nutt | Joseph Nicholl |

| Direct Shear Test BS EN ISO 17892-10:2018 |                       |                                                             |                  |                |            |  |  |  |  |  |
|-------------------------------------------|-----------------------|-------------------------------------------------------------|------------------|----------------|------------|--|--|--|--|--|
| Project Number                            | 22-1041A              | Project                                                     | 3FM Pla          | nning Design ( | GI - Lot A |  |  |  |  |  |
| Location Number                           | BH121                 | Sample Referen                                              | ce               | 1              |            |  |  |  |  |  |
| Depth (m)                                 | 15.60                 | Sample Submerge                                             | ed?              | Yes            | No         |  |  |  |  |  |
| Sample Type                               | В                     | Particle Density (Ma                                        | g/m³)            | 2.65           | Assumed    |  |  |  |  |  |
| Description                               |                       | Brown gravelly slightly s                                   | ilty fine to coa | erse SAND.     |            |  |  |  |  |  |
| Sample Preparation                        | Sa                    | Sample is recompacted using material passing 2mm test sieve |                  |                |            |  |  |  |  |  |
|                                           |                       | Stage                                                       | 1                | 2              | 3          |  |  |  |  |  |
|                                           |                       | Initial Conditions                                          |                  |                |            |  |  |  |  |  |
|                                           | Height (mm)           | 20.0                                                        | 20.0             | 20.0           |            |  |  |  |  |  |
|                                           | Diameter (mm          | 60.0                                                        | 60.0             | 60.0           |            |  |  |  |  |  |
| V                                         | Water Content (%)     |                                                             |                  |                | 5.9        |  |  |  |  |  |
| Bu                                        | 1.59                  | 1.60                                                        | 1.59             |                |            |  |  |  |  |  |
| Dr                                        | Dry Density (Mg/m³)   |                                                             |                  |                | 1.50       |  |  |  |  |  |
|                                           | Voids Ratio           |                                                             | 0.768            | 0.755          | 0.766      |  |  |  |  |  |
|                                           |                       | Consolidation                                               |                  |                |            |  |  |  |  |  |
| No                                        | rmal Pressure (       | kPa)                                                        | 160              | 320            | 640        |  |  |  |  |  |
| Vertic                                    | al Displacemen        | t (mm)                                                      | 0.492            | 0.444          | 0.891      |  |  |  |  |  |
|                                           |                       | Shearing                                                    |                  |                |            |  |  |  |  |  |
| Rate                                      | of Strain (mm,        | /min)                                                       | 0.600            | 0.600          | 0.600      |  |  |  |  |  |
| Pea                                       | k Shear Stress (      | kPa)                                                        | 148.3            | 265.4          | 503.3      |  |  |  |  |  |
| Hoz                                       | Hoz Displacement (mm) |                                                             |                  |                | 10.2       |  |  |  |  |  |
| Hoz Displacem                             | ent at Peak Sh        | ear Stress (mm)                                             | 4.563            | 3.117          | 4.803      |  |  |  |  |  |
| Final Conditions                          |                       |                                                             |                  |                |            |  |  |  |  |  |
| V                                         | Vater Content (       | %)                                                          | 24.0             | 22.0           | 22.0       |  |  |  |  |  |
| Dr                                        | y Density (Mg/        | 1.51                                                        | 1.53             | 1.52           |            |  |  |  |  |  |
|                                           | Voids Ratio           |                                                             | 0.741            | 0.722          | 0.674      |  |  |  |  |  |

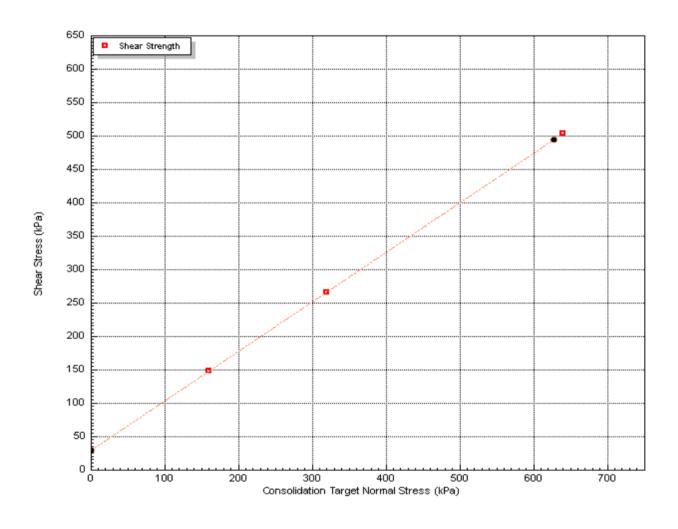

| CAUSEWAY         | Tested     | Approved       |
|------------------|------------|----------------|
| GEOTECH<br>10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test BS EN ISO 17892-10:2018 |                  |         |                           |  |
|-----------------|--------------------|--------------------------------|------------------|---------|---------------------------|--|
| Project Number  | 22-1041A           | Project 3F                     |                  | 3FM Pla | lanning Design GI - Lot A |  |
| Location Number | BH121              |                                | Sample Reference |         | 41                        |  |
| Depth (m)       | 15.60              | Sample Submerged?              |                  | Yes     | No                        |  |
| Sample Type     | В                  | Particle Density (Mg/m³)       |                  | 2.65    | Assumed                   |  |



|                 | <b>Direct Shea</b> | ear Test BS EN ISO 17892-10:20 |                   |         |                          |         |
|-----------------|--------------------|--------------------------------|-------------------|---------|--------------------------|---------|
| Project Number  | 22-1041A           | Project                        |                   | 3FM Pla | anning Design GI - Lot A |         |
| Location Number | BH121              | Sample Reference               |                   | 41      |                          |         |
| Depth (m)       | 15.60              |                                | Sample Submerged? |         | Yes                      | No      |
| Sample Type     | В                  | Particle Density (Mg/m³)       |                   | g/m³)   | 2.65                     | Assumed |

## **Shear Stage**

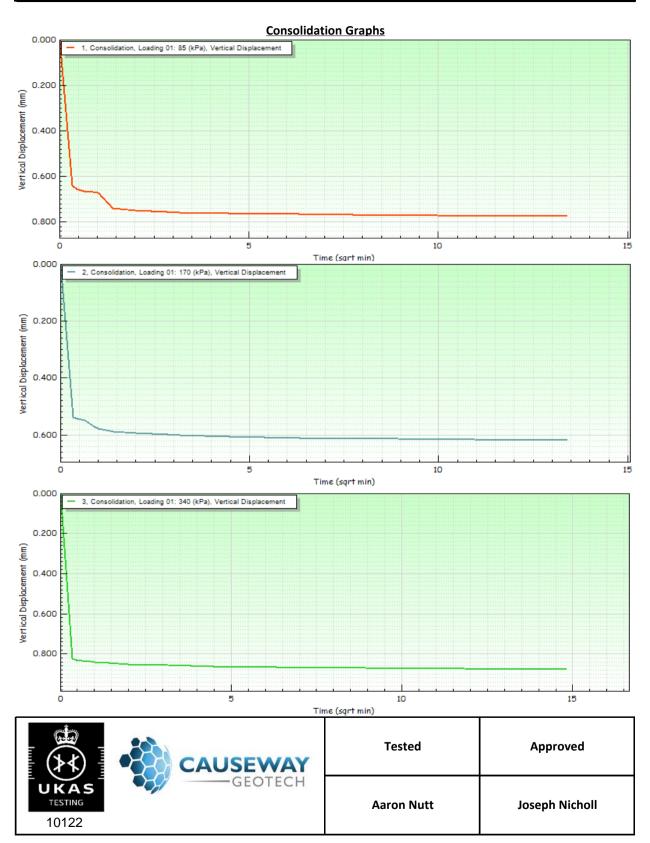





| CAUSEWAY           | Tested     | Approved       |
|--------------------|------------|----------------|
| UKAS TESTING 10122 | Aaron Nutt | Joseph Nicholl |

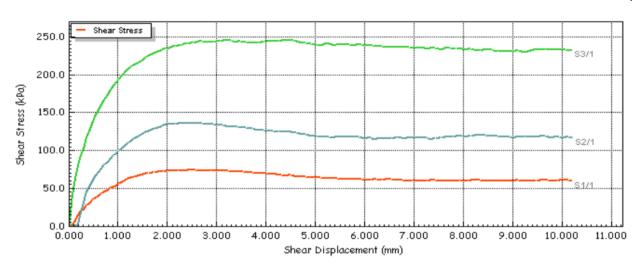
|                 | <b>Direct Shea</b> | r Test                   |                  |                           |         |  |
|-----------------|--------------------|--------------------------|------------------|---------------------------|---------|--|
| Project Number  | 22-1041A           | Project 3FM Plar         |                  | lanning Design GI - Lot A |         |  |
| Location Number | BH121              |                          | Sample Reference |                           | 41      |  |
| Depth (m)       | 15.60              | Sample Submerged?        |                  | Yes                       | No      |  |
| Sample Type     | В                  | Particle Density (Mg/m³) |                  | 2.65                      | Assumed |  |

| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 29   |   |
| Angle of Shearing Resistance (°) |   | 36.5 |   |




| CAUSEWAY GEOTECH    | Tested     | Approved       |
|---------------------|------------|----------------|
| UKAS TESTING  10122 | Aaron Nutt | Joseph Nicholl |

|                                            | Direct Shear       | Test BS EN ISO 17                                           | 892-10:2018       |                |            |  |  |  |  |  |
|--------------------------------------------|--------------------|-------------------------------------------------------------|-------------------|----------------|------------|--|--|--|--|--|
| Project Number                             | 22-1041A           | Project                                                     | 3FM Pla           | nning Design ( | GI - Lot A |  |  |  |  |  |
| Location Number                            | BH122              | Sample Referer                                              | nce               | 1              | L5         |  |  |  |  |  |
| Depth (m)                                  | 8.50               | Sample Submerg                                              | ged?              | Yes            | No         |  |  |  |  |  |
| Sample Type                                | В                  | Particle Density (N                                         | 1g/m³)            | 2.65           | Assumed    |  |  |  |  |  |
| Description                                |                    | Grey gravelly slightly s                                    | ilty fine to coar | se SAND.       |            |  |  |  |  |  |
| Sample Preparation                         | San                | Sample is recompacted using material passing 2mm test sieve |                   |                |            |  |  |  |  |  |
|                                            | · ·                | Stage                                                       | 1                 | 2              | 3          |  |  |  |  |  |
|                                            |                    | Initial Conditions                                          | •                 | •              | •          |  |  |  |  |  |
|                                            | Height (mm)        | 20.0                                                        | 20.0              | 20.0           |            |  |  |  |  |  |
|                                            | 60.0               | 60.0                                                        | 60.0              |                |            |  |  |  |  |  |
| Water Content (%)                          |                    |                                                             | 8.6               | 8.6            | 8.6        |  |  |  |  |  |
| В                                          | 1.73               | 1.71                                                        | 1.71              |                |            |  |  |  |  |  |
| Dry Density (Mg/m³)                        |                    |                                                             | 1.60              | 1.57           | 1.57       |  |  |  |  |  |
|                                            | Voids Ratio        |                                                             | 0.659             | 0.687          | 0.687      |  |  |  |  |  |
|                                            |                    | Consolidation                                               |                   |                |            |  |  |  |  |  |
| No                                         | ormal Pressure (kl | Pa)                                                         | 85                | 170            | 340        |  |  |  |  |  |
| Verti                                      | cal Displacement   | (mm)                                                        | 0.775             | 0.619          | 0.877      |  |  |  |  |  |
|                                            |                    | Shearing                                                    |                   |                |            |  |  |  |  |  |
| Rat                                        | e of Strain (mm/r  | nin)                                                        | 0.600             | 0.600          | 0.600      |  |  |  |  |  |
| Pe                                         | ak Shear Stress (k | Pa)                                                         | 74.4              | 136.3          | 246.2      |  |  |  |  |  |
| Но                                         | z Displacement (n  | nm)                                                         | 10.2              | 10.2           | 10.2       |  |  |  |  |  |
| Hoz Displacement at Peak Shear Stress (mm) |                    |                                                             | 2.523             | 2.337          | 4.443      |  |  |  |  |  |
|                                            |                    | Final Conditions                                            |                   | _              | _          |  |  |  |  |  |
| \                                          | Water Content (%   | 5)                                                          | 23.0              | 22.0           | 22.0       |  |  |  |  |  |
| Dry Density (Mg/m³)                        |                    |                                                             | 1.68              | 1.67           | 1.74       |  |  |  |  |  |
|                                            | Voids Ratio        |                                                             | 0.577             | 0.608          | 0.586      |  |  |  |  |  |

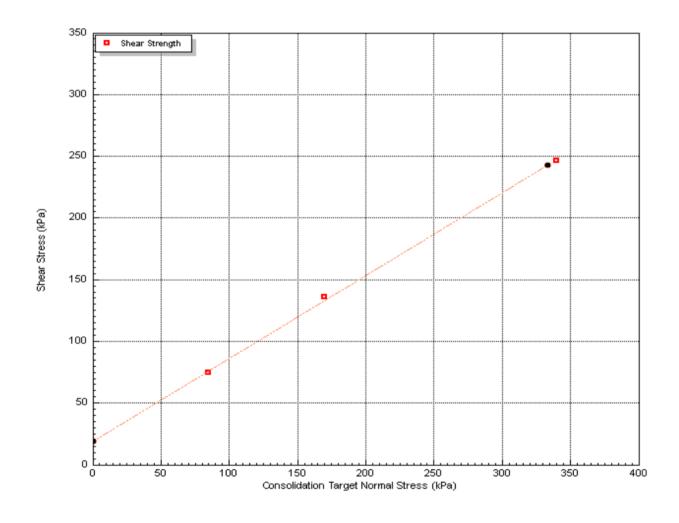

| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

|                 | <b>Direct Shea</b> | r Test BS EN ISO 17892-10:2018 |                  |         |                          |  |
|-----------------|--------------------|--------------------------------|------------------|---------|--------------------------|--|
| Project Number  | 22-1041A           | Project 3                      |                  | 3FM Pla | anning Design GI - Lot A |  |
| Location Number | BH122              |                                | Sample Reference |         | 15                       |  |
| Depth (m)       | 8.50               | Sample Submerged?              |                  | Yes     | No                       |  |
| Sample Type     | В                  | Particle Density (Mg/m³)       |                  | 2.65    | Assumed                  |  |



|                 | <b>Direct Shea</b> | r Test                   |                  |                          |         |  |
|-----------------|--------------------|--------------------------|------------------|--------------------------|---------|--|
| Project Number  | 22-1041A           | Project 3FM Plar         |                  | anning Design GI - Lot A |         |  |
| Location Number | BH122              |                          | Sample Reference |                          | 15      |  |
| Depth (m)       | 8.50               | Sample Submerged?        |                  | Yes                      | No      |  |
| Sample Type     | В                  | Particle Density (Mg/m³) |                  | 2.65                     | Assumed |  |

# **Shear Stage**

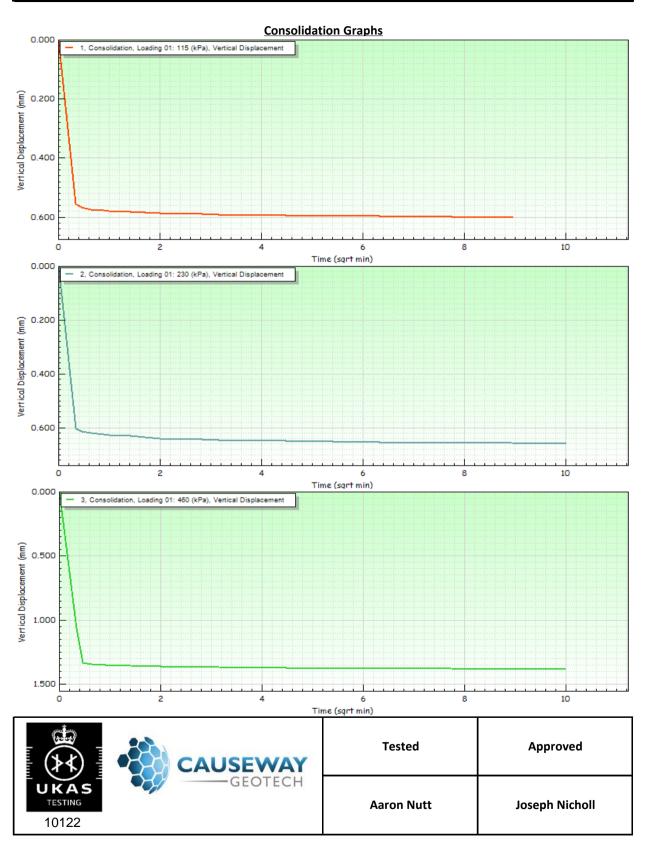





| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

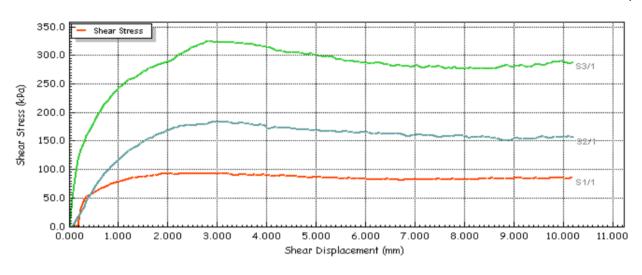
|                 | <b>Direct Shea</b> | ar Test BS EN ISO 17892-10:2018 |                          |         |                |            |
|-----------------|--------------------|---------------------------------|--------------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project 3F                      |                          | 3FM Pla | nning Design ( | GI - Lot A |
| Location Number | BH122              | Sample Reference                |                          | 1       | 5              |            |
| Depth (m)       | 8.50               |                                 | Sample Submerged?        |         | Yes            | No         |
| Sample Type     | В                  |                                 | Particle Density (Mg/m³) |         | 2.65           | Assumed    |

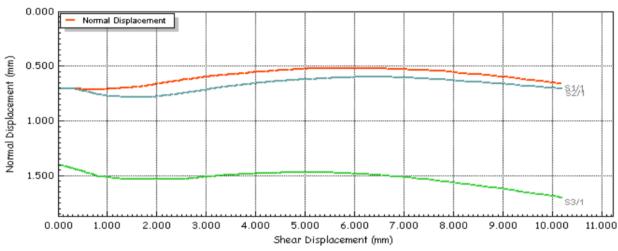
| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 19   |   |
| Angle of Shearing Resistance (°) |   | 34.0 |   |




| CAUSEWAY            | Tested     | Approved       |
|---------------------|------------|----------------|
| UKAS TESTING  10122 | Aaron Nutt | Joseph Nicholl |

|                                            | Direct Shear          | r Test BS EN ISO 178            | 392-10:2018     |                |            |  |  |  |
|--------------------------------------------|-----------------------|---------------------------------|-----------------|----------------|------------|--|--|--|
| Project Number                             | 22-1041A              | Project                         | 3FM Pla         | nning Design ( | GI - Lot A |  |  |  |
| Location Number                            | BH122                 | Sample Referen                  | ce              | 3              | 30         |  |  |  |
| Depth (m)                                  | 11.50                 | Sample Submerg                  | ed?             | Yes            | No         |  |  |  |
| Sample Type                                | В                     | Particle Density (M             | g/m³)           | 2.65           | Assumed    |  |  |  |
| Description                                | Grey s                | lightly sandy slightly silty su | brounded fine   | to medium GF   | RAVEL.     |  |  |  |
| Sample Preparation                         | Sai                   | mple is recompacted using r     | naterial passin | g 2mm test sie | eve        |  |  |  |
|                                            |                       | Stage 1 2                       |                 |                |            |  |  |  |
|                                            |                       | Initial Conditions              | •               |                |            |  |  |  |
|                                            | Height (mm)           |                                 | 20.0            | 20.0           | 20.0       |  |  |  |
|                                            | Diameter (mm)         |                                 |                 | 60.0           | 60.0       |  |  |  |
| Water Content (%)                          |                       |                                 | 5.7             | 5.7            | 5.7        |  |  |  |
| Bulk Density (Mg/m³)                       |                       |                                 | 1.62            | 1.62           | 1.64       |  |  |  |
| D                                          | Dry Density (Mg/m³)   |                                 |                 | 1.53           | 1.56       |  |  |  |
|                                            | Voids Ratio           |                                 | 0.733           | 0.731          | 0.703      |  |  |  |
|                                            |                       | Consolidation                   |                 |                |            |  |  |  |
| No                                         | ormal Pressure (k     | (Pa)                            | 115             | 230            | 460        |  |  |  |
| Verti                                      | cal Displacement      | t (mm)                          | 0.601           | 0.659          | 1.381      |  |  |  |
|                                            |                       | Shearing                        |                 |                |            |  |  |  |
| Rat                                        | e of Strain (mm/      | min)                            | 0.600           | 0.600          | 0.600      |  |  |  |
| Pe                                         | ak Shear Stress (l    | kPa)                            | 93.6            | 183.6          | 326.5      |  |  |  |
| Ho                                         | Hoz Displacement (mm) |                                 |                 | 10.2           | 10.2       |  |  |  |
| Hoz Displacement at Peak Shear Stress (mm) |                       |                                 | 3.123           | 3.178          | 2.877      |  |  |  |
|                                            | Final Conditions      |                                 |                 |                |            |  |  |  |
| \                                          | Water Content (%)     |                                 |                 | 21.0           | 21.0       |  |  |  |
| Dry Density (Mg/m³)                        |                       |                                 | 1.57            | 1.61           | 1.78       |  |  |  |
|                                            | Voids Ratio           |                                 | 0.676           | 0.670          | 0.559      |  |  |  |

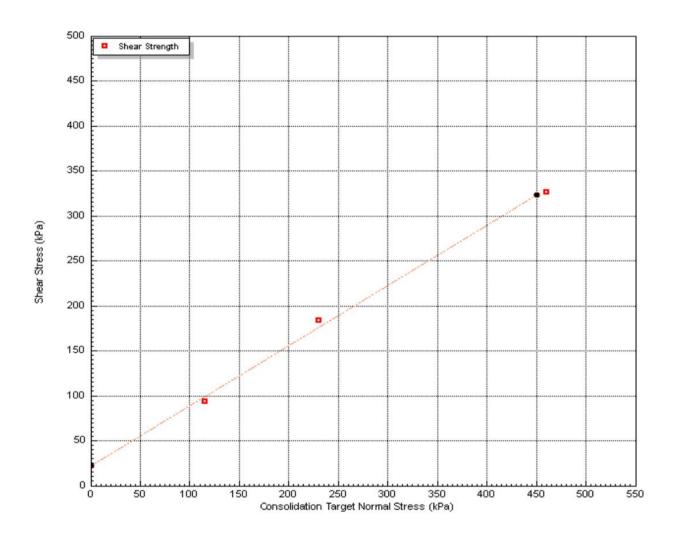

| CAUSEWAY         | Tested     | Approved       |
|------------------|------------|----------------|
| GEOTECH<br>10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | ar Test BS EN ISO 17892-10:2018       |                   |         |                |            |
|-----------------|--------------------|---------------------------------------|-------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project                               |                   | 3FM Pla | nning Design ( | GI - Lot A |
| Location Number | BH122              | Sample Reference                      |                   | 30      |                |            |
| Depth (m)       | 11.50              |                                       | Sample Submerged? |         | Yes            | No         |
| Sample Type     | В                  | Particle Density (Mg/m <sup>3</sup> ) |                   | 2.65    | Assumed        |            |



|                 | <b>Direct Shea</b> | ar Test BS EN ISO 17892-10:2018 |                   |         |                |            |
|-----------------|--------------------|---------------------------------|-------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project 3FM                     |                   | 3FM Pla | nning Design ( | GI - Lot A |
| Location Number | BH122              | Sample Reference                |                   | 30      |                |            |
| Depth (m)       | 11.50              |                                 | Sample Submerged? |         | Yes            | No         |
| Sample Type     | В                  | Particle Density (Mg/m³)        |                   | 2.65    | Assumed        |            |





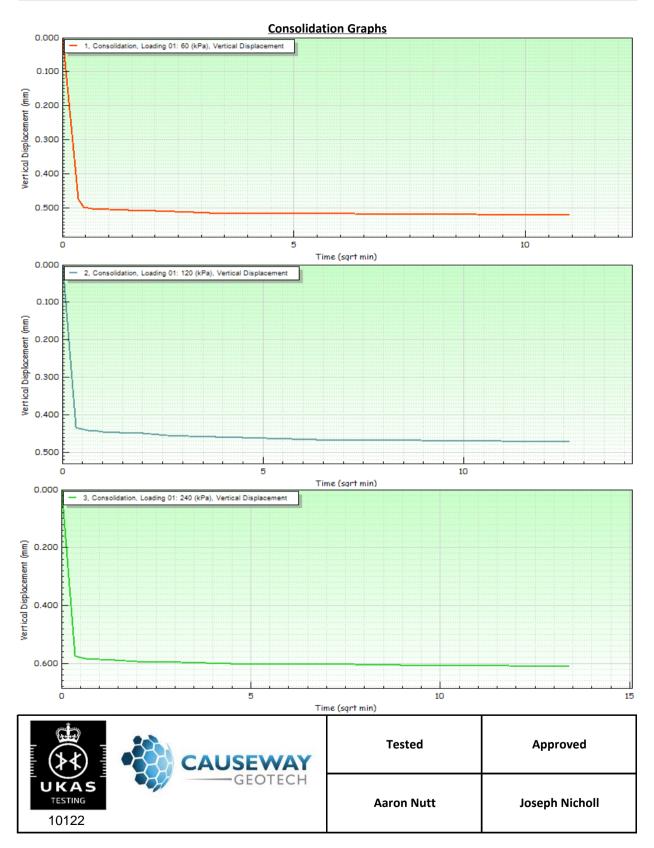




| CAUSEWAY           | Tested     | Approved       |
|--------------------|------------|----------------|
| UKAS TESTING 10122 | Aaron Nutt | Joseph Nicholl |

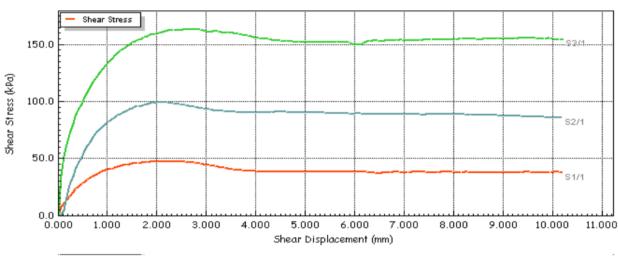
|                 | <b>Direct Shea</b> | ar Test BS EN ISO 17892-10:2018 |                          |         |                |            |
|-----------------|--------------------|---------------------------------|--------------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project                         |                          | 3FM Pla | nning Design ( | GI - Lot A |
| Location Number | BH122              | Sample Reference                |                          | 3       | 0              |            |
| Depth (m)       | 11.50              |                                 | Sample Submerged?        |         | Yes            | No         |
| Sample Type     | В                  |                                 | Particle Density (Mg/m³) |         | 2.65           | Assumed    |

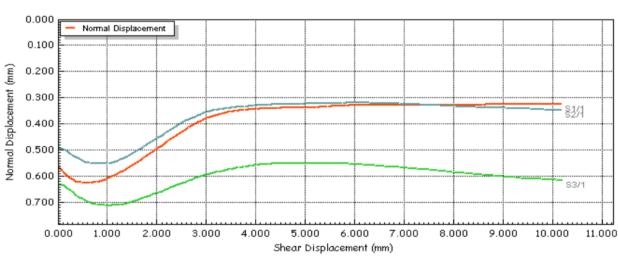
| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 22   |   |
| Angle of Shearing Resistance (°) |   | 33.5 |   |






|                                            | Direct Shear          | Test BS EN ISO 178              | 892-10:2018     | }               |                |  |  |
|--------------------------------------------|-----------------------|---------------------------------|-----------------|-----------------|----------------|--|--|
| Project Number                             | 22-1041A              | Project                         | 3FM Pla         | anning Design   | GI - Lot A     |  |  |
| Location Number                            | BH123                 | Sample Referen                  | nce             | -               | 18             |  |  |
| Depth (m)                                  | 5.80                  | Sample Submerg                  | ged?            | Yes             | No             |  |  |
| Sample Type                                | В                     | Particle Density (M             | lg/m³)          | 2.65            | Assumed        |  |  |
| Description                                | Greyish brown         | gravelly slightly silty fine to | medium SANI     | O containing sh | nell fragments |  |  |
| Sample Preparation                         | Sai                   | mple is recompacted using r     | material passin | g 2mm test sie  | eve            |  |  |
|                                            |                       | Stage                           | 2               | 3               |                |  |  |
|                                            |                       | Initial Conditions              |                 | •               | •              |  |  |
|                                            | Height (mm)           |                                 | 20.0            | 20.0            | 20.0           |  |  |
|                                            | Diameter (mm)         |                                 | 60.0            | 60.0            | 60.0           |  |  |
|                                            | Water Content (%)     |                                 |                 | 26.0            | 26.0           |  |  |
| Bulk Density (Mg/m³)                       |                       |                                 | 1.80            | 1.77            | 1.77           |  |  |
| С                                          | Dry Density (Mg/m³)   |                                 | 1.43            | 1.41            | 1.41           |  |  |
|                                            | Voids Ratio           |                                 | 0.852           | 0.881           | 0.885          |  |  |
|                                            |                       | Consolidation                   |                 |                 |                |  |  |
| N                                          | ormal Pressure (k     | :Pa)                            | 60              | 120             | 240            |  |  |
| Verti                                      | cal Displacement      | : (mm)                          | 0.520           | 0.472           | 0.611          |  |  |
|                                            |                       | Shearing                        |                 |                 |                |  |  |
| Rat                                        | te of Strain (mm/     | min)                            | 0.600           | 0.600           | 0.600          |  |  |
| Pe                                         | ak Shear Stress (I    | kPa)                            | 47.2            | 99.2            | 163.6          |  |  |
| Но                                         | Hoz Displacement (mm) |                                 |                 | 10.2            | 10.2           |  |  |
| Hoz Displacement at Peak Shear Stress (mm) |                       | 2.103                           | 2.103           | 2.823           |                |  |  |
|                                            | Final Conditions      |                                 |                 |                 |                |  |  |
|                                            | Water Content (%      | 6)                              | 29.0            | 30.0            | 30.0           |  |  |
| С                                          | ry Density (Mg/r      | n <sup>3</sup> )                | 1.43            | 1.40            | 1.44           |  |  |
|                                            | Voids Ratio           |                                 | 0.822           | 0.849           | 0.827          |  |  |

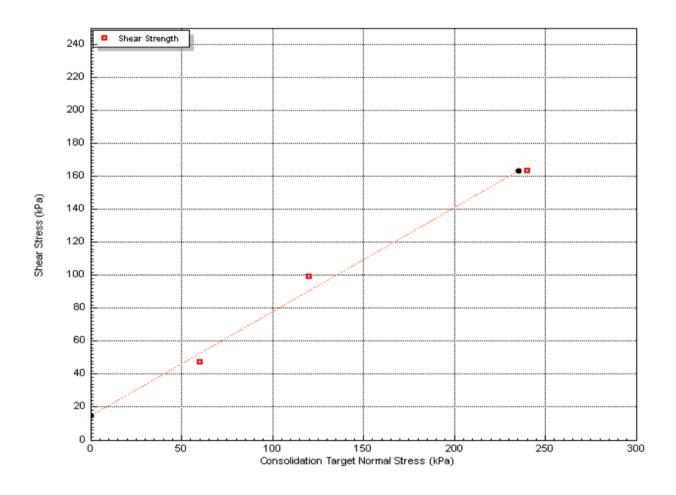

| CAUSEWAY         | Tested     | Approved       |
|------------------|------------|----------------|
| GEOTECH<br>10122 | Aaron Nutt | Joseph Nicholl |

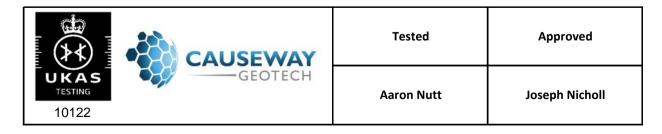

|                 | <b>Direct Shea</b> | r Test                   | Test BS EN ISO 17892-10:2018 |                            |         |  |
|-----------------|--------------------|--------------------------|------------------------------|----------------------------|---------|--|
| Project Number  | 22-1041A           | Project 3FM Plan         |                              | Planning Design GI - Lot A |         |  |
| Location Number | BH123              | Sample Reference         |                              | 1                          | .8      |  |
| Depth (m)       | 5.80               | Sample Submerged?        |                              | Yes                        | No      |  |
| Sample Type     | В                  | Particle Density (Mg/m³) |                              | 2.65                       | Assumed |  |



|                 | <b>Direct Shea</b> | ar Test BS EN ISO 17892-10:2018 |                                       |         |                |            |
|-----------------|--------------------|---------------------------------|---------------------------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project                         |                                       | 3FM Pla | nning Design ( | GI - Lot A |
| Location Number | BH123              | Sample Reference                |                                       | 1       | 8              |            |
| Depth (m)       | 5.80               | Sample Submerged?               |                                       | Yes     | No             |            |
| Sample Type     | В                  |                                 | Particle Density (Mg/m <sup>3</sup> ) |         | 2.65           | Assumed    |



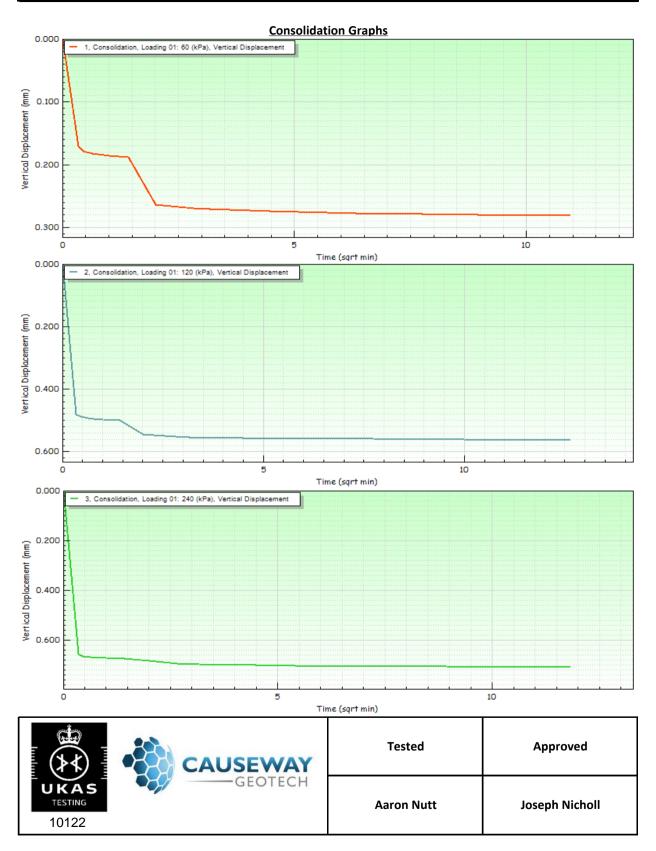



| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

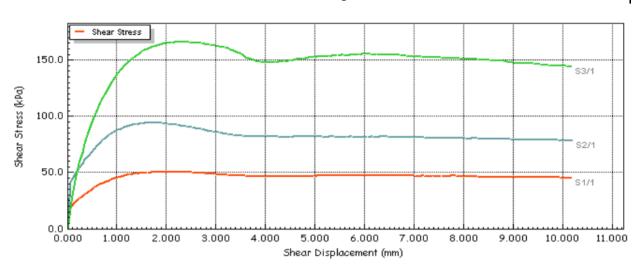
|                 | <b>Direct Shea</b> | r Test BS EN ISO 17892-10:2018 |                          |                |            |         |
|-----------------|--------------------|--------------------------------|--------------------------|----------------|------------|---------|
| Project Number  | 22-1041A           | Project 3FM Pla                |                          | nning Design ( | GI - Lot A |         |
| Location Number | BH123              | Sample Reference               |                          | 1              | 8          |         |
| Depth (m)       | 5.80               | Sample Submerged?              |                          | Yes            | No         |         |
| Sample Type     | В                  |                                | Particle Density (Mg/m³) |                | 2.65       | Assumed |

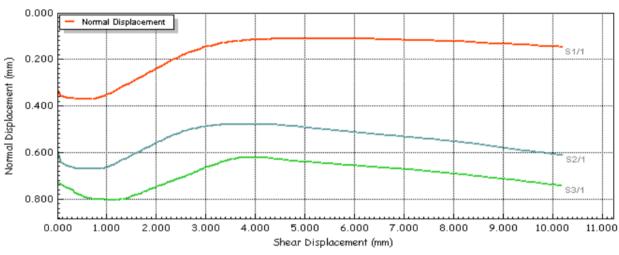
| Stage                            | 1                          | 2    | 3 |
|----------------------------------|----------------------------|------|---|
| Envelope Failure Results         |                            |      |   |
| Apparent Cohesion (kPa)          | Apparent Cohesion (kPa) 15 |      |   |
| Angle of Shearing Resistance (°) |                            | 32.0 |   |






|                                            | Direct Shea         | r Test BS EN ISO 178        | 892-10:2018      |                |            |
|--------------------------------------------|---------------------|-----------------------------|------------------|----------------|------------|
| Project Number                             | 22-1041A            | Project                     | 3FM Pla          | nning Design ( | GI - Lot A |
| Location Number                            | BH124               | Sample Referer              | 1                | 18             |            |
| Depth (m)                                  | 5.80                | Sample Submerg              | ged?             | Yes            | No         |
| Sample Type                                | В                   | Particle Density (M         | 1g/m³)           | 2.65           | Assumed    |
| Description                                |                     | Brownish grey sandysuban    | ngular Įne to co | arse GRAVEL.   |            |
| Sample Preparation                         | Sa                  | mple is recompacted using I | material passin  | g 2mm test sie | eve        |
|                                            |                     | Stage                       | 1                | 2              | 3          |
|                                            |                     | Initial Conditions          | •                | •              | •          |
|                                            | Height (mm)         |                             | 20.0             | 20.0           | 20.0       |
|                                            | Diameter (mm)       |                             | 60.0             | 60.0           | 60.0       |
| Water Content (%)                          |                     |                             | 27.0             | 27.0           | 27.0       |
| Bulk Density (Mg/m³)                       |                     |                             | 1.78             | 1.79           | 1.80       |
| D                                          | Dry Density (Mg/m³) |                             |                  | 1.41           | 1.42       |
|                                            | Voids Ratio         |                             | 0.890            | 0.875          | 0.871      |
|                                            |                     | Consolidation               |                  |                |            |
| Normal Pressure (kPa)                      |                     |                             | 60               | 120            | 240        |
| Verti                                      | cal Displacemen     | t (mm)                      | 0.281            | 0.563          | 0.708      |
|                                            |                     | Shearing                    |                  |                |            |
| Rat                                        | e of Strain (mm/    | min)                        | 0.600            | 0.600          | 0.600      |
| Pe                                         | ak Shear Stress (   | kPa)                        | 50.5             | 94.3           | 166.4      |
| Hoz Displacement (mm)                      |                     |                             | 10.2             | 10.2           | 10.2       |
| Hoz Displacement at Peak Shear Stress (mm) |                     |                             | 1.863            | 1.737          | 2.337      |
|                                            |                     | Final Conditions            | _                |                | _          |
| \                                          | Water Content (     | %)                          | 29.0             | 29.0           | 29.0       |
| D                                          | ry Density (Mg/ı    | m <sup>3</sup> )            | 1.37             | 1.46           | 1.49       |
|                                            | Voids Ratio         |                             | 0.876            | 0.818          | 0.802      |

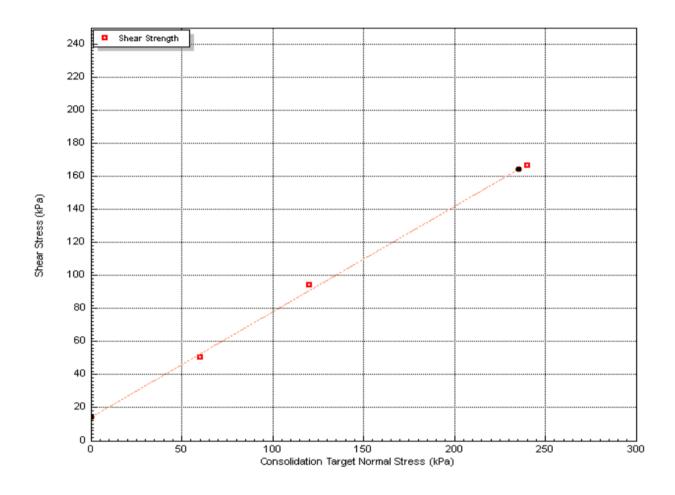

| CAUSEWAY         | Tested     | Approved       |
|------------------|------------|----------------|
| GEOTECH<br>10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test BS EN ISO 17892-10:2018 |                          |                |            |         |
|-----------------|--------------------|--------------------------------|--------------------------|----------------|------------|---------|
| Project Number  | 22-1041A           | Project 3FM P                  |                          | nning Design ( | GI - Lot A |         |
| Location Number | BH124              | Sample Reference               |                          | 1              | 8          |         |
| Depth (m)       | 5.80               | Sample Submerged?              |                          | Yes            | No         |         |
| Sample Type     | В                  |                                | Particle Density (Mg/m³) |                | 2.65       | Assumed |



|                 | Direct Shea | r Test                   | BS EN ISO 178     | 92-10:2018 |                |            |
|-----------------|-------------|--------------------------|-------------------|------------|----------------|------------|
| Project Number  | 22-1041A    | Project                  |                   | 3FM Pla    | nning Design ( | GI - Lot A |
| Location Number | BH124       | Sample Reference         |                   | 1          | 8              |            |
| Depth (m)       | 5.80        |                          | Sample Submerged? |            | Yes            | No         |
| Sample Type     | В           | Particle Density (Mg/m³) |                   | 2.65       | Assumed        |            |





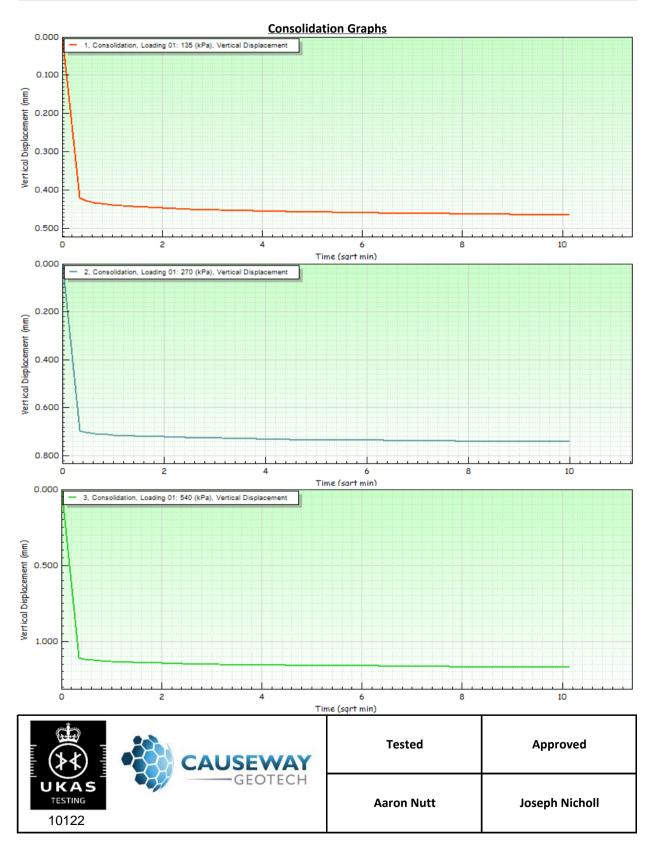




| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

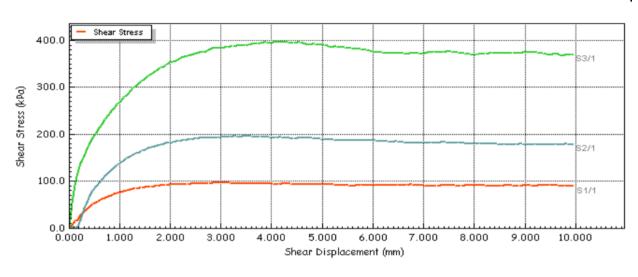
|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178 | 92-10:2018 |                |            |
|-----------------|--------------------|--------------------------|---------------|------------|----------------|------------|
| Project Number  | 22-1041A           | Project 3FM P            |               | 3FM Pla    | nning Design ( | GI - Lot A |
| Location Number | BH124              | Sample Reference         |               | 1          | 8              |            |
| Depth (m)       | 5.80               | Sample Submerged?        |               | Yes        | No             |            |
| Sample Type     | В                  | Particle Density (Mg/m³) |               | 2.65       | Assumed        |            |

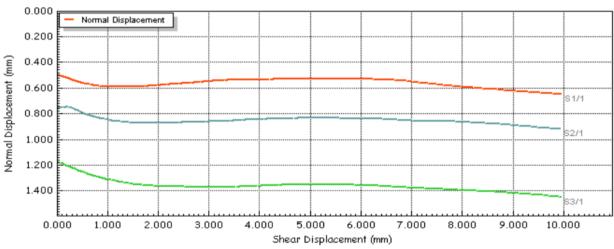
| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 14   |   |
| Angle of Shearing Resistance (°) |   | 32.5 |   |






|                                            | Direct Shear        | Test BS EN ISO 17                                                             | 892-10:2018     |                |            |  |  |
|--------------------------------------------|---------------------|-------------------------------------------------------------------------------|-----------------|----------------|------------|--|--|
| Project Number                             | 22-1041A            | Project                                                                       | 3FM Pla         | nning Design   | GI - Lot A |  |  |
| Location Number                            | BH124               | Sample Referei                                                                | nce             | 4              | <b>42</b>  |  |  |
| Depth (m)                                  | 13.50               | Sample Submer                                                                 | ged?            | Yes            | No         |  |  |
| Sample Type                                | В                   | Particle Density (N                                                           | /lg/m³)         | 2.65           | Assumed    |  |  |
| Description                                | Greyish bro         | Greyish brown slightly sandy slightly silty subangular fine to coarse GRAVEL. |                 |                |            |  |  |
| Sample Preparation                         | San                 | nple is recompacted using                                                     | material passin | g 2mm test sie | eve        |  |  |
|                                            | ·                   | Stage                                                                         | e 1             | 2              | 3          |  |  |
|                                            |                     | Initial Conditions                                                            | •               | •              | •          |  |  |
|                                            | 20.0                | 20.0                                                                          | 20.0            |                |            |  |  |
|                                            | 60.0                | 60.0                                                                          | 60.0            |                |            |  |  |
| ,                                          | 7.8                 | 7.8                                                                           | 7.8             |                |            |  |  |
| Bulk Density (Mg/m³)                       |                     |                                                                               | 1.81            | 1.82           | 1.80       |  |  |
| D                                          | Dry Density (Mg/m³) |                                                                               |                 | 1.69           | 1.67       |  |  |
|                                            | Voids Ratio         |                                                                               | 0.582           | 0.568          | 0.583      |  |  |
|                                            |                     | Consolidation                                                                 |                 |                |            |  |  |
| No                                         | ormal Pressure (kl  | Pa)                                                                           | 135             | 270            | 540        |  |  |
| Verti                                      | cal Displacement    | (mm)                                                                          | 0.465           | 0.740          | 1.170      |  |  |
|                                            |                     | Shearing                                                                      |                 |                |            |  |  |
| Rat                                        | e of Strain (mm/r   | min)                                                                          | 0.600           | 0.600          | 0.600      |  |  |
| Pe                                         | ak Shear Stress (k  | Pa)                                                                           | 96.3            | 196.0          | 397.5      |  |  |
| Hoz Displacement (mm)                      |                     |                                                                               | 10.2            | 10.2           | 10.2       |  |  |
| Hoz Displacement at Peak Shear Stress (mm) |                     |                                                                               | 3.003           | 3.477          | 4.563      |  |  |
|                                            |                     | Final Conditions                                                              | _               |                | _          |  |  |
| \                                          | Water Content (%    | 5)                                                                            | 15.0            | 15.0           | 16.0       |  |  |
| Dry Density (Mg/m³)                        |                     |                                                                               | 1.77            | 1.83           | 1.92       |  |  |
|                                            | Voids Ratio         |                                                                               | 0.530           | 0.496          | 0.469      |  |  |

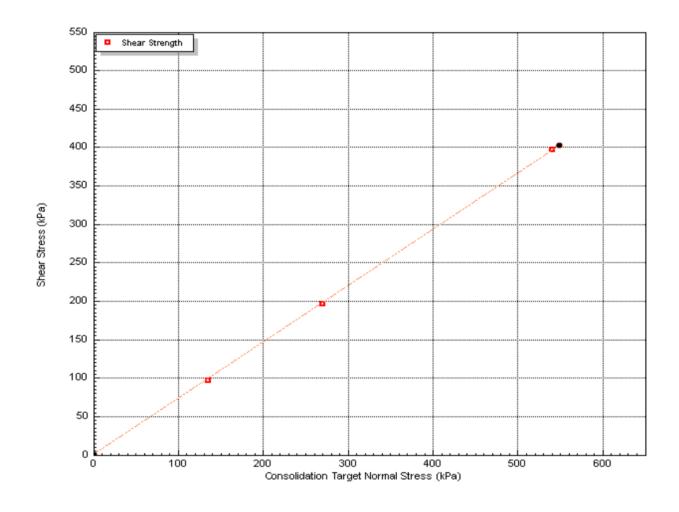

| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178     | 92-10:2018                |         |    |
|-----------------|--------------------|--------------------------|-------------------|---------------------------|---------|----|
| Project Number  | 22-1041A           | Project 3FM Plan         |                   | lanning Design GI - Lot A |         |    |
| Location Number | BH124              |                          | Sample Reference  |                           | 4       | .2 |
| Depth (m)       | 13.50              |                          | Sample Submerged? |                           | Yes     | No |
| Sample Type     | В                  | Particle Density (Mg/m³) |                   | 2.65                      | Assumed |    |



|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178 | 92-10:2018 |                |            |
|-----------------|--------------------|--------------------------|---------------|------------|----------------|------------|
| Project Number  | 22-1041A           |                          | Project       | 3FM Pla    | nning Design ( | GI - Lot A |
| Location Number | BH124              | Sample Reference         |               | 4          | 2              |            |
| Depth (m)       | 13.50              | Sample Submerged?        |               | Yes        | No             |            |
| Sample Type     | В                  | Particle Density (Mg/m³) |               | 2.65       | Assumed        |            |

# **Shear Stage**

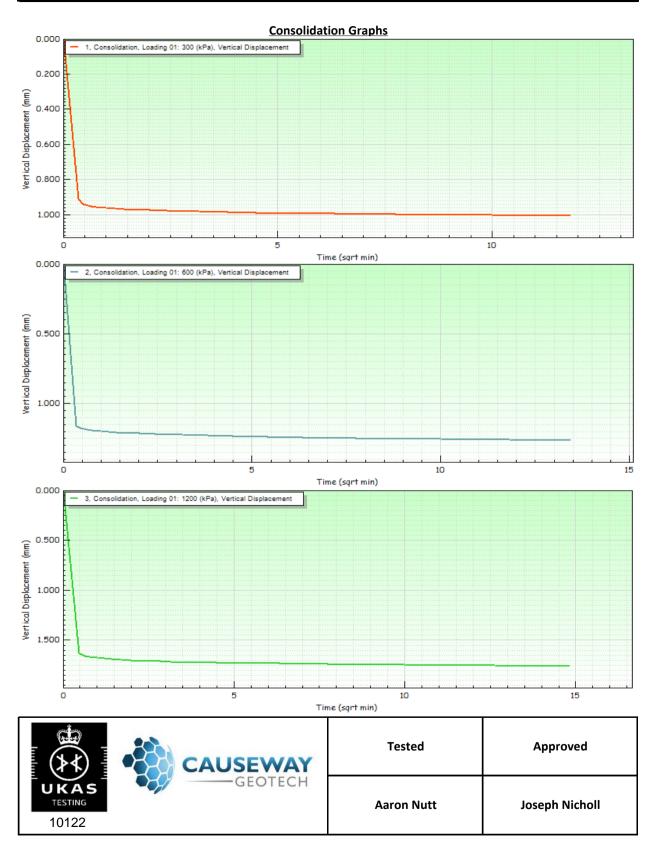





| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

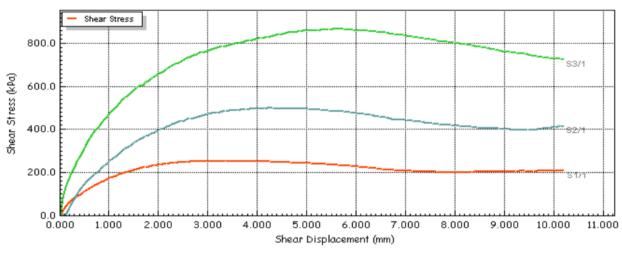
|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178 | 92-10:2018                 |         |  |
|-----------------|--------------------|--------------------------|---------------|----------------------------|---------|--|
| Project Number  | 22-1041A           | Project 3FM Pla          |               | Planning Design GI - Lot A |         |  |
| Location Number | BH124              | Sample Reference         |               | 4                          | 2       |  |
| Depth (m)       | 13.50              | Sample Submerged?        |               | Yes                        | No      |  |
| Sample Type     | В                  | Particle Density (Mg/m³) |               | 2.65                       | Assumed |  |

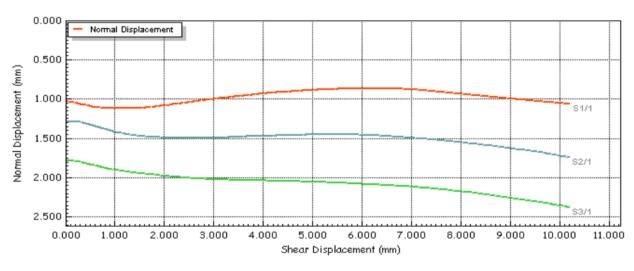
| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 1    |   |
| Angle of Shearing Resistance (°) |   | 36.0 |   |




| Tested     | Approved       |
|------------|----------------|
| Aaron Nutt | Joseph Nicholl |

|                                            | Direct Shear      | r Test BS EN ISO 178                                                       | 892-10:2018 |                |            |  |  |  |  |
|--------------------------------------------|-------------------|----------------------------------------------------------------------------|-------------|----------------|------------|--|--|--|--|
| Project Number                             | 22-1041A          | Project                                                                    | 3FM Pla     | nning Design ( | GI - Lot A |  |  |  |  |
| Location Number                            | BH124             | Sample Referer                                                             |             | 1              |            |  |  |  |  |
| Depth (m)                                  | 31.00             | Sample Submerg                                                             | ged?        | Yes            | No         |  |  |  |  |
| Sample Type                                | С                 | Particle Density (M                                                        | 1g/m³)      | 2.65           | Assumed    |  |  |  |  |
| Description                                | Dark gre          | Dark grey slightly sandy slightly clayey subangular fine to coarse GRAVEL. |             |                |            |  |  |  |  |
| Sample Preparation                         | Sai               | Sample is recompacted using material passing 2mm test sieve                |             |                |            |  |  |  |  |
|                                            | Stage 1 2 3       |                                                                            |             |                |            |  |  |  |  |
|                                            |                   | Initial Conditions                                                         | •           | •              | •          |  |  |  |  |
|                                            | Height (mm)       | 20.0                                                                       | 20.0        | 20.0           |            |  |  |  |  |
|                                            | 60.0              | 60.0                                                                       | 60.0        |                |            |  |  |  |  |
| ,                                          | 18.0              | 18.0                                                                       | 18.0        |                |            |  |  |  |  |
| Bulk Density (Mg/m³)                       |                   |                                                                            | 1.90        | 1.91           | 1.89       |  |  |  |  |
| Dry Density (Mg/m³)                        |                   |                                                                            | 1.61        | 1.62           | 1.60       |  |  |  |  |
|                                            | Voids Ratio       |                                                                            | 0.642       | 0.633          | 0.653      |  |  |  |  |
|                                            |                   | Consolidation                                                              |             |                |            |  |  |  |  |
| No                                         | ormal Pressure (k | (Pa)                                                                       | 300         | 600            | 1200       |  |  |  |  |
| Verti                                      | cal Displacement  | t (mm)                                                                     | 1.006       | 1.263          | 1.759      |  |  |  |  |
|                                            |                   | Shearing                                                                   |             |                |            |  |  |  |  |
| Rat                                        | e of Strain (mm/  | min)                                                                       | 0.600       | 0.600          | 0.600      |  |  |  |  |
| Pe                                         | ak Shear Stress ( | kPa)                                                                       | 253.1       | 498.6          | 869.8      |  |  |  |  |
| Hoz Displacement (mm)                      |                   |                                                                            | 10.2        | 10.2           | 10.2       |  |  |  |  |
| Hoz Displacement at Peak Shear Stress (mm) |                   |                                                                            | 3.417       | 4.323          | 5.643      |  |  |  |  |
|                                            |                   | Final Conditions                                                           | _           |                |            |  |  |  |  |
| \                                          | Water Content (9  | %)                                                                         | 20.0        | 20.0           | 19.0       |  |  |  |  |
| D                                          | ry Density (Mg/r  | m <sup>3</sup> )                                                           | 1.77        | 1.86           | 1.96       |  |  |  |  |
|                                            | Voids Ratio       |                                                                            | 0.555       | 0.491          | 0.457      |  |  |  |  |

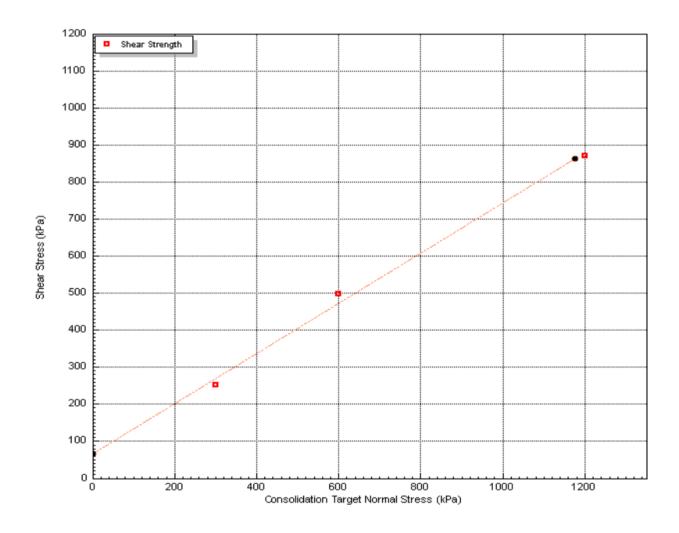

| CAUSEWAY         | Tested     | Approved       |
|------------------|------------|----------------|
| GEOTECH<br>10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test                   | Test BS EN ISO 17892-10:2018 |                                  |         |            |
|-----------------|--------------------|--------------------------|------------------------------|----------------------------------|---------|------------|
| Project Number  | 22-1041A           | Project 3FM Plar         |                              | Project 3FM Planning Design GI - |         | GI - Lot A |
| Location Number | BH124              |                          | Sample Reference             |                                  | 1       |            |
| Depth (m)       | 31.00              | Sample Submerged?        |                              | Yes                              | No      |            |
| Sample Type     | С                  | Particle Density (Mg/m³) |                              | 2.65                             | Assumed |            |



|                 | <b>Direct Shea</b> | r Test BS EN ISO 17892-10:2018 |                   |                                |         |            |
|-----------------|--------------------|--------------------------------|-------------------|--------------------------------|---------|------------|
| Project Number  | 22-1041A           | Project 3FM Plan               |                   | Project 3FM Planning Design GI |         | GI - Lot A |
| Location Number | BH124              |                                | Sample Reference  |                                | 1       |            |
| Depth (m)       | 31.00              |                                | Sample Submerged? |                                | Yes     | No         |
| Sample Type     | С                  | Particle Density (Mg/m³)       |                   | 2.65                           | Assumed |            |



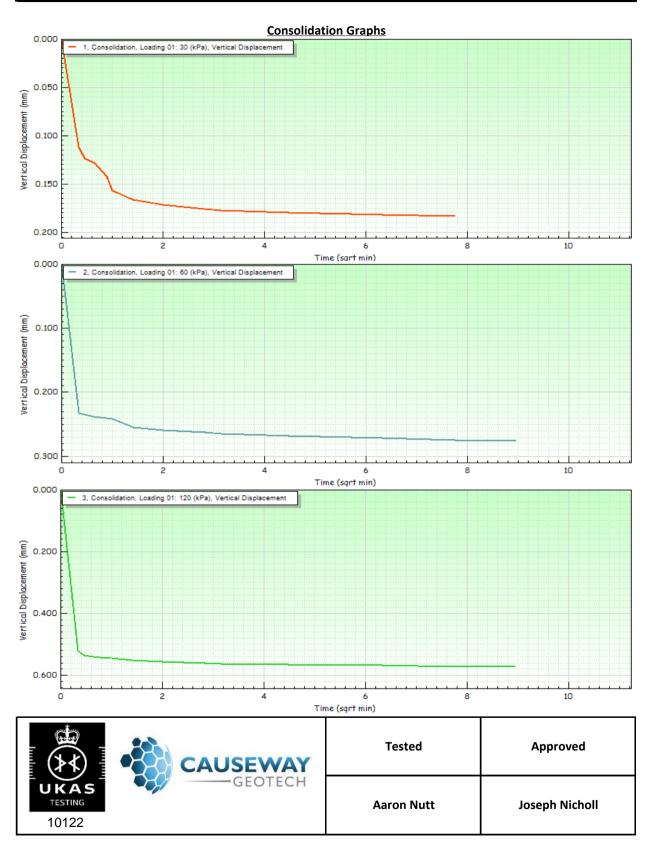





| CAUSEWAY           | Tested     | Approved       |
|--------------------|------------|----------------|
| UKAS TESTING 10122 | Aaron Nutt | Joseph Nicholl |

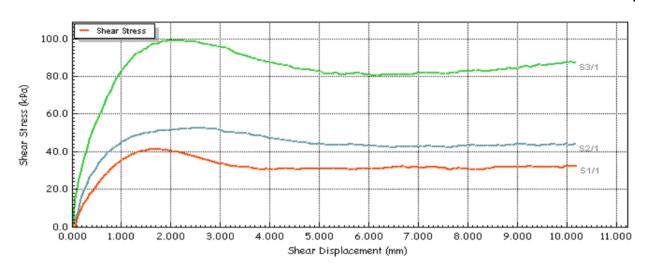
|                 | <b>Direct Shea</b> | r Test BS EN ISO 17892-10:2018 |                  |                               |         |                |            |
|-----------------|--------------------|--------------------------------|------------------|-------------------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project 3FM Plan               |                  | A Project 3FM Planning Design |         | nning Design ( | GI - Lot A |
| Location Number | BH124              |                                | Sample Reference |                               | 1       |                |            |
| Depth (m)       | 31.00              | Sample Submerged?              |                  | Yes                           | No      |                |            |
| Sample Type     | С                  | Particle Density (Mg/m³)       |                  | 2.65                          | Assumed |                |            |

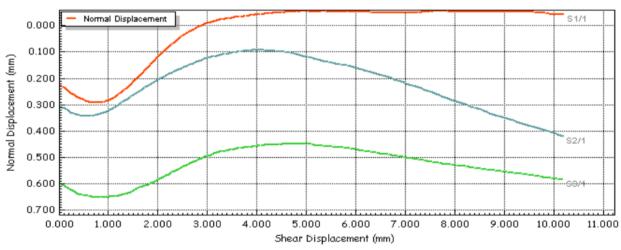
| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 68   |   |
| Angle of Shearing Resistance (°) |   | 34.0 |   |




| CAUSEWAY GEOTECH | Tested     | Approved       |
|------------------|------------|----------------|
|                  | Aaron Nutt | Joseph Nicholl |

|                                            | Direct Shea       | r Test BS EN ISO 178                                        | 392-10:2018      |                |            |  |  |  |  |  |
|--------------------------------------------|-------------------|-------------------------------------------------------------|------------------|----------------|------------|--|--|--|--|--|
| Project Number                             | 22-1041A          | Project                                                     | 3FM Pla          | nning Design ( | GI - Lot A |  |  |  |  |  |
| Location Number                            | BH130             | Sample Referen                                              | ice              | 2              | 29         |  |  |  |  |  |
| Depth (m)                                  | 3.00              | Sample Submerg                                              | ed?              | Yes            | No         |  |  |  |  |  |
| Sample Type                                | В                 | Particle Density (M                                         | g/m³)            | 2.65           | Assumed    |  |  |  |  |  |
| Description                                |                   | Greyish brown gravell                                       | ly fine to coars | e SAND.        |            |  |  |  |  |  |
| Sample Preparation                         | Sa                | Sample is recompacted using material passing 2mm test sieve |                  |                |            |  |  |  |  |  |
|                                            |                   | Stage                                                       | 1                | 2              | 3          |  |  |  |  |  |
|                                            |                   | Initial Conditions                                          | •                | •              | •          |  |  |  |  |  |
|                                            | Height (mm)       |                                                             | 20.0             | 20.0           | 20.0       |  |  |  |  |  |
|                                            | 60.0              | 60.0                                                        | 60.0             |                |            |  |  |  |  |  |
| ,                                          | 11.0              | 11.0                                                        | 11.0             |                |            |  |  |  |  |  |
| В                                          | 1.76              | 1.71                                                        | 1.74             |                |            |  |  |  |  |  |
| Dry Density (Mg/m³)                        |                   |                                                             | 1.58             | 1.54           | 1.56       |  |  |  |  |  |
|                                            | Voids Ratio       |                                                             | 0.679            | 0.726          | 0.696      |  |  |  |  |  |
|                                            |                   | Consolidation                                               |                  |                |            |  |  |  |  |  |
| No                                         | ormal Pressure (l | (Pa)                                                        | 30               | 60             | 120        |  |  |  |  |  |
| Verti                                      | cal Displacement  | t (mm)                                                      | 0.183            | 0.276          | 0.573      |  |  |  |  |  |
|                                            |                   | Shearing                                                    |                  |                |            |  |  |  |  |  |
| Rat                                        | e of Strain (mm/  | min)                                                        | 0.600            | 0.600          | 0.600      |  |  |  |  |  |
| Pe                                         | ak Shear Stress ( | kPa)                                                        | 41.2             | 52.6           | 99.2       |  |  |  |  |  |
| Hoz Displacement (mm)                      |                   |                                                             | 10.2             | 10.2           | 10.2       |  |  |  |  |  |
| Hoz Displacement at Peak Shear Stress (mm) |                   |                                                             | 1.617            | 2.703          | 2.163      |  |  |  |  |  |
|                                            |                   | Final Conditions                                            | _                |                |            |  |  |  |  |  |
| •                                          | Water Content (9  | %)                                                          | 23.0             | 23.0           | 22.0       |  |  |  |  |  |
| D                                          | ry Density (Mg/r  | m <sup>3</sup> )                                            | 1.56             | 1.54           | 1.63       |  |  |  |  |  |
|                                            | Voids Ratio       |                                                             | 0.682            | 0.689          | 0.646      |  |  |  |  |  |

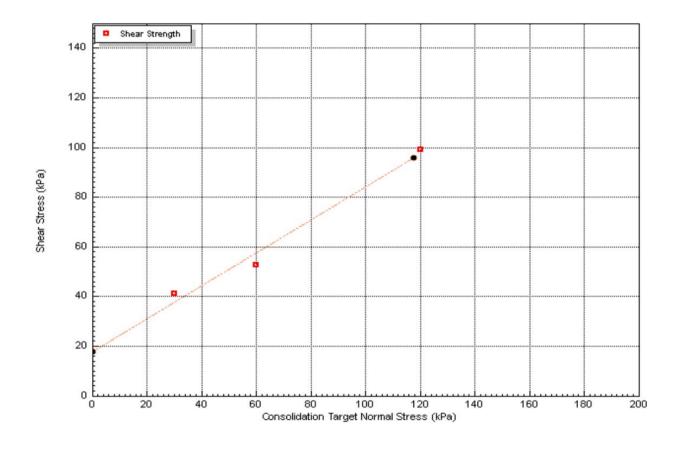

| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test                   | Test BS EN ISO 17892-10:2018 |                               |         |                |            |
|-----------------|--------------------|--------------------------|------------------------------|-------------------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project 3FM Plai         |                              | A Project 3FM Planning Design |         | nning Design G | GI - Lot A |
| Location Number | BH130              |                          | Sample Reference             |                               | 29      |                |            |
| Depth (m)       | 3.00               | Sample Submerged?        |                              | Yes                           | No      |                |            |
| Sample Type     | В                  | Particle Density (Mg/m³) |                              | 2.65                          | Assumed |                |            |



|                 | <b>Direct Shea</b> | r Test                   | Test BS EN ISO 17892-10:2018 |                         |         |                |            |
|-----------------|--------------------|--------------------------|------------------------------|-------------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project 3FM F            |                              | Project 3FM Planning De |         | nning Design ( | GI - Lot A |
| Location Number | BH130              |                          | Sample Reference             |                         | 29      |                |            |
| Depth (m)       | 3.00               |                          | Sample Submerged?            |                         | Yes     | No             |            |
| Sample Type     | В                  | Particle Density (Mg/m³) |                              | 2.65                    | Assumed |                |            |

# **Shear Stage**

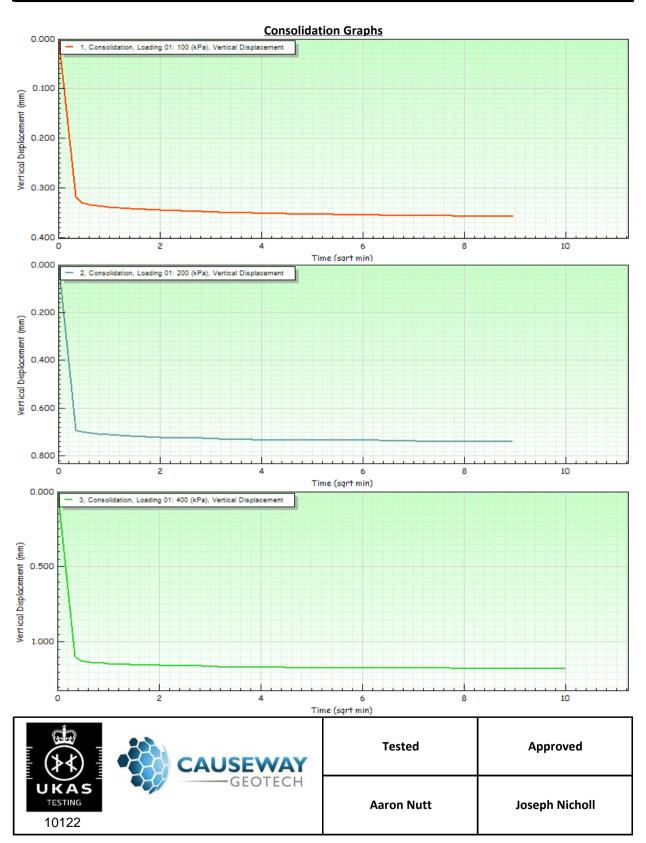





| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

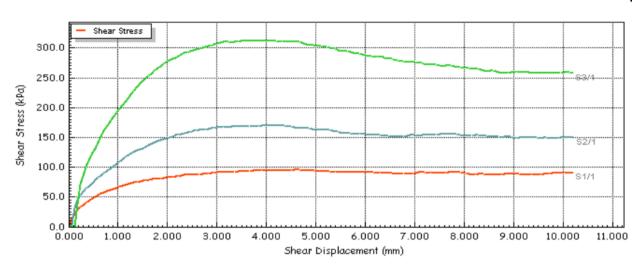
|                 | <b>Direct Shea</b> | er Test BS EN ISO 17892-10:2018 |                   |                |            |    |
|-----------------|--------------------|---------------------------------|-------------------|----------------|------------|----|
| Project Number  | 22-1041A           | Project 3FM Pl                  |                   | nning Design ( | GI - Lot A |    |
| Location Number | BH130              | Sample Reference                |                   | 2              | 9          |    |
| Depth (m)       | 3.00               |                                 | Sample Submerged? |                | Yes        | No |
| Sample Type     | В                  | Particle Density (Mg/m³)        |                   | 2.65           | Assumed    |    |

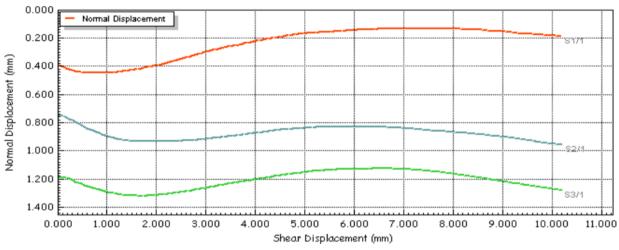
| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 18   |   |
| Angle of Shearing Resistance (°) |   | 33.5 |   |




| CAUSEWAY            | Tested     | Approved       |
|---------------------|------------|----------------|
| UKAS TESTING  10122 | Aaron Nutt | Joseph Nicholl |

|                                            | Direct Shea             | r Test BS EN ISO 178        | 392-10:2018      | }               |            |  |  |  |
|--------------------------------------------|-------------------------|-----------------------------|------------------|-----------------|------------|--|--|--|
| Project Number                             | 22-1041A                | Project                     | 3FM Pla          | anning Design ( | GI - Lot A |  |  |  |
| Location Number                            | BH130                   | Sample Referen              | ce               | 3               | 39         |  |  |  |
| Depth (m)                                  | 10.00                   | Sample Submerg              | ed?              | Yes             | No         |  |  |  |
| Sample Type                                | В                       | Particle Density (M         | g/m³)            | 2.65            | Assumed    |  |  |  |
| Description                                |                         | Greyish brown gravell       | ly fine to coars | e SAND.         |            |  |  |  |
| Sample Preparation                         | Sa                      | mple is recompacted using r | naterial passin  | g 2mm test sie  | eve        |  |  |  |
|                                            |                         | Stage                       | 1                | 2               | 3          |  |  |  |
|                                            |                         | Initial Conditions          |                  |                 |            |  |  |  |
|                                            | Height (mm)             |                             | 20.0             | 20.0            | 20.0       |  |  |  |
|                                            | Diameter (mm            |                             | 60.0             | 60.0            | 60.0       |  |  |  |
| 1                                          | Water Content (%)       |                             |                  | 8.4             | 8.4        |  |  |  |
| Ві                                         | Bulk Density (Mg/m³)    |                             |                  | 1.74            | 1.75       |  |  |  |
| D                                          | Dry Density (Mg/m³)     |                             |                  | 1.60            | 1.61       |  |  |  |
|                                            | Voids Ratio             |                             | 0.659            | 0.653           | 0.641      |  |  |  |
|                                            |                         | Consolidation               |                  |                 |            |  |  |  |
| No                                         | ormal Pressure (I       | кРа)                        | 100              | 200             | 400        |  |  |  |
| Verti                                      | cal Displacemen         | t (mm)                      | 0.358            | 0.740           | 1.178      |  |  |  |
|                                            |                         | Shearing                    |                  |                 |            |  |  |  |
| Rat                                        | e of Strain (mm/        | min)                        | 0.600            | 0.600           | 0.600      |  |  |  |
| Pea                                        | Peak Shear Stress (kPa) |                             |                  | 170.4           | 312.6      |  |  |  |
| Ног                                        | Hoz Displacement (mm)   |                             |                  | 10.2            | 10.2       |  |  |  |
| Hoz Displacement at Peak Shear Stress (mm) |                         |                             | 4.623            | 4.143           | 3.663      |  |  |  |
|                                            | Final Conditions        |                             |                  |                 |            |  |  |  |
| \                                          | Water Content (%)       |                             |                  | 23.0            | 22.0       |  |  |  |
| Dry Density (Mg/m³)                        |                         |                             | 1.61             | 1.71            | 1.80       |  |  |  |
|                                            | Voids Ratio             |                             | 0.644            | 0.574           | 0.536      |  |  |  |

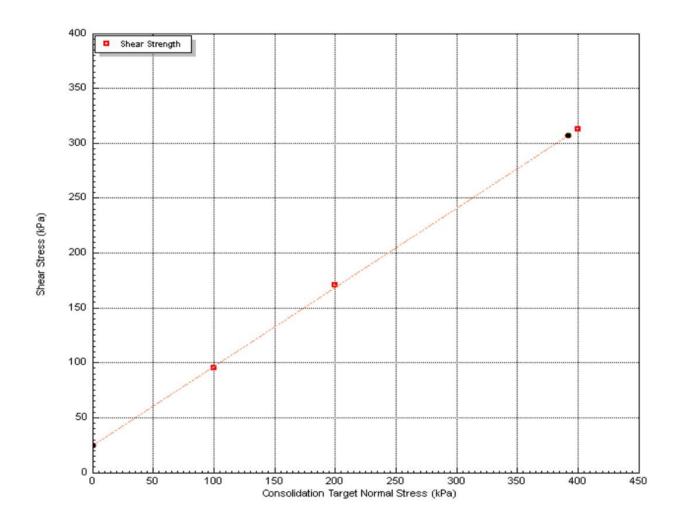

| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

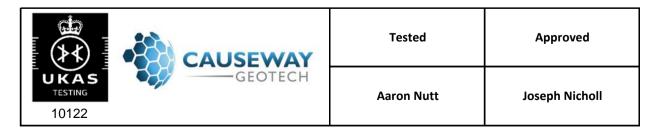

|                 | <b>Direct Shea</b> | r Test BS EN ISO 17892-10:2018 |                   |         |                |            |
|-----------------|--------------------|--------------------------------|-------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project 3F                     |                   | 3FM Pla | nning Design ( | GI - Lot A |
| Location Number | BH130              | Sample Reference               |                   | 3       | 9              |            |
| Depth (m)       | 10.00              |                                | Sample Submerged? |         | Yes            | No         |
| Sample Type     | В                  | Particle Density (Mg/m³)       |                   | 2.65    | Assumed        |            |



|                 | <b>Direct Shea</b> | er Test BS EN ISO 17892-10:2018 |                   |         |                |            |
|-----------------|--------------------|---------------------------------|-------------------|---------|----------------|------------|
| Project Number  | 22-1041A           | Project                         |                   | 3FM Pla | nning Design ( | GI - Lot A |
| Location Number | BH130              | Sample Reference                |                   | 3       | 9              |            |
| Depth (m)       | 10.00              |                                 | Sample Submerged? |         | Yes            | No         |
| Sample Type     | В                  | Particle Density (Mg/m³)        |                   | 2.65    | Assumed        |            |

# **Shear Stage**

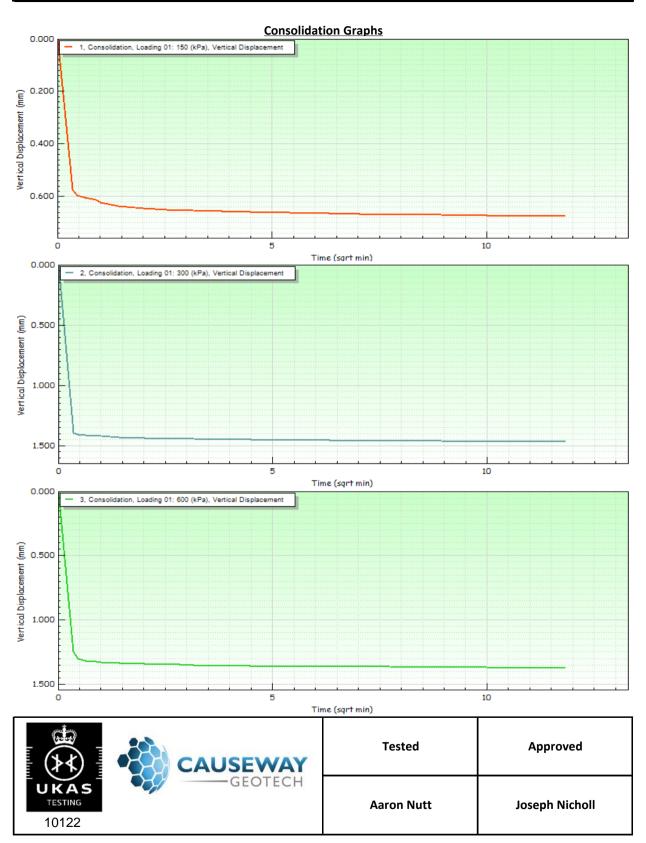



| CAUSEWAY           | Tested     | Approved       |
|--------------------|------------|----------------|
| UKAS TESTING 10122 | Aaron Nutt | Joseph Nicholl |

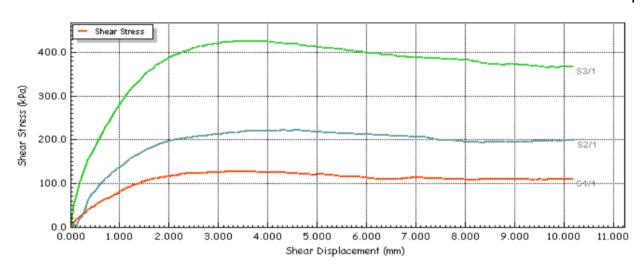
|                 | <b>Direct Shea</b> | ar Test BS EN ISO 17892-10:2018       |                   |                |            |    |
|-----------------|--------------------|---------------------------------------|-------------------|----------------|------------|----|
| Project Number  | 22-1041A           | Project 3FM Pla                       |                   | nning Design ( | GI - Lot A |    |
| Location Number | BH130              | Sample Reference                      |                   | 3              | 9          |    |
| Depth (m)       | 10.00              |                                       | Sample Submerged? |                | Yes        | No |
| Sample Type     | В                  | Particle Density (Mg/m <sup>3</sup> ) |                   | 2.65           | Assumed    |    |

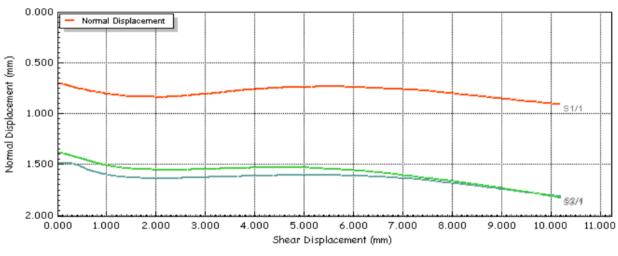
| Stag                             | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 24   |   |
| Angle of Shearing Resistance (°) |   | 36.0 |   |






|                                            | Direct Shear        | Test BS EN ISO 178          | 892-10:2018     |                  |            |
|--------------------------------------------|---------------------|-----------------------------|-----------------|------------------|------------|
| Project Number                             | 22-1041A            | Project                     | 3FM Pla         | nning Design (   | GI - Lot A |
| Location Number                            | BH130               | Sample Referer              | nce             | ŗ.               | 57         |
| Depth (m)                                  | 15.00               | Sample Submerg              | ged?            | Yes              | No         |
| Sample Type                                | В                   | Particle Density (M         | lg/m³)          | 2.65             | Assumed    |
| Description                                | Greyish br          | own slightly sandy slightly | silty subangula | r fine to coarse | e GRAVEL.  |
| Sample Preparation                         | Sar                 | mple is recompacted using i | material passin | g 2mm test sie   | eve        |
|                                            | · ·                 | Stage                       | e 1             | 2                | 3          |
|                                            |                     | Initial Conditions          | •               | •                | •          |
|                                            | Height (mm)         |                             | 20.0            | 20.0             | 20.0       |
|                                            | Diameter (mm)       |                             | 60.0            | 60.0             | 60.0       |
| 1                                          | Water Content (%)   |                             |                 | 11.0             | 11.0       |
| Bulk Density (Mg/m³)                       |                     |                             | 1.76            | 1.72             | 1.77       |
| D                                          | Dry Density (Mg/m³) |                             | 1.58            | 1.55             | 1.58       |
|                                            | Voids Ratio         |                             | 0.682           | 0.713            | 0.672      |
|                                            |                     | Consolidation               |                 |                  |            |
| No                                         | ormal Pressure (k   | Pa)                         | 150             | 300              | 600        |
| Verti                                      | cal Displacement    | (mm)                        | 0.675           | 1.468            | 1.374      |
|                                            |                     | Shearing                    |                 |                  |            |
| Rat                                        | e of Strain (mm/    | min)                        | 0.600           | 0.600            | 0.600      |
| Pe                                         | ak Shear Stress (k  | (Pa)                        | 127.5           | 222.0            | 426.5      |
| Hoz Displacement (mm)                      |                     |                             | 10.2            | 10.2             | 10.2       |
| Hoz Displacement at Peak Shear Stress (mm) |                     |                             | 3.363           | 4.377            | 3.777      |
|                                            |                     | Final Conditions            |                 |                  | _          |
| \                                          | Water Content (%    | 6)                          | 20.0            | 21.0             | 20.0       |
| Dry Density (Mg/m³)                        |                     |                             | 1.72            | 1.86             | 1.88       |
|                                            | Voids Ratio         |                             | 0.605           | 0.558            | 0.519      |

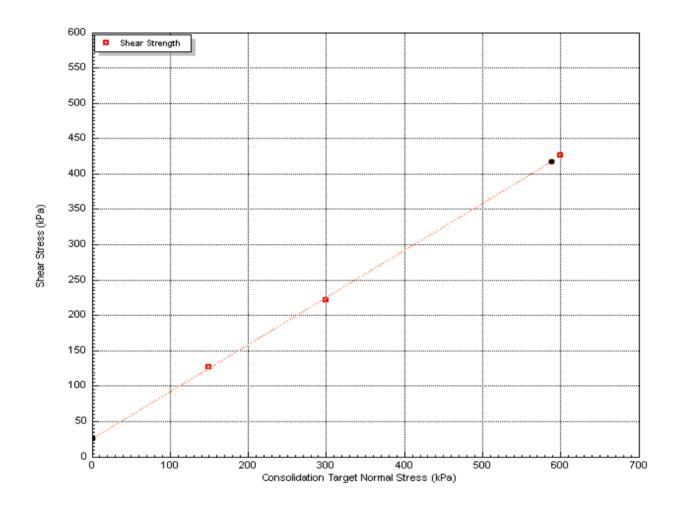

| CAUSEWAY      | Tested     | Approved       |
|---------------|------------|----------------|
| GEOTECH 10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test BS EN ISO 17892-10:2018 |  |                                |         |            |
|-----------------|--------------------|--------------------------------|--|--------------------------------|---------|------------|
| Project Number  | 22-1041A           | Project 3FM Pl                 |  | 3FM Planning Design GI - Lot A |         | GI - Lot A |
| Location Number | BH130              | Sample Reference               |  | 57                             |         |            |
| Depth (m)       | 15.00              | Sample Submerged?              |  | Yes                            | No      |            |
| Sample Type     | В                  | Particle Density (Mg/m³)       |  | 2.65                           | Assumed |            |



|                 | <b>Direct Shea</b> | Test BS EN ISO 17892-10:2018 |                   |         |                         |         |
|-----------------|--------------------|------------------------------|-------------------|---------|-------------------------|---------|
| Project Number  | 22-1041A           | Project                      |                   | 3FM Pla | nning Design GI - Lot A |         |
| Location Number | BH130              | Sample Reference             |                   | 5       | 7                       |         |
| Depth (m)       | 15.00              |                              | Sample Submerged? |         | Yes                     | No      |
| Sample Type     | В                  | Particle Density (Mg/m³)     |                   | g/m³)   | 2.65                    | Assumed |

# **Shear Stage**



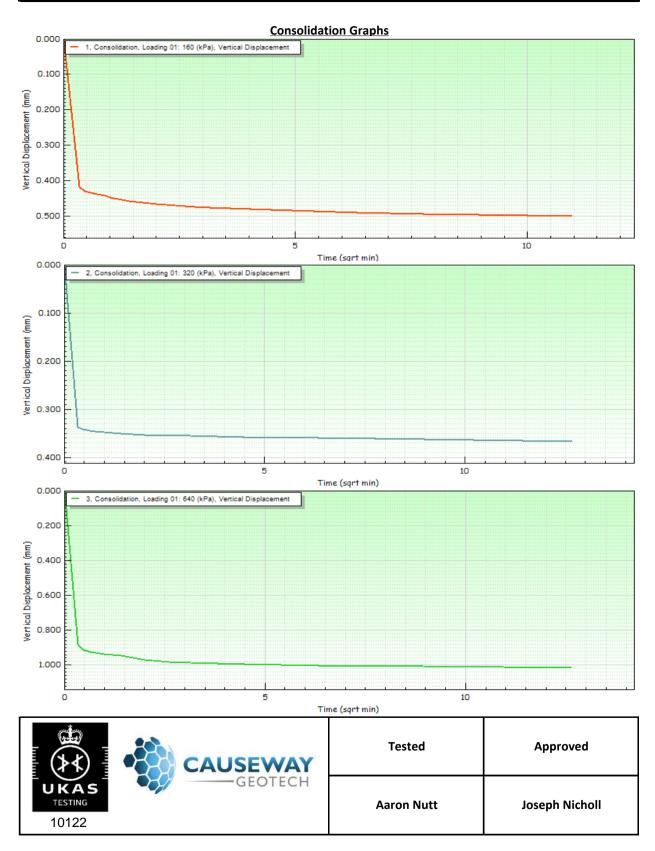




| CAUSEWAY           | Tested     | Approved       |
|--------------------|------------|----------------|
| UKAS TESTING 10122 | Aaron Nutt | Joseph Nicholl |

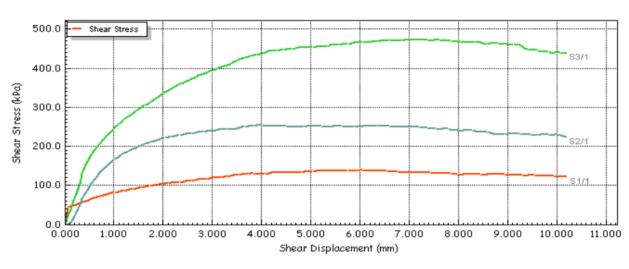
|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178     | 92-10:2018                 |         |    |
|-----------------|--------------------|--------------------------|-------------------|----------------------------|---------|----|
| Project Number  | 22-1041A           | Project 3FM Plan         |                   | Planning Design GI - Lot A |         |    |
| Location Number | BH130              |                          | Sample Reference  |                            | 57      |    |
| Depth (m)       | 15.00              |                          | Sample Submerged? |                            | Yes     | No |
| Sample Type     | В                  | Particle Density (Mg/m³) |                   | 2.65                       | Assumed |    |

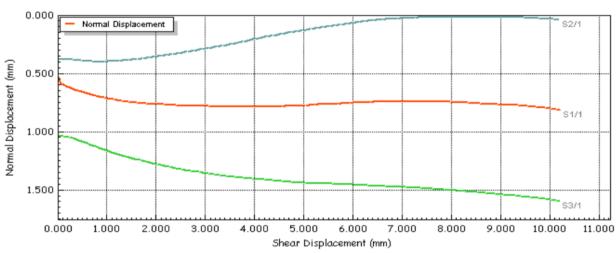
| Stage                            | 1  | 2    | 3 |
|----------------------------------|----|------|---|
| Envelope Failure Results         |    |      |   |
| Apparent Cohesion (kPa)          | 25 |      |   |
| Angle of Shearing Resistance (°) |    | 33.5 |   |






|                                            | Direct Shear          | r Test BS EN ISO 17                                            | 892-10:2018     |                |            |  |
|--------------------------------------------|-----------------------|----------------------------------------------------------------|-----------------|----------------|------------|--|
| Project Number                             | 22-1041A              | Project                                                        | 3FM Pla         | nning Design ( | GI - Lot A |  |
| Location Number                            | BH131                 | Sample Referer                                                 | nce             | ŗ.             | 54         |  |
| Depth (m)                                  | 15.50                 | Sample Submerg                                                 | ged?            | Yes            | No         |  |
| Sample Type                                | В                     | Particle Density (M                                            | 1g/m³)          | 2.65           | Assumed    |  |
| Description                                | Bro                   | Brownish grey slightly sandy subangular fine to coarse GRAVEL. |                 |                |            |  |
| Sample Preparation                         | Sai                   | mple is recompacted using                                      | material passin | g 2mm test sie | eve        |  |
|                                            |                       | Stage                                                          | 1               | 2              | 3          |  |
|                                            |                       | Initial Conditions                                             | •               | •              | •          |  |
|                                            | Height (mm)           |                                                                | 20.0            | 20.0           | 20.0       |  |
|                                            | Diameter (mm)         |                                                                | 60.0            | 60.0           | 60.0       |  |
| Water Content (%)                          |                       |                                                                | 6.1             | 6.1            | 6.1        |  |
| Bulk Density (Mg/m³)                       |                       |                                                                | 1.61            | 1.72           | 1.63       |  |
| D                                          | ry Density (Mg/r      | n <sup>3</sup> )                                               | 1.52            | 1.62           | 1.54       |  |
|                                            | Voids Ratio           |                                                                | 0.748           | 0.639          | 0.725      |  |
|                                            |                       | Consolidation                                                  |                 |                |            |  |
| No                                         | ormal Pressure (k     | (Pa)                                                           | 160             | 320            | 640        |  |
| Verti                                      | cal Displacement      | t (mm)                                                         | 0.500           | 0.367          | 1.015      |  |
|                                            |                       | Shearing                                                       |                 |                |            |  |
| Rat                                        | e of Strain (mm/      | min)                                                           | 0.600           | 0.600          | 0.600      |  |
| Pe                                         | ak Shear Stress (     | kPa)                                                           | 138.7           | 254.0          | 476.0      |  |
| Ho                                         | Hoz Displacement (mm) |                                                                |                 | 10.2           | 10.2       |  |
| Hoz Displacement at Peak Shear Stress (mm) |                       |                                                                | 5.157           | 3.903          | 6.957      |  |
|                                            |                       | Final Conditions                                               | _               |                |            |  |
| \                                          | Water Content (%      | %)                                                             | 23.0            | 21.0           | 22.0       |  |
| D                                          | ry Density (Mg/r      | m <sup>3</sup> )                                               | 1.59            | 1.54           | 1.82       |  |
|                                            | Voids Ratio           |                                                                | 0.677           | 0.636          | 0.587      |  |

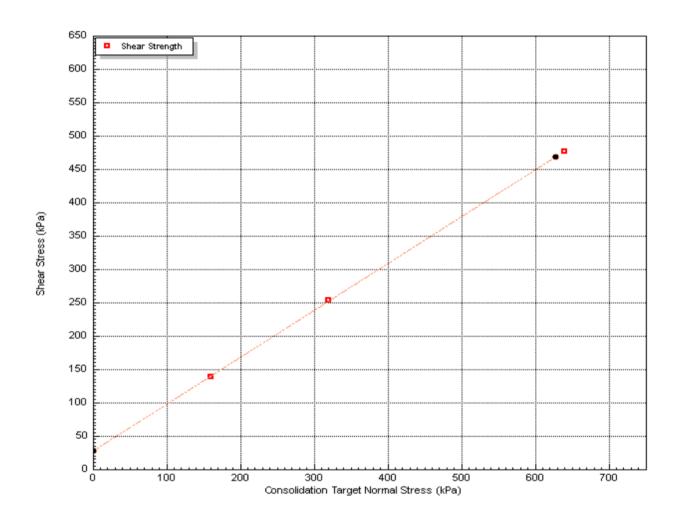

| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |


|                 | <b>Direct Shea</b> | r Test                   | Test BS EN ISO 17892-10:2018 |                                |         |  |
|-----------------|--------------------|--------------------------|------------------------------|--------------------------------|---------|--|
| Project Number  | 22-1041A           | Project 3FM Pla          |                              | 3FM Planning Design GI - Lot A |         |  |
| Location Number | BH131              | Sample Reference         |                              | 5                              | 4       |  |
| Depth (m)       | 15.50              | Sample Submerged?        |                              | Yes                            | No      |  |
| Sample Type     | В                  | Particle Density (Mg/m³) |                              | 2.65                           | Assumed |  |



|                 | <b>Direct Shea</b> | r Test BS EN ISO 17892-10:2018 |                   |      |         |    |
|-----------------|--------------------|--------------------------------|-------------------|------|---------|----|
| Project Number  | 22-1041A           |                                | Project           |      |         |    |
| Location Number | BH131              |                                | Sample Reference  |      | 5       | 4  |
| Depth (m)       | 15.50              |                                | Sample Submerged? |      | Yes     | No |
| Sample Type     | В                  | Particle Density (Mg/m³)       |                   | 2.65 | Assumed |    |








| CAUSEWAY                 | Tested     | Approved       |
|--------------------------|------------|----------------|
| UKAS<br>TESTING<br>10122 | Aaron Nutt | Joseph Nicholl |

|                 | <b>Direct Shea</b> | r Test                   | BS EN ISO 178    | 92-10:2018                 |         |   |
|-----------------|--------------------|--------------------------|------------------|----------------------------|---------|---|
| Project Number  | 22-1041A           | Project 3FM Plan         |                  | Planning Design GI - Lot A |         |   |
| Location Number | BH131              |                          | Sample Reference |                            | 5       | 4 |
| Depth (m)       | 15.50              | Sample Submerged?        |                  | Yes                        | No      |   |
| Sample Type     | В                  | Particle Density (Mg/m³) |                  | 2.65                       | Assumed |   |

| Stage                            | 1 | 2    | 3 |
|----------------------------------|---|------|---|
| Envelope Failure Results         |   |      |   |
| Apparent Cohesion (kPa)          |   | 28   |   |
| Angle of Shearing Resistance (°) |   | 35.0 |   |



| CAUSEWAY            | Tested     | Approved       |
|---------------------|------------|----------------|
| UKAS TESTING  10122 | Aaron Nutt | Joseph Nicholl |

| • CA                                                                                                                                                                                                                                                                                                                                                                                  | USEV<br>— GEOT |      |      | Summary                          |            |           |                      |                          |                     |       |       | rength Index Tests<br>ry of Results |       |            |                            |                   |                              |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|------|----------------------------------|------------|-----------|----------------------|--------------------------|---------------------|-------|-------|-------------------------------------|-------|------------|----------------------------|-------------------|------------------------------|-------------------------------|
| Project No.<br>22                                                                                                                                                                                                                                                                                                                                                                     | 2-1041A        |      |      | Project Name 3FM Planning Design |            |           |                      |                          |                     |       |       | ign GI - Lot A DPC Lands            |       |            |                            |                   |                              |                               |
| Borehole                                                                                                                                                                                                                                                                                                                                                                              | Sa             | mple |      | Spe                              | ecimen     |           |                      | Type<br>ISRM             | ulid (Y/N)          |       | Dime  | nsions                              |       | Force<br>P | Equivalent diameter,<br>De | Point<br>Strengtl |                              | Remarks<br>(including         |
| No.                                                                                                                                                                                                                                                                                                                                                                                   | Depth<br>m     | Ref. | Туре | Ref.                             | Depth<br>m | Rock Type | Type<br>(D, A, I, B) | Direction<br>(L, P or U) | Failure Valid (Y/N) | Lne   | W     | Dps                                 | Dps'  | kN         | a Equivale                 | Is<br>MPa         | Is(5<br>0)<br><sub>MPa</sub> | water content<br>if measured) |
| BH101                                                                                                                                                                                                                                                                                                                                                                                 | 26.70          | 1    | С    | 1                                | 26.70      | LIMESTONE | D                    | U                        | YES                 | 97.1  | 101.8 | 101.8                               | 99.0  | 41.0       | 100.4                      | 4.1               | 5.6                          |                               |
| BH101                                                                                                                                                                                                                                                                                                                                                                                 | 26.80          | 2    | С    | 1                                | 26.80      | LIMESTONE | А                    | U                        | NO                  |       | 101.7 | 50.0                                | 47.0  | 27.0       | 78.0                       | 4.4               | 5.4                          |                               |
| BH101                                                                                                                                                                                                                                                                                                                                                                                 | 28.30          | 3    | С    | 1                                | 28.30      | LIMESTONE | D                    | U                        | NO                  | 79.5  | 101.8 | 101.8                               | 100.0 | 24.0       | 100.9                      | 2.4               | 3.2                          |                               |
| BH101                                                                                                                                                                                                                                                                                                                                                                                 | 28.40          | 4    | С    | 1                                | 28.40      | LIMESTONE | Α                    | U                        | NO                  |       | 101.8 | 84.0                                | 81.0  | 26.7       | 102.5                      | 2.5               | 3.5                          |                               |
| BH101                                                                                                                                                                                                                                                                                                                                                                                 | 28.60          | 5    | С    | 1                                | 28.60      | LIMESTONE | D                    | U                        | YES                 | 86.4  | 101.8 | 101.8                               | 100.0 | 4.3        | 100.9                      | 0.4               | 0.6                          |                               |
| BH101                                                                                                                                                                                                                                                                                                                                                                                 | 28.80          | 6    | С    | 1                                | 28.80      | LIMESTONE | Α                    | U                        | YES                 |       | 101.8 | 96.0                                | 94.0  | 24.9       | 110.4                      | 2.0               | 2.9                          |                               |
| BH120                                                                                                                                                                                                                                                                                                                                                                                 | 35.40          | 1    | С    | 1                                | 35.40      | LIMESTONE | D                    | U                        | YES                 | 83.4  | 101.9 | 101.9                               | 99.0  | 11.3       | 100.4                      | 1.1               | 1.5                          |                               |
| BH120                                                                                                                                                                                                                                                                                                                                                                                 | 35.55          | 2    | С    | 1                                | 35.55      | LIMESTONE | Α                    | U                        | NO                  |       | 102.0 | 86.0                                | 84.0  | 23.9       | 104.4                      | 2.2               | 3.1                          |                               |
| BH120                                                                                                                                                                                                                                                                                                                                                                                 | 36.50          | 3    | С    | 1                                | 36.50      | LIMESTONE | D                    | U                        | YES                 | 83.2  | 102.1 | 102.1                               | 99.0  | 32.0       | 100.5                      | 3.2               | 4.3                          |                               |
| BH120                                                                                                                                                                                                                                                                                                                                                                                 | 36.60          | 4    | С    | 1                                | 36.60      | LIMESTONE | Α                    | U                        | NO                  |       | 101.9 | 84.0                                | 82.0  | 23.7       | 103.1                      | 2.2               | 3.1                          |                               |
| BH120                                                                                                                                                                                                                                                                                                                                                                                 | 39.30          | 5    | С    | 1                                | 39.30      | LIMESTONE | D                    | U                        | NO                  | 110.0 | 102.0 | 102.1                               | 98.0  | 17.4       | 100.0                      | 1.7               | 2.4                          |                               |
| BH120                                                                                                                                                                                                                                                                                                                                                                                 | 39.40          | 6    | С    | 1                                | 39.40      | LIMESTONE | Α                    | U                        | NO                  |       | 102.2 | 60.0                                | 54.0  | 26.0       | 83.8                       | 3.7               | 4.7                          |                               |
| BH120                                                                                                                                                                                                                                                                                                                                                                                 | 39.50          | 7    | С    | 1                                | 39.50      | LIMESTONE | D                    | U                        | YES                 | 75.1  | 101.9 | 101.9                               | 100.0 | 10.6       | 100.9                      | 1.0               | 1.4                          |                               |
| BH120                                                                                                                                                                                                                                                                                                                                                                                 | 39.65          | 8    | С    | 1                                | 39.65      | LIMESTONE | А                    | U                        | NO                  |       | 102.0 | 75.0                                | 71.0  | 19.5       | 96.0                       | 2.1               | 2.8                          |                               |
| BH123                                                                                                                                                                                                                                                                                                                                                                                 | 37.70          | 1    | С    | 1                                | 37.70      | LIMESTONE | D                    | U                        | YES                 | 68.2  | 101.8 | 101.8                               | 100.0 | 8.0        | 100.9                      | 0.8               | 1.1                          |                               |
| BH123                                                                                                                                                                                                                                                                                                                                                                                 | 37.80          | 2    | С    | 1                                | 37.80      | LIMESTONE | Α                    | U                        | YES                 |       | 101.6 | 67.0                                | 61.0  | 10.8       | 88.8                       | 1.4               | 1.8                          |                               |
| BH123                                                                                                                                                                                                                                                                                                                                                                                 | 39.50          | 4    | С    | 1                                | 39.50      | LIMESTONE | D                    | U                        | YES                 | 105.2 | 101.6 | 101.6                               | 100.0 | 18.6       | 100.8                      | 1.8               | 2.5                          |                               |
| BH123                                                                                                                                                                                                                                                                                                                                                                                 | 39.70          | 5    | С    | 1                                | 39.70      | LIMESTONE | Α                    | U                        | YES                 |       | 101.6 | 35.0                                | 32.0  | 2.6        | 64.3                       | 0.6               | 0.7                          |                               |
| Test Type D - Diametral, A - Axial, I - Irregular Lump, B - Block Direction L - parallel to planes of weakness P - perpendicular to planes of weakness U - unknown or random Dimensions Dps - Distance between platens (platen separation) Dps' - at failure (see ISRM note 6) Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P |                |      |      |                                  |            |           |                      |                          |                     |       |       |                                     |       |            |                            |                   |                              |                               |
| Test performed in accordance with ISRM Suggested Methods : 2007, unless noted otherwise  Detailed legend for test and dimensions, based on ISRM, is shown above.  Size factor, F = (De/50)0.45 for all tests.  LAB 17R - Version 5  Date Printed  Approved By  04/03/2023 00:00  Stephen Watson                                                                                       |                |      |      |                                  |            |           |                      |                          |                     |       |       |                                     |       |            |                            |                   |                              |                               |



### LABORATORY TEST CERTIFICATE

Certificate No : 23/334 - 01-1

To: Stephen Watson

Client : Causeway Geotech Limited

8 Drumahiskey Road

Ballymoney Co. Antrim BT53 7QL 10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow G33 3NQ

Tel: 0141 774 4032

email: info@mattest.org Website: www.mattest.org

### LABORATORY TESTING OF ROCK

### Introduction

We refer to samples taken from 3FM Planning Design GI - Lot A DPC Lands and delivered to our laboratory on 20th March 2023.

### **Material & Source**

Sample Reference : See Report Plate

Sampled By : Client

Sampling Certificate : Not Supplied

Location : See Report Plate

Description : Rock Core

Date Sampled : Not Supplied

Date Tested : 20th March 2023 Onwards

Source : 22-1041A - 3FM Planning Design GI - Lot A DPC Lands

### **Test Results**

As Detailed On Page 2

### Comments

The results contained in this report relate to the sample(s) as received Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory All remaining samples for this project will be disposed of 28 days after issue of this test certificate

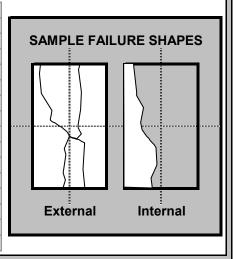
### Remarks

Approved for Issue

T McLelland (Director)

Date

29/03/2023




Issue No. 01 Page 1 of 2

# CAUSEWAY GEOTECH LIMITED 3FM PLANNING DESIGN GI - LOT A DPC LANDS



| BOREHOLE                                 |                   | BH123       |
|------------------------------------------|-------------------|-------------|
| SAMPLE                                   |                   | C3          |
| DEPTH                                    | m                 | 38.40-38.90 |
| SAMPLE DIAMETER                          | mm                | 101.90      |
| SAMPLE HEIGHT                            | mm                | 206.75      |
| TEST CONDITION                           |                   | As Received |
| RATE OF LOADING                          | kN/s              | 1.2         |
| TEST DURATION                            | min.sec           | 4.10        |
| DATE OF TESTING                          |                   | 28/03/2023  |
| LOAD FRAME USED                          |                   | 2000kN      |
| LOAD DIRECTION WITH RESPECT TO LITHOLOGY |                   | Unknown     |
| FAILURE LOAD                             | kN                | 296.9       |
| UNCONFINED COMPRESSIVE STRENGTH          | MPa               | 36.4        |
| WATER CONTENT (ISRM Suggested Methods)   | %                 | 0.1         |
| BULK DENSITY (ISRM Suggested Methods)    | Mg/m <sup>3</sup> | 2.68        |
| DRY DENSITY (ISRM Suggested Methods)     | Mg/m <sup>3</sup> | 2.68        |



| BOREHOLE                                 |                   |                       |
|------------------------------------------|-------------------|-----------------------|
| SAMPLE                                   |                   |                       |
| DEPTH                                    | m                 | SAMPLE FAILURE SHAPES |
| SAMPLE DIAMETER                          | mm                |                       |
| SAMPLE HEIGHT                            | mm                |                       |
| TEST CONDITION                           |                   |                       |
| RATE OF LOADING                          | kN/s              |                       |
| TEST DURATION                            | min.sec           |                       |
| DATE OF TESTING                          |                   |                       |
| LOAD FRAME USED                          |                   |                       |
| LOAD DIRECTION WITH RESPECT TO LITHOLOGY |                   |                       |
| FAILURE LOAD                             | kN                |                       |
| UNCONFINED COMPRESSIVE STRENGTH          | MPa               |                       |
| WATER CONTENT (ISRM Suggested Methods)   | %                 | External Internal     |
| BULK DENSITY (ISRM Suggested Methods)    | Mg/m <sup>3</sup> |                       |
| DRY DENSITY (ISRM Suggested Methods)     | Mg/m <sup>3</sup> |                       |

| PODEHOLE                                 |                   |                          |
|------------------------------------------|-------------------|--------------------------|
| BOREHOLE                                 |                   |                          |
| SAMPLE                                   |                   |                          |
| DEPTH                                    | m                 | SAMPLE FAILURE SHAPES    |
| SAMPLE DIAMETER                          | mm                |                          |
| SAMPLE HEIGHT                            | mm                |                          |
| TEST CONDITION                           |                   |                          |
| RATE OF LOADING                          | kN/s              |                          |
| TEST DURATION                            | min.sec           |                          |
| DATE OF TESTING                          |                   |                          |
| LOAD FRAME USED                          |                   |                          |
| LOAD DIRECTION WITH RESPECT TO LITHOLOGY |                   |                          |
| FAILURE LOAD                             | kN                |                          |
| UNCONFINED COMPRESSIVE STRENGTH          | MPa               |                          |
| WATER CONTENT (ISRM Suggested Methods)   | %                 | <b>External</b> Internal |
| BULK DENSITY (ISRM Suggested Methods)    | Mg/m <sup>3</sup> |                          |
| DRY DENSITY (ISRM Suggested Methods)     | Mg/m <sup>3</sup> |                          |

Tested in accordance with ASTM D7012 - 14

# SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH



Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 23-08765-1

Initial Date of Issue: 17-Mar-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Colm Hurley

Stephen Watson
Alistair McQuat
Carin Cornwall
Celine Rooney
Darren O'Mahony
Dean McCloskey
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Matthew Graham
Neil Haggan

Paul Dunlop

Project 22-1041A 3FM Lot A DPC Lands

**Neil Patton** 

Quotation No.: Date Received: 15-Mar-2023

Order No.: Date Instructed: 15-Mar-2023

No. of Samples: 22

Turnaround (Wkdays): 5 Results Due: 21-Mar-2023

Date Approved: 17-Mar-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

# Results - Soil

# Project: 22-1041A 3FM Lot A DPC Lands

| Client: Causeway Geotech Ltd        |                      | Che            | mtest J | ob No.: | 23-08765    | 23-08765    | 23-08765    | 23-08765    | 23-08765    | 23-08765    | 23-08765    | 23-08765    | 23-08765    |
|-------------------------------------|----------------------|----------------|---------|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:                      | Chemtest Sample ID.: |                | 1607653 | 1607654 | 1607655     | 1607656     | 1607657     | 1607658     | 1607659     | 1607660     | 1607661     |             |             |
| Order No.:                          | Client Sample Ref.:  |                | 10      | 17      | 24          | 3           | 7           | 5           | 1           | 9           | 10          |             |             |
|                                     | Sample Location:     |                | BH101   | BH101   | BH101       | BH101       | BH103       | BH105       | BH112       | BH119       | BH119       |             |             |
|                                     | Sample Type:         |                |         | SOIL    | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |             |
|                                     |                      | Top Depth (m): |         | 2.0     | 6.5         | 12.5        | 21.0        | 1.5         | 1.2         | 2.0         | 1.5         | 2.5         |             |
|                                     |                      |                | Date Sa | ampled: | 14-Mar-2023 |
| Determinand                         | Accred.              | SOP            | Units   | LOD     |             |             |             |             |             |             |             |             |             |
| Moisture                            | N                    | 2030           | %       | 0.020   | 12          | 20          | 15          | 11          | 17          | 9.0         | 22          | 18          | 14          |
| рН                                  | U                    | 2010           |         | 4.0     | 8.6         | 8.4         | 8.4         | 8.3         | 8.7         | 8.8         | 8.2         | 8.2         | 8.0         |
| Sulphate (2:1 Water Soluble) as SO4 | U                    | 2120           | g/l     | 0.010   | 0.31        | 0.18        | 0.19        | 0.14        | 0.12        | < 0.010     | 0.44        | 0.41        | 0.37        |

# Results - Soil

# Project: 22-1041A 3FM Lot A DPC Lands

| Client: Causeway Geotech Ltd        |                      | Cher           | mtest J | ob No.: | 23-08765    | 23-08765    | 23-08765    | 23-08765    | 23-08765    | 23-08765    | 23-08765    | 23-08765    | 23-08765    |
|-------------------------------------|----------------------|----------------|---------|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:                      | Chemtest Sample ID.: |                | 1607662 | 1607663 | 1607664     | 1607665     | 1607666     | 1607667     | 1607668     | 1607669     | 1607670     |             |             |
| Order No.:                          | Client Sample Ref.:  |                | 20      | 2       | 25          | 14          | 37          | 7           | 46          | 21          | 34          |             |             |
|                                     | Sample Location:     |                |         | BH120   | BH120       | BH121       | BH121       | BH121       | BH122       | BH122       | BH123       | BH124       |             |
|                                     | Sample Type:         |                |         | SOIL    | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |             |
|                                     |                      | Top Depth (m): |         | 3.0     | 20.0        | 3.0         | 11.0        | 19.0        | 3.0         | 23.0        | 2.0         | 18.0        |             |
|                                     |                      |                | Date Sa | ampled: | 14-Mar-2023 |
| Determinand                         | Accred.              | SOP            | Units   | LOD     |             |             |             |             |             |             |             |             |             |
| Moisture                            | N                    | 2030           | %       | 0.020   | 20          | 17          | 16          | 3.0         | 16          | 22          | 15          | 21          | 15          |
| рН                                  | U                    | 2010           |         | 4.0     | 8.1         | 8.1         | 8.0         | 9.1         | 8.2         | 8.1         | 8.3         | 8.1         | 7.9         |
| Sulphate (2:1 Water Soluble) as SO4 | U                    | 2120           | g/l     | 0.010   | 0.14        | 0.28        | 0.51        | 0.027       | 0.91        | 0.87        | 0.20        | 0.73        | 0.70        |

# Results - Soil

# Project: 22-1041A 3FM Lot A DPC Lands

| Client: Causeway Geotech Ltd        | Chemtest Job No.: |                |          | 23-08765 | 23-08765    | 23-08765    | 23-08765    |             |
|-------------------------------------|-------------------|----------------|----------|----------|-------------|-------------|-------------|-------------|
| Quotation No.:                      | (                 | Chemte         | st Sam   | ple ID.: | 1607671     | 1607672     | 1607673     | 1607674     |
| Order No.:                          |                   | Clier          | nt Samp  | le Ref.: | 17          | 28          | 22          | 48          |
|                                     |                   | Sa             | ample Lo | ocation: | BH125       | BH130       | BH131       | BH131       |
|                                     | Sample Type:      |                |          |          | SOIL        | SOIL        | SOIL        | SOIL        |
|                                     |                   | Top Depth (m): |          |          | 3.0         | 3.0         | 3.0         | 12.5        |
|                                     |                   |                | Date Sa  | ampled:  | 14-Mar-2023 | 14-Mar-2023 | 14-Mar-2023 | 14-Mar-2023 |
| Determinand                         | Accred.           | SOP            | Units    | LOD      |             |             |             |             |
| Moisture                            | N                 | 2030           | %        | 0.020    | 22          | 11          | 10          | 10          |
| рН                                  | U                 | 2010           |          | 4.0      | 7.7         | 8.6         | 8.5         | 8.7         |
| Sulphate (2:1 Water Soluble) as SO4 | U                 | 2120           | g/l      | 0.010    | 0.35        | 0.035       | 0.035       | 0.16        |

# **Test Methods**

| SOP  | Title                                                      | Parameters included                  | Method summary                                                                                       |
|------|------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                          | рН                                   | pH Meter                                                                                             |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS) | Moisture content                     | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C. |
| 2040 | Soil Description(Requirement of MCERTS)                    | ISoil description                    | As received soil is described based upon BS5930                                                      |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium     | Boron; Sulphate; Magnesium; Chromium | Aqueous extraction / ICP-OES                                                                         |

### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>



### LABORATORY RESTRICTION REPORT

| Project Reference | 22-1041A                       | То                                       | Colm Hurley |          |                            |
|-------------------|--------------------------------|------------------------------------------|-------------|----------|----------------------------|
| Project Name      | 3FM Planning Design GL- Lot A  | 3FM Planning Design GI - Lot A DPC Lands |             |          | Project Manager            |
| 1 Tojout Humo     | or with arming besign of Let A | Di O Lanc                                |             | From     | Joseph Nicholl             |
| TR reference      | 22-1041A                       | /                                        | G01         | Position | Laboratory Quality Manager |

The following sample(s) and test(s) are restricted as detailed below. Could you please complete the "Required Action" column and return the completed form to the laboratory.

| Hole   |        |             |      | Test                      |                                                   |                 |  |  |
|--------|--------|-------------|------|---------------------------|---------------------------------------------------|-----------------|--|--|
| Number | Number | Depth       | Туре | Type                      | Reason for Restriction                            | Required Action |  |  |
| BH102  | 3      | (m)<br>0.30 | В    | CBR                       | >25% retained on 20mm test sieve                  | CANCEL          |  |  |
| BH112  | 2      | 0.50        | В    | CBR                       | Unsuitable material for test - GRAVEL             | CANCEL          |  |  |
| BH116  | 3      | 1.00        | В    | CBR                       | >25% retained on 20mm test sieve                  | CANCEL          |  |  |
| BH119  | 3      | 1.00        | В    | CBR                       | >25% retained on 20mm test sieve                  | CANCEL          |  |  |
| BH120  | 16     | 0.50        | В    | CBR                       | >25% retained on 20mm test sieve                  | CANCEL          |  |  |
| BH120  | 3      | 32.00       | С    | UU Triaxial,<br>Oedometer | Unable to obtain suitable specimen for test       | CANCEL          |  |  |
| BH124  | 17     | 5.00        | D    | Atterberg limits          | Unsuitable material for test<br>- GRAVEL          | CANCEL          |  |  |
| BH131  | 44     | 9.50        | D    | Atterberg limits          | Unsuitable material for test<br>- GRAVEL          | CANCEL          |  |  |
| ST102  | 4      | 0.50        | В    | CBR                       | >25% retained on 20mm test sieve                  | CANCEL          |  |  |
| BH101  | 1      | 16.50       | С    | UU Triaxial,<br>Oedometer | Material was too granular to obtain test specimen | CANCEL          |  |  |

For electronic reporting a form of electronic signature or printed name is acceptable

| Laboratory Signature  | Project Manager Signature |
|-----------------------|---------------------------|
| Joseph Nicholl        | Colm Hurley               |
| Date<br>20 March 2023 | Date                      |



# APPENDIX I ENVIRONMENTAL LABORATORY TEST RESULTS





Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-43309-1

Initial Date of Issue: 21-Dec-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey
Stephen McCracken

Stephen Watson

Project 22-1041 3FM Planning Design GI

Quotation No.: Q21-25198 Date Received: 10-Nov-2022

Order No.: Date Instructed: 15-Nov-2022

No. of Samples: 1

Turnaround (Wkdays): 10 Results Due: 28-Nov-2022

Date Approved: 21-Dec-2022

Approved By:

**Details:** Stuart Henderson, Technical

Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

| Client: Causeway Geotech Ltd        |         | 22-43309     |          |          |               |  |  |
|-------------------------------------|---------|--------------|----------|----------|---------------|--|--|
| Quotation No.: Q21-25198            |         | Chemte       | st Sam   | ple ID.: | 1543231       |  |  |
|                                     |         | Sa           | ocation: | BH116    |               |  |  |
|                                     |         | Sample Type: |          |          |               |  |  |
|                                     |         |              | Top Dep  | oth (m): | 0.50          |  |  |
|                                     |         |              | Date Sa  | ampled:  | 08-Nov-2022   |  |  |
|                                     |         |              | Asbest   | os Lab:  | DURHAM        |  |  |
| Determinand                         | Accred. | SOP          | Units    | LOD      |               |  |  |
| ACM Type                            | U       | 2192         |          | N/A      | Fibres/Clumps |  |  |
| Asbestos Identification             | U       | 2192         |          | N/A      | Chrysotile    |  |  |
| Moisture                            | N       | 2030         | %        | 0.020    | 9.6           |  |  |
| рН                                  | U       | 2010         |          | 4.0      | 8.1           |  |  |
| Boron (Hot Water Soluble)           | U       | 2120         | mg/kg    | 0.40     | 0.55          |  |  |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120         | g/l      | 0.010    | < 0.010       |  |  |
| Total Sulphur                       | U       | 2175         | %        | 0.010    | 0.18          |  |  |
| Sulphur (Elemental)                 | U       | 2180         | mg/kg    | 1.0      | < 1.0         |  |  |
| Cyanide (Free)                      | U       | 2300         | mg/kg    | 0.50     | < 0.50        |  |  |
| Cyanide (Total)                     | U       | 2300         | mg/kg    | 0.50     | < 0.50        |  |  |
| Thiocyanate                         | U       | 2300         | mg/kg    | 5.0      | < 5.0         |  |  |
| Aluminium (Total)                   | N       | 2430         | mg/kg    | 100      | 3300          |  |  |
| Iron (Available)                    | N       | 2430         | mg/kg    | 20.0     | 210000        |  |  |
| Arsenic                             | U       | 2455         | mg/kg    | 0.5      | 13            |  |  |
| Barium                              | U       | 2455         |          | 0        | 190           |  |  |
| Beryllium                           | U       | 2455         | mg/kg    | 0.5      | 1.0           |  |  |
| Cadmium                             | U       | 2455         |          | 0.10     | 0.72          |  |  |
| Chromium                            | U       | 2455         | mg/kg    | 0.5      | 20            |  |  |
| Manganese                           | U       | 2455         | mg/kg    | 1.0      | 640           |  |  |
| Copper                              | U       | 2455         | mg/kg    | 0.50     | 35            |  |  |
| Mercury                             | U       | 2455         | mg/kg    | 0.05     | 0.22          |  |  |
| Nickel                              | U       | 2455         | mg/kg    | 0.50     | 27            |  |  |
| Lead                                | U       | 2455         | mg/kg    | 0.50     | 180           |  |  |
| Selenium                            | U       | 2455         | mg/kg    | 0.25     | 0.72          |  |  |
| Vanadium                            | U       | 2455         | mg/kg    | 0.5      | 27            |  |  |
| Zinc                                | U       | 2455         | mg/kg    | 0.50     | 270           |  |  |
| Chromium (Hexavalent)               | N       | 2490         | mg/kg    | 0.50     | < 0.50        |  |  |
| Organic Matter                      | U       | 2625         | %        | 0.40     | 13            |  |  |
| Total Organic Carbon                | U       | 2625         | %        | 0.20     | 7.8           |  |  |
| Aliphatic TPH >C5-C6                | N       | 2680         |          |          | < 0.010       |  |  |
| Aliphatic TPH >C6-C8                | N       | 2680         |          |          | < 0.010       |  |  |
| Aliphatic TPH >C8-C10               | N       | 2680         | mg/kg    | 0.10     | < 0.10        |  |  |
| Aliphatic TPH >C10-C12              | N       | 2680         | _        | 0.10     | < 0.10        |  |  |
| Aliphatic TPH >C12-C16              | N       | 2680         | mg/kg    | 0.10     | < 0.10        |  |  |
| Aliphatic TPH >C16-C21              | N       | 2680         | mg/kg    | 0.10     | < 0.10        |  |  |
| Aliphatic TPH >C21-C35              | N       | 2680         | mg/kg    | 0.10     | < 0.10        |  |  |
| Aliphatic TPH >C35-C44              | N       | 2680         | mg/kg    | 0.10     | < 0.10        |  |  |
| Total Aliphatic Hydrocarbons        | N       | 2680         | )        |          | < 1.0         |  |  |
| Aromatic TPH >C5-C7                 | N       | 2680         | mg/kg    |          | < 0.010       |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.: |         |          |             |  |  |  |
|------------------------------|---------|-------------------|---------|----------|-------------|--|--|--|
| Quotation No.: Q21-25198     |         | Chemte            | st Sam  | ple ID.: | 1543231     |  |  |  |
|                              |         | Sample Location:  |         |          |             |  |  |  |
|                              |         | Sample Type:      |         |          |             |  |  |  |
|                              |         |                   | Top Dep |          | 0.50        |  |  |  |
|                              |         |                   | Date Sa | ampled:  | 08-Nov-2022 |  |  |  |
|                              |         |                   | Asbest  | os Lab:  | DURHAM      |  |  |  |
| Determinand                  | Accred. | SOP               | Units   | LOD      |             |  |  |  |
| Aromatic TPH >C7-C8          | N       | 2680              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Aromatic TPH >C8-C10         | N       | 2680              | mg/kg   | 0.10     | < 0.10      |  |  |  |
| Aromatic TPH >C10-C12        | N       | 2680              | 0       | 0.10     | < 0.10      |  |  |  |
| Aromatic TPH >C12-C16        | N       | 2680              | ט       | 0.10     | < 0.10      |  |  |  |
| Aromatic TPH >C16-C21        | N       | 2680              | ט       | 0.10     | < 0.10      |  |  |  |
| Aromatic TPH >C21-C35        | N       | 2680              | mg/kg   | 0.10     | < 0.10      |  |  |  |
| Aromatic TPH >C35-C44        | N       | 2680              | mg/kg   | 0.10     | < 0.10      |  |  |  |
| Total Aromatic Hydrocarbons  | N       | 2680              | mg/kg   | 1.0      | < 1.0       |  |  |  |
| Total Petroleum Hydrocarbons | N       | 2680              | mg/kg   | 2.0      | < 2.0       |  |  |  |
| Dichlorodifluoromethane      | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Chloromethane                | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Vinyl Chloride               | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Bromomethane                 | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Chloroethane                 | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Trichlorofluoromethane       | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| 1,1-Dichloroethene           | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Trans 1,2-Dichloroethene     | N       | 2760              |         | 0.20     | < 0.20      |  |  |  |
| 1,1-Dichloroethane           | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| cis 1,2-Dichloroethene       | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Bromochloromethane           | N       | 2760              | μg/kg   | 0.50     | < 0.50      |  |  |  |
| Trichloromethane             | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| 1,1,1-Trichloroethane        | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Tetrachloromethane           | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| 1,1-Dichloropropene          | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Benzene                      | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| 1,2-Dichloroethane           | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Trichloroethene              | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| 1,2-Dichloropropane          | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Dibromomethane               | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Bromodichloromethane         | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| cis-1,3-Dichloropropene      | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Toluene                      | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| Trans-1,3-Dichloropropene    | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| 1,1,2-Trichloroethane        | N       | 2760              |         | 0.20     | < 0.20      |  |  |  |
| Tetrachloroethene            | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| 1,3-Dichloropropane          | N       | 2760              |         | 0.20     | < 0.20      |  |  |  |
| Dibromochloromethane         | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |
| 1,2-Dibromoethane            | N       | 2760              |         | 0.20     | < 0.20      |  |  |  |
| Chlorobenzene                | N       | 2760              | μg/kg   | 0.20     | < 0.20      |  |  |  |

| Client: Causeway Geotech Ltd | 22-43309<br>1543231 |                  |         |         |             |  |  |  |  |
|------------------------------|---------------------|------------------|---------|---------|-------------|--|--|--|--|
| Quotation No.: Q21-25198     |                     |                  |         |         |             |  |  |  |  |
|                              |                     | Sample Location: |         |         |             |  |  |  |  |
|                              |                     | Sample Type:     |         |         |             |  |  |  |  |
|                              |                     |                  | Top Dep |         | 0.50        |  |  |  |  |
|                              |                     |                  | Date Sa |         | 08-Nov-2022 |  |  |  |  |
|                              |                     |                  | Asbest  | os Lab: | DURHAM      |  |  |  |  |
| Determinand                  | Accred.             | SOP              |         | LOD     |             |  |  |  |  |
| 1,1,1,2-Tetrachloroethane    | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| Ethylbenzene                 | N                   | 2760             | )       | 0.20    | < 0.20      |  |  |  |  |
| m & p-Xylene                 | N                   | 2760             | 0       | 0.20    | < 0.20      |  |  |  |  |
| o-Xylene                     | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| Styrene                      | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| Tribromomethane              | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| Isopropylbenzene             | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| Bromobenzene                 | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| 1,2,3-Trichloropropane       | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| N-Propylbenzene              | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| 2-Chlorotoluene              | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| 1,3,5-Trimethylbenzene       | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| 4-Chlorotoluene              | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| Tert-Butylbenzene            | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| 1,2,4-Trimethylbenzene       | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| Sec-Butylbenzene             | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| 1,3-Dichlorobenzene          | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| 4-Isopropyltoluene           | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| 1,4-Dichlorobenzene          | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| N-Butylbenzene               | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| 1,2-Dichlorobenzene          | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| 1,2-Dibromo-3-Chloropropane  | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| 1,2,4-Trichlorobenzene       | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| Hexachlorobutadiene          | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| 1,2,3-Trichlorobenzene       | N                   | 2760             | μg/kg   | 0.20    | < 0.20      |  |  |  |  |
| Methyl Tert-Butyl Ether      | N                   | 2760             |         | 0.20    | < 0.20      |  |  |  |  |
| N-Nitrosodimethylamine       | N                   | 2790             |         |         | < 0.050     |  |  |  |  |
| Phenol                       | N                   | 2790             |         |         | < 0.050     |  |  |  |  |
| 2-Chlorophenol               | N                   | 2790             |         |         | < 0.050     |  |  |  |  |
| Bis-(2-Chloroethyl)Ether     | N                   | 2790             | )       |         | < 0.050     |  |  |  |  |
| 1,3-Dichlorobenzene          | N                   | 2790             | )       |         | < 0.050     |  |  |  |  |
| 1,4-Dichlorobenzene          | N                   | 2790             | mg/kg   |         | < 0.050     |  |  |  |  |
| 1,2-Dichlorobenzene          | N                   | 2790             | mg/kg   |         | < 0.050     |  |  |  |  |
| 2-Methylphenol               | N                   | 2790             |         |         | < 0.050     |  |  |  |  |
| Bis(2-Chloroisopropyl)Ether  | N                   | 2790             |         |         | < 0.050     |  |  |  |  |
| Hexachloroethane             | N                   | 2790             |         |         | < 0.050     |  |  |  |  |
| N-Nitrosodi-n-propylamine    | N                   | 2790             |         |         | < 0.050     |  |  |  |  |
|                              |                     |                  |         |         |             |  |  |  |  |
| 4-Methylphenol               | N                   | 2790             | mg/kg   | 0.050   | < 0.050     |  |  |  |  |

| Client: Causeway Geotech Ltd |         |              |          |               |             |  |  |  |
|------------------------------|---------|--------------|----------|---------------|-------------|--|--|--|
| Quotation No.: Q21-25198     |         |              | st Sam   |               | 1543231     |  |  |  |
|                              |         | Sa           | ocation: | BH116<br>SOIL |             |  |  |  |
|                              |         | Sample Type: |          |               |             |  |  |  |
|                              |         |              | Top Dep  |               | 0.50        |  |  |  |
|                              |         |              | Date Sa  | _             | 08-Nov-2022 |  |  |  |
|                              |         |              | Asbest   | os Lab:       | DURHAM      |  |  |  |
| Determinand                  | Accred. | SOP          | Units    | LOD           |             |  |  |  |
| Isophorone                   | N       | 2790         |          | 0.050         | < 0.050     |  |  |  |
| 2-Nitrophenol                | N       | 2790         | mg/kg    |               | < 0.050     |  |  |  |
| 2,4-Dimethylphenol           | N       | 2790         | mg/kg    | 0.050         | < 0.050     |  |  |  |
| Bis(2-Chloroethoxy)Methane   | N       | 2790         | mg/kg    | 0.050         | < 0.050     |  |  |  |
| 2,4-Dichlorophenol           | N       | 2790         | mg/kg    | 0.050         | < 0.050     |  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2790         | mg/kg    | 0.050         | < 0.050     |  |  |  |
| Naphthalene                  | N       | 2790         |          |               | < 0.050     |  |  |  |
| 4-Chloroaniline              | N       | 2790         | mg/kg    | 0.050         | < 0.050     |  |  |  |
| Hexachlorobutadiene          | N       | 2790         | mg/kg    | 0.050         | < 0.050     |  |  |  |
| 4-Chloro-3-Methylphenol      | N       | 2790         |          |               | < 0.050     |  |  |  |
| 2-Methylnaphthalene          | N       | 2790         | mg/kg    |               | < 0.050     |  |  |  |
| Hexachlorocyclopentadiene    | N       | 2790         | mg/kg    |               | < 0.050     |  |  |  |
| 2,4,6-Trichlorophenol        | N       | 2790         | mg/kg    | 0.050         | < 0.050     |  |  |  |
| 2,4,5-Trichlorophenol        | N       | 2790         |          |               | < 0.050     |  |  |  |
| 2-Chloronaphthalene          | N       | 2790         |          |               | < 0.050     |  |  |  |
| 2-Nitroaniline               | N       | 2790         | )        |               | < 0.050     |  |  |  |
| Acenaphthylene               | N       | 2790         |          |               | < 0.050     |  |  |  |
| Dimethylphthalate            | N       | 2790         | mg/kg    |               | < 0.050     |  |  |  |
| 2,6-Dinitrotoluene           | N       | 2790         | mg/kg    |               | < 0.050     |  |  |  |
| Acenaphthene                 | N       | 2790         |          |               | < 0.050     |  |  |  |
| 3-Nitroaniline               | N       | 2790         | ,        |               | < 0.050     |  |  |  |
| Dibenzofuran                 | N       | 2790         |          |               | < 0.050     |  |  |  |
| 4-Chlorophenylphenylether    | N       | 2790         | _        |               | < 0.050     |  |  |  |
| 2,4-Dinitrotoluene           | N       | 2790         | _        |               | < 0.050     |  |  |  |
| Fluorene                     | N       | 2790         | mg/kg    |               | < 0.050     |  |  |  |
| Diethyl Phthalate            | N       | 2790         | mg/kg    |               | < 0.050     |  |  |  |
| 4-Nitroaniline               | N       | 2790         | mg/kg    |               | < 0.050     |  |  |  |
| 2-Methyl-4,6-Dinitrophenol   | N       | 2790         | mg/kg    |               | < 0.050     |  |  |  |
| Azobenzene                   | N       | 2790         |          |               | < 0.050     |  |  |  |
| 4-Bromophenylphenyl Ether    | N       | 2790         | )        |               | < 0.050     |  |  |  |
| Hexachlorobenzene            | N       | 2790         | )        |               | < 0.050     |  |  |  |
| Pentachlorophenol            | N       | 2790         | mg/kg    |               | < 0.050     |  |  |  |
| Phenanthrene                 | N       | 2790         | mg/kg    |               | 0.72        |  |  |  |
| Anthracene                   | N       | 2790         | mg/kg    |               | 0.72        |  |  |  |
| Carbazole                    | N       | 2790         |          |               | 0.10        |  |  |  |
| Di-N-Butyl Phthalate         | N       | 2790         |          |               | < 0.050     |  |  |  |
| Fluoranthene                 | N N     | 2790         |          |               | 2.3         |  |  |  |
| Pyrene                       | N N     | 2790         |          |               | 1.8         |  |  |  |
| ,                            | N N     | 2790         | 0        |               |             |  |  |  |
| Butylbenzyl Phthalate        | IN      | 2190         | mg/kg    | 0.050         | < 0.050     |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.: |         |          |             |  |  |  |
|------------------------------|---------|-------------------|---------|----------|-------------|--|--|--|
| Quotation No.: Q21-25198     |         | Chemte            | st Sam  | ple ID.: | 1543231     |  |  |  |
|                              |         | Sample Location:  |         |          |             |  |  |  |
|                              |         |                   | Sample  | e Type:  | SOIL        |  |  |  |
|                              |         |                   | Top Dep | oth (m): | 0.50        |  |  |  |
|                              |         |                   | Date Sa | ampled:  | 08-Nov-2022 |  |  |  |
|                              |         |                   | Asbest  | os Lab:  | DURHAM      |  |  |  |
| Determinand                  | Accred. | SOP               | Units   | LOD      |             |  |  |  |
| Benzo[a]anthracene           | N       | 2790              |         |          | 1.2         |  |  |  |
| Chrysene                     | N       | 2790              | mg/kg   | 0.050    | 1.1         |  |  |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| Di-N-Octyl Phthalate         | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| Benzo[b]fluoranthene         | N       | 2790              | mg/kg   | 0.050    | 1.5         |  |  |  |
| Benzo[k]fluoranthene         | N       | 2790              | mg/kg   |          | 0.51        |  |  |  |
| Benzo[a]pyrene               | N       | 2790              | mg/kg   |          | 1.2         |  |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790              | mg/kg   | 0.050    | 0.54        |  |  |  |
| Dibenz(a,h)Anthracene        | N       | 2790              | mg/kg   | 0.050    | 0.16        |  |  |  |
| Benzo[g,h,i]perylene         | N       | 2790              | mg/kg   |          | 0.66        |  |  |  |
| 4-Nitrophenol                | N       | 2790              | mg/kg   |          | < 0.050     |  |  |  |
| Naphthalene                  | N       | 2800              | mg/kg   |          | < 0.010     |  |  |  |
| Acenaphthylene               | N       | 2800              | mg/kg   |          | < 0.010     |  |  |  |
| Acenaphthene                 | N       | 2800              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Fluorene                     | N       | 2800              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Phenanthrene                 | N       | 2800              | mg/kg   |          | < 0.010     |  |  |  |
| Anthracene                   | N       | 2800              | mg/kg   |          | < 0.010     |  |  |  |
| Fluoranthene                 | N       | 2800              | mg/kg   |          | 0.34        |  |  |  |
| Pyrene                       | N       | 2800              | mg/kg   |          | 0.29        |  |  |  |
| Benzo[a]anthracene           | N       | 2800              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Chrysene                     | N       | 2800              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Benzo[b]fluoranthene         | N       | 2800              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Benzo[k]fluoranthene         | N       | 2800              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Benzo[a]pyrene               | N       | 2800              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2800              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Dibenz(a,h)Anthracene        | N       | 2800              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Benzo[g,h,i]perylene         | N       | 2800              | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Total Of 16 PAH's            | N       | 2800              | mg/kg   | 0.20     | 0.63        |  |  |  |
| Resorcinol                   | U       | 2920              | mg/kg   |          | < 0.020     |  |  |  |
| Phenol                       | U       | 2920              | mg/kg   |          | < 0.020     |  |  |  |
| Cresols                      | U       | 2920              | mg/kg   |          | < 0.020     |  |  |  |
| Xylenols                     | U       | 2920              | mg/kg   |          | < 0.020     |  |  |  |
| 1-Naphthol                   | N       | 2920              | mg/kg   |          | < 0.020     |  |  |  |
| Trimethylphenols             | U       | 2920              | mg/kg   |          | < 0.020     |  |  |  |
| Total Phenols                | U       | 2920              | mg/kg   |          | < 0.10      |  |  |  |

# **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                        | pH                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS)               | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                                  | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                                   | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                     | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                          | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2450 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA<br>Method 8270)                                                                                                                                                                                                                 | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |

### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-44367-1

Initial Date of Issue: 12-Dec-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall Celine Rooney Ciaran Doherty Colm Hurley Darren O'Mahony Gabriella Horan Joe Gervin John Cameron Lucy Newland Martin Gardiner Matthew Gilbert Megan Walsh Neil Haggan Paul Dunlop Rachel White Sean Ross

Project 22-1041A 3FM Planning Design GI

Stephe

Quotation No.: Q22-28455 Date Received: 18-Nov-2022

Order No.: Date Instructed: 22-Nov-2022

No. of Samples: 3

Turnaround (Wkdays): 10 Results Due: 05-Dec-2022

Date Approved: 12-Dec-2022

Approved By:

**Details:** Stuart Henderson, Technical

Manager



### **Chemtest**

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

| Client: Causeway Geotech Ltd                     |         | 22-44367             |              |              |             |                   |  |  |  |
|--------------------------------------------------|---------|----------------------|--------------|--------------|-------------|-------------------|--|--|--|
| Quotation No.: Q22-28455                         |         | Chemtest Sample ID.: |              |              |             |                   |  |  |  |
|                                                  |         | Sample Location:     |              |              |             |                   |  |  |  |
|                                                  |         | Sample Type:         |              |              |             |                   |  |  |  |
|                                                  |         |                      |              | Top De       | ` '         | 1<br>15-Nov-2022  |  |  |  |
|                                                  |         | Date Sampled:        |              |              |             |                   |  |  |  |
| Determinand                                      | Accred. | SOP                  | Туре         | Units        |             |                   |  |  |  |
| pH                                               | U       | 1010                 | 10:1         |              | N/A         | 8.5               |  |  |  |
| Phosphate as P                                   | U       | 1220                 | 10:1         | mg/l         | 0.050       | < 0.050           |  |  |  |
| Sulphur                                          | N       | 1220                 | 10:1         | mg/l         | 1.0         | 29                |  |  |  |
| Cyanide (Total)                                  | U       | 1300                 | 10:1         | mg/l         | 0.050       | < 0.050           |  |  |  |
| Cyanide (Free)                                   |         | 1300                 | 10:1         | mg/l         | 0.050       | < 0.050           |  |  |  |
| Sulphide                                         | U       | 1325                 | 10:1         | mg/l         | 0.050       | < 0.050           |  |  |  |
| Calcium                                          | N       | 1455<br>1455         | 10:1<br>10:1 | mg/l         | 2.00        | 50<br>32          |  |  |  |
| Aluminium (Dissolved) Arsenic (Dissolved)        | U       | 1455                 | 10:1         | μg/l         | 5.0<br>0.20 | 2.6               |  |  |  |
| Boron (Dissolved)                                | U       | 1455                 | 10:1         | μg/l<br>μg/l | 10.0        | 120               |  |  |  |
| Barium (Dissolved)                               | U       | 1455                 | 10:1         | μg/l         | 5.00        | 46                |  |  |  |
| Beryllium (Dissolved)                            | U       | 1455                 | 10:1         | μg/l         | 1.00        | < 1.0             |  |  |  |
| Cadmium (Dissolved)                              | Ü       | 1455                 | 10:1         | μg/l         | 0.11        | < 0.11            |  |  |  |
| Chromium (Dissolved)                             | Ü       | 1455                 | 10:1         | μg/l         | 0.50        | < 0.50            |  |  |  |
| Copper (Dissolved)                               | Ū       | 1455                 | 10:1         | μg/l         | 0.50        | 2.5               |  |  |  |
| Mercury (Dissolved)                              | Ū       | 1455                 | 10:1         | µg/l         | 0.05        | < 0.05            |  |  |  |
| Manganese (Dissolved)                            | U       | 1455                 | 10:1         | μg/l         | 0.50        | 20                |  |  |  |
| Nickel (Dissolved)                               | U       | 1455                 | 10:1         | μg/l         | 0.50        | 2.4               |  |  |  |
| Lead (Dissolved)                                 | U       | 1455                 | 10:1         | μg/l         | 0.50        | 0.51              |  |  |  |
| Selenium (Dissolved)                             | U       | 1455                 | 10:1         | μg/l         | 0.50        | 1.5               |  |  |  |
| Vanadium (Dissolved)                             | U       | 1455                 | 10:1         | μg/l         | 0.50        | 1.0               |  |  |  |
| Zinc (Dissolved)                                 | U       | 1455                 | 10:1         | μg/l         | 2.5         | 3.0               |  |  |  |
| Iron (Dissolved)                                 | N       | 1455                 | 10:1         | μg/l         | 5.0         | 12                |  |  |  |
| Low-Level Chromium (Hexavalent)                  | N       | 1495                 | 10:1         | μg/l         | 0.10        | < 0.10            |  |  |  |
| Aliphatic TPH >C5-C6                             | N       | 1675                 | 10:1         | μg/l         | 0.010       | < 0.010           |  |  |  |
| Aliphatic TPH >C6-C8                             | N       | 1675                 | 10:1         | μg/l         | 0.010       | < 0.010           |  |  |  |
| Aliphatic TPH >C8-C10                            | N       | 1675                 | 10:1         | μg/l         | 0.10        | < 0.10            |  |  |  |
| Aliphatic TPH >C10-C12                           | N       | 1675                 | 10:1         | μg/l         | 0.10        | < 0.10            |  |  |  |
| Aliphatic TPH >C12-C16                           | N       | 1675                 | 10:1         | μg/l         | 0.10        | < 0.10            |  |  |  |
| Aliphatic TPH >C16-C21                           | N       | 1675                 | 10:1         | μg/l         | 0.10        | < 0.10            |  |  |  |
| Aliphatic TPH > C21-C35                          | N       | 1675                 | 10:1         | μg/l         | 0.10        | < 0.10            |  |  |  |
| Aliphatic TPH >C35-C44                           | N       | 1675                 | 10:1         | μg/l         | 0.10        | < 0.10            |  |  |  |
| Total Aliphatic Hydrocarbons Aromatic TPH >C5-C7 | N<br>N  | 1675                 | 10:1         | μg/l         | 1.0         | < 1.0             |  |  |  |
| Aromatic TPH >C5-C7 Aromatic TPH >C7-C8          | N<br>N  | 1675<br>1675         | 10:1<br>10:1 | μg/l         | 0.010       | < 0.010           |  |  |  |
| Aromatic TPH >C7-C8  Aromatic TPH >C8-C10        | N N     | 1675                 | 10:1         | μg/l         | 0.010       | < 0.010<br>< 0.10 |  |  |  |
| Aromatic TPH >C0-C10                             | N       | 1675                 | 10:1         | μg/l<br>μg/l | 0.10        | < 0.10            |  |  |  |
| Aromatic TPH >C10-C12  Aromatic TPH >C12-C16     | N       | 1675                 | 10:1         | μg/l         | 0.10        | < 0.10            |  |  |  |
| Aromatic TPH >C16-C21                            | N       | 1675                 | 10:1         | μg/l         | 0.10        | < 0.10            |  |  |  |
| Aromatic TPH >C21-C35                            | N       | 1675                 | 10:1         | μg/l         | 0.10        | < 0.10            |  |  |  |
| Alumanic IFF >CZ1-C33                            | IN      | 10/3                 | 10.1         | μg/i         | 0.10        | < 0.10            |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:                |      |         |      |                  |  |  |  |
|------------------------------|---------|----------------------------------|------|---------|------|------------------|--|--|--|
| Quotation No.: Q22-28455     |         |                                  |      | st Sam  |      | 1548481<br>BH121 |  |  |  |
|                              |         | Sample Location:<br>Sample Type: |      |         |      |                  |  |  |  |
|                              |         |                                  |      |         |      |                  |  |  |  |
|                              |         |                                  |      | Top Dep |      | 1                |  |  |  |
|                              |         |                                  |      | Date Sa |      | 15-Nov-2022      |  |  |  |
| Determinand                  | Accred. | SOP                              | Type | Units   | LOD  |                  |  |  |  |
| Aromatic TPH >C35-C44        | N       | 1675                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Total Aromatic Hydrocarbons  | N       | 1675                             | 10:1 | μg/l    | 1.0  | < 1.0            |  |  |  |
| Total Petroleum Hydrocarbons | N       | 1675                             | 10:1 | μg/l    | 2.0  | < 2.0            |  |  |  |
| Dichlorodifluoromethane      | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Chloromethane                | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Vinyl Chloride               | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Bromomethane                 | N       | 1760                             | 10:1 | μg/l    | 2.0  | < 2.0            |  |  |  |
| Chloroethane                 | N       | 1760                             | 10:1 | μg/l    | 0.20 | < 0.20           |  |  |  |
| Trichlorofluoromethane       | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| 1,1-Dichloroethene           | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Dichloromethane              | N       | 1760                             | 10:1 | μg/l    | 50   | < 50             |  |  |  |
| 1,1-Dichloroethane           | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| cis 1,2-Dichloroethene       | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Bromochloromethane           | N       | 1760                             | 10:1 | μg/l    | 0.50 | < 0.50           |  |  |  |
| Trichloromethane             | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| 1,1,1-Trichloroethane        | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Tetrachloromethane           | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| 1,1-Dichloropropene          | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Benzene                      | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| 1,2-Dichloroethane           | N       | 1760                             | 10:1 | μg/l    | 0.20 | < 0.20           |  |  |  |
| Trichloroethene              | N       | 1760                             | 10:1 | μg/l    | 0.10 | 1.3              |  |  |  |
| 1,2-Dichloropropane          | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Dibromomethane               | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Bromodichloromethane         | N       | 1760                             | 10:1 | μg/l    | 0.50 | < 0.50           |  |  |  |
| cis-1,3-Dichloropropene      | N       | 1760                             | 10:1 | μg/l    | 1.0  | < 1.0            |  |  |  |
| Toluene                      | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Trans-1,3-Dichloropropene    | N       | 1760                             | 10:1 | μg/l    | 1.0  | < 1.0            |  |  |  |
| 1,1,2-Trichloroethane        | N       | 1760                             | 10:1 | μg/l    | 1.0  | < 1.0            |  |  |  |
| Tetrachloroethene            | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| 1,3-Dichloropropane          | N       | 1760                             | 10:1 | μg/l    | 0.20 | < 0.20           |  |  |  |
| Dibromochloromethane         | N       | 1760                             | 10:1 | μg/l    | 1.0  | < 1.0            |  |  |  |
| 1,2-Dibromoethane            | N       | 1760                             | 10:1 | μg/l    | 0.50 | < 0.50           |  |  |  |
| Chlorobenzene                | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| 1,1,1,2-Tetrachloroethane    | N       | 1760                             | 10:1 | μg/l    | 0.20 | < 0.20           |  |  |  |
| Ethylbenzene                 | N       | 1760                             | 10:1 | µg/l    | 0.10 | < 0.10           |  |  |  |
| m & p-Xylene                 | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| o-Xylene                     | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Styrene                      | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |
| Tribromomethane              | N       | 1760                             | 10:1 | μg/l    | 1.0  | < 1.0            |  |  |  |
| Isopropylbenzene             | N       | 1760                             | 10:1 | μg/l    | 0.10 | < 0.10           |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.: |      |          |         |             |  |  |  |
|------------------------------|---------|-------------------|------|----------|---------|-------------|--|--|--|
| Quotation No.: Q22-28455     |         | (                 |      | est Sam  |         | 1548481     |  |  |  |
|                              |         |                   | Sa   | ample Lo |         | BH121       |  |  |  |
|                              |         |                   |      |          | e Type: | SOIL        |  |  |  |
|                              |         |                   |      | Top Dep  |         | 1           |  |  |  |
|                              |         |                   |      | Date Sa  | ampled: | 15-Nov-2022 |  |  |  |
| Determinand                  | Accred. | SOP               | Type | Units    | LOD     |             |  |  |  |
| Bromobenzene                 | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 1,2,3-Trichloropropane       | N       | 1760              | 10:1 | μg/l     | 5.0     | < 5.0       |  |  |  |
| N-Propylbenzene              | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 2-Chlorotoluene              | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 1,3,5-Trimethylbenzene       | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 4-Chlorotoluene              | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| Tert-Butylbenzene            | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 1,2,4-Trimethylbenzene       | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| Sec-Butylbenzene             | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 1,3-Dichlorobenzene          | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 4-Isopropyltoluene           | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 1,4-Dichlorobenzene          | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| N-Butylbenzene               | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 1,2-Dichlorobenzene          | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 1760              | 10:1 | μg/l     | 5.0     | < 5.0       |  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| Hexachlorobutadiene          | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| 1,2,3-Trichlorobenzene       | N       | 1760              | 10:1 | μg/l     | 0.20    | < 0.20      |  |  |  |
| Naphthalene                  | N       | 1760              | 10:1 | μg/l     | 0.10    | < 0.10      |  |  |  |
| Phenol                       | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 2-Chlorophenol               | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| Bis-(2-Chloroethyl)Ether     | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 1,3-Dichlorobenzene          | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 1,4-Dichlorobenzene          | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 1,2-Dichlorobenzene          | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 2-Methylphenol (o-Cresol)    | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| Bis(2-Chloroisopropyl)Ether  | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| Hexachloroethane             | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| N-Nitrosodi-n-propylamine    | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 4-Methylphenol               | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| Nitrobenzene                 | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| Isophorone                   | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 2-Nitrophenol                | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 2,4-Dimethylphenol           | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| Bis(2-Chloroethoxy)Methane   | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 2,4-Dichlorophenol           | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| Naphthalene                  | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| 4-Chloroaniline              | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |
| Hexachlorobutadiene          | N N     | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.: |        |          |          |               |  |  |  |  |
|------------------------------|---------|-------------------|--------|----------|----------|---------------|--|--|--|--|
| Quotation No.: Q22-28455     |         | (                 | Chemte | st Sam   | ple ID.: | 1548481       |  |  |  |  |
|                              |         |                   | Sa     | ample Lo |          | BH121<br>SOIL |  |  |  |  |
|                              |         | Sample Type:      |        |          |          |               |  |  |  |  |
|                              |         |                   |        | Top De   |          | 1             |  |  |  |  |
|                              |         |                   |        |          | ampled:  | 15-Nov-2022   |  |  |  |  |
| Determinand                  | Accred. | SOP               | Туре   | Units    | LOD      |               |  |  |  |  |
| 4-Chloro-3-Methylphenol      | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 2-Methylnaphthalene          | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Hexachlorocyclopentadiene    | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 2,4,6-Trichlorophenol        | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 2,4,5-Trichlorophenol        | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 2-Chloronaphthalene          | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 2-Nitroaniline               | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Acenaphthylene               | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Dimethylphthalate            | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 2,6-Dinitrotoluene           | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Acenaphthene                 | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 3-Nitroaniline               | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Dibenzofuran                 | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 4-Chlorophenylphenylether    | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 2,4-Dinitrotoluene           | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Fluorene                     | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Diethyl Phthalate            | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 4-Nitroaniline               | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 2-Methyl-4,6-Dinitrophenol   | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Azobenzene                   | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| 4-Bromophenylphenyl Ether    | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Hexachlorobenzene            | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Pentachlorophenol            | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Phenanthrene                 | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Anthracene                   | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Carbazole                    | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Di-N-Butyl Phthalate         | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Fluoranthene                 | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Pyrene                       | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Butylbenzyl Phthalate        | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Benzo[a]anthracene           | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Chrysene                     | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Di-N-Octyl Phthalate         | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Benzo[b]fluoranthene         | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Benzo[k]fluoranthene         | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Benzo[a]pyrene               | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Dibenz(a,h)Anthracene        | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |
| Benzo[g,h,i]perylene         | N       | 1790              | 10:1   | μg/l     | 0.050    | < 0.050       |  |  |  |  |

| Client: Causeway Geotech Ltd     |         | Chemtest Job No.: |              |              |          |                    |  |  |  |
|----------------------------------|---------|-------------------|--------------|--------------|----------|--------------------|--|--|--|
| Quotation No.: Q22-28455         |         | (                 | Chemte       | st Sam       | ple ID.: | 1548481            |  |  |  |
|                                  |         |                   | ocation:     | BH121        |          |                    |  |  |  |
|                                  |         |                   |              | Sampl        | е Туре:  | SOIL               |  |  |  |
|                                  |         | Top Depth (m):    |              |              |          |                    |  |  |  |
|                                  |         |                   |              | Date Sa      | <u> </u> | 15-Nov-2022        |  |  |  |
| Determinand                      | Accred. | SOP               | Туре         | Units        |          |                    |  |  |  |
| Naphthalene                      | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Acenaphthylene                   | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Acenaphthene                     | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Fluorene                         | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Phenanthrene                     | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Anthracene                       | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Fluoranthene                     | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Pyrene Renzolalanthracene        | N<br>N  | 1800<br>1800      | 10:1<br>10:1 | μg/l         | 0.010    | < 0.010            |  |  |  |
| Benzo[a]anthracene Chrysene      | N       | 1800              | 10:1         | μg/l<br>μg/l | 0.010    | < 0.010<br>< 0.010 |  |  |  |
| Benzo[b]fluoranthene             | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Benzo[k]fluoranthene             | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Benzo[a]pyrene                   | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Indeno(1,2,3-c,d)Pyrene          | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Dibenz(a,h)Anthracene            | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Benzo[g,h,i]perylene             | N       | 1800              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Total Of 16 PAH's                | N       | 1800              | 10:1         | μg/l         | 0.20     | < 0.20             |  |  |  |
| PCB 81                           | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 77                           | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 105                          | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 114                          | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 118                          | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 123                          | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 126                          | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 156                          | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 157                          | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 167                          | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 169                          | N       | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| PCB 189                          | N<br>N  | 1815              | 10:1         | μg/l         | 0.010    | < 0.010            |  |  |  |
| Total PCBs (12 Congeners) Phenol | N       | 1815<br>1900      | 10:1<br>10:1 | μg/l         | 0.010    | < 0.010<br>< 0.20  |  |  |  |
| 2-Chlorophenol                   | N       | 1900              | 10:1         | μg/l<br>μg/l | 0.20     | < 0.20             |  |  |  |
| 2-Methylphenol (o-Cresol)        | N       | 1900              | 10:1         | μg/l         | 0.20     | < 0.20             |  |  |  |
| 3-Methylphenol                   | N       | 1900              | 10:1         | μg/l         | 0.20     | < 0.20             |  |  |  |
| 4-Methylphenol                   | N       | 1900              | 10:1         | μg/l         | 0.20     | < 0.20             |  |  |  |
| 2-Nitrophenol                    | N       | 1900              | 10:1         | μg/l         | 0.20     | < 0.20             |  |  |  |
| 2,4-Dimethylphenol               | N       | 1900              | 10:1         | μg/l         | 0.20     | < 0.20             |  |  |  |
| 2,4-Dichlorophenol               | N       | 1900              | 10:1         | μg/l         | 0.20     | < 0.20             |  |  |  |
| 2,6-Dichlorophenol               | N       | 1900              | 10:1         | µg/l         | 0.20     | < 0.20             |  |  |  |
| 4-Chloro-3-Methylphenol          | N       | 1900              | 10:1         | μg/l         | 0.20     | < 0.20             |  |  |  |

| Client: Causeway Geotech Ltd  | <u> </u> | Chemtest Job No.:    |      |          |         |                     |  |  |  |
|-------------------------------|----------|----------------------|------|----------|---------|---------------------|--|--|--|
| ·                             |          |                      |      |          |         | 22-44367<br>1548481 |  |  |  |
| Quotation No.: Q22-28455      |          | Chemtest Sample ID.: |      |          |         |                     |  |  |  |
|                               |          |                      | Sa   | ample Lo |         | BH121               |  |  |  |
|                               |          |                      |      | Sampl    | e Type: | SOIL                |  |  |  |
|                               |          |                      |      | Top Dep  | ` '     | 1                   |  |  |  |
|                               |          |                      |      | Date Sa  | ampled: | 15-Nov-2022         |  |  |  |
| Determinand                   | Accred.  | SOP                  | Type | Units    | LOD     |                     |  |  |  |
| 2,3,4-Trichlorophenol         | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| 2,3,5-Trichlorophenol         | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| 2,3,6-Trichlorophenol         | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| 2,4,6-Trichlorophenol         | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| 2,4,5-Trichlorophenol         | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| 4-Nitrophenol                 | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| 2,3,4,5-Tetrachlorophenol     | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| 2,3,4,6-Tetrachlorophenol     | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| 2,3,5,6-Tetrachlorophenol     | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| 3,4,5-Trichlorophenol         | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| 2-Methyl-4,6-Dinitrophenol    | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| Pentachlorophenol             | N        |                      |      |          |         |                     |  |  |  |
| 2-Sec-Butyl-4,6-Dinitrophenol | N        | 1900                 | 10:1 | μg/l     | 0.20    | < 0.20              |  |  |  |
| Total Phenols                 | N        | 1900                 | 10:1 | μg/l     | 5.00    | < 5.0               |  |  |  |

| Client: Causeway Geotech Ltd        |         | Che                   | mtest Jo | ob No.:  | 22-44367                | 22-44367                |
|-------------------------------------|---------|-----------------------|----------|----------|-------------------------|-------------------------|
| Quotation No.: Q22-28455            | (       | Chemte                | st Sam   | ple ID.: | 1548480                 | 1548491                 |
|                                     |         | Sa                    | ample Lo | ocation: | BH121                   | BH121                   |
|                                     |         |                       | Sampl    | е Туре:  | SOIL                    | SOIL                    |
|                                     |         |                       | Top Dep  | oth (m): | 0.5                     | 6                       |
|                                     |         |                       | Date Sa  | ampled:  | 15-Nov-2022             | 15-Nov-2022             |
|                                     |         | Asbestos Lab:         |          |          |                         | DURHAM                  |
| Determinand                         | Accred. | Accred. SOP Units LOD |          |          |                         |                         |
| ACM Type                            | U       | 2192                  |          | N/A      | -                       | -                       |
| Asbestos Identification             | U       | 2192                  |          | N/A      | No Asbestos<br>Detected | No Asbestos<br>Detected |
| Moisture                            | N       | 2030                  | %        | 0.020    | 16                      | 8.1                     |
| Natural Moisture Content            | N       | 2030                  | %        | 0.020    | 19                      | 8.9                     |
| Soil Colour                         | N       | 2040                  |          | N/A      | Brown                   | Brown                   |
| Other Material                      | N       | 2040                  |          | N/A      | Stones                  | Stones                  |
| Soil Texture                        | N       | 2040                  |          | N/A      | Sand                    | Sand                    |
| pН                                  | U       | 2010                  |          | 4.0      | 8.1                     | 8.2                     |
| Boron (Hot Water Soluble)           | Ü       | 2120                  | mg/kg    | 0.40     | 3.4                     | 1.3                     |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120                  | g/l      | 0.010    | 0.65                    | 0.33                    |
| Total Sulphur                       | U       | 2175                  | %        | 0.010    | 0.28                    | 0.10                    |
| Sulphur (Elemental)                 | U       | 2180                  | mg/kg    | 1.0      | 360                     | 67                      |
| Cyanide (Free)                      | U       |                       | mg/kg    | 0.50     | < 0.50                  | < 0.50                  |
| Cyanide (Total)                     | U       | 2300                  |          | 0.50     | 0.80                    | < 0.50                  |
| Thiocyanate                         | U       | 2300                  | mg/kg    | 5.0      | < 5.0                   | < 5.0                   |
| Aluminium (Total)                   | N       | 2430                  | mg/kg    | 100      | 7200                    | 2400                    |
| Iron (Total)                        | N       | 2430                  | mg/kg    | 100      | 23000                   | 7000                    |
| Arsenic                             | U       | 2455                  | mg/kg    | 0.5      | 23                      | 8.4                     |
| Barium                              | U       | 2455                  | mg/kg    | 0        | 210                     | 30                      |
| Beryllium                           | U       | 2455                  | mg/kg    | 0.5      | 1.0                     | < 0.5                   |
| Cadmium                             | U       | 2455                  | mg/kg    | 0.10     | 2.2                     | 0.29                    |
| Chromium                            | U       | 2455                  | mg/kg    | 0.5      | 30                      | 9.1                     |
| Manganese                           | U       | 2455                  | mg/kg    | 1.0      | 1100                    | 260                     |
| Copper                              | U       | 2455                  | mg/kg    | 0.50     | 75                      | 9.4                     |
| Mercury                             | U       | 2455                  | mg/kg    | 0.05     | 0.51                    | 0.08                    |
| Nickel                              | U       | 2455                  | mg/kg    | 0.50     | 37                      | 9.6                     |
| Lead                                | U       | 2455                  | mg/kg    | 0.50     | 460                     | 37                      |
| Selenium                            | U       | 2455                  | mg/kg    | 0.25     | 1.3                     | 0.52                    |
| Vanadium                            | U       | 2455                  | mg/kg    | 0.5      | 32                      | 11                      |
| Zinc                                | U       | 2455                  | mg/kg    | 0.50     | 310                     | 39                      |
| Chromium (Hexavalent)               | N       | 2490                  | mg/kg    | 0.50     | < 0.50                  | < 0.50                  |
| Organic Matter                      | U       | 2625                  | %        | 0.40     | 7.9                     | 0.86                    |
| Total Organic Carbon                | U       | 2625                  | %        | 0.20     | 4.6                     | 0.50                    |
| Aliphatic TPH >C5-C6                | N       | 2680                  | mg/kg    | 0.010    | < 0.010                 | < 0.010                 |
| Aliphatic TPH >C6-C8                | N       | 2680                  | mg/kg    | 0.010    | < 0.010                 | < 0.010                 |
| Aliphatic TPH >C8-C10               | N       | 2680                  | mg/kg    | 0.10     | < 0.10                  | < 0.10                  |
| Aliphatic TPH >C10-C12              | N       | 2680                  | mg/kg    | 0.10     | < 0.10                  | < 0.10                  |
| Aliphatic TPH >C12-C16              | N       | 2680                  | mg/kg    | 0.10     | < 0.10                  | < 0.10                  |

| Client: Causeway Geotech Ltd |         |      | mtest Jo      |         | 22-44367    | 22-44367    |
|------------------------------|---------|------|---------------|---------|-------------|-------------|
| Quotation No.: Q22-28455     | (       |      | st Sam        |         | 1548480     | 1548491     |
|                              |         | Sa   | ample Lo      |         | BH121       | BH121       |
|                              |         |      | Sample        | SOIL    | SOIL        |             |
|                              |         |      | Top Dep       | , ,     | 0.5         | 6           |
|                              |         |      | Date Sa       | _       | 15-Nov-2022 | 15-Nov-2022 |
|                              |         |      | Asbest        | os Lab: | DURHAM      | DURHAM      |
| Determinand                  | Accred. | SOP  | SOP Units LOD |         |             |             |
| Aliphatic TPH >C16-C21       | N       | 2680 | mg/kg         | 0.10    | < 0.10      | < 0.10      |
| Aliphatic TPH >C21-C35       | N       | 2680 | mg/kg         | 0.10    | < 0.10      | < 0.10      |
| Aliphatic TPH >C35-C44       | N       | 2680 | mg/kg         | 0.10    | < 0.10      | < 0.10      |
| Total Aliphatic Hydrocarbons | N       | 2680 | mg/kg         | 1.0     | < 1.0       | < 1.0       |
| Aromatic TPH >C5-C7          | N       | 2680 | mg/kg         | 0.010   | < 0.010     | < 0.010     |
| Aromatic TPH >C7-C8          | N       | 2680 | mg/kg         | 0.010   | < 0.010     | < 0.010     |
| Aromatic TPH >C8-C10         | N       | 2680 | mg/kg         | 0.10    | < 0.10      | < 0.10      |
| Aromatic TPH >C10-C12        | N       | 2680 | mg/kg         | 0.10    | < 0.10      | < 0.10      |
| Aromatic TPH >C12-C16        | N       | 2680 | mg/kg         | 0.10    | < 0.10      | < 0.10      |
| Aromatic TPH >C16-C21        | N       | 2680 | mg/kg         | 0.10    | < 0.10      | < 0.10      |
| Aromatic TPH >C21-C35        | N       | 2680 | mg/kg         | 0.10    | < 0.10      | < 0.10      |
| Aromatic TPH >C35-C44        | N       | 2680 | mg/kg         | 0.10    | < 0.10      | < 0.10      |
| Total Aromatic Hydrocarbons  | N       | 2680 | mg/kg         | 1.0     | < 1.0       | < 1.0       |
| Total Petroleum Hydrocarbons | N       | 2680 |               | 2.0     | < 2.0       | < 2.0       |
| Dichlorodifluoromethane      | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Chloromethane                | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Vinyl Chloride               | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Bromomethane                 | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Chloroethane                 | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Trichlorofluoromethane       | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| 1,1-Dichloroethene           | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Trans 1,2-Dichloroethene     | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| 1,1-Dichloroethane           | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| cis 1,2-Dichloroethene       | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Bromochloromethane           | N       | 2760 | μg/kg         | 0.50    | < 0.50      | < 0.50      |
| Trichloromethane             | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| 1,1,1-Trichloroethane        | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Tetrachloromethane           | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| 1,1-Dichloropropene          | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Benzene                      | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| 1,2-Dichloroethane           | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Trichloroethene              | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| 1,2-Dichloropropane          | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Dibromomethane               | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Bromodichloromethane         | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| cis-1,3-Dichloropropene      | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Toluene                      | N       | 2760 | μg/kg         | 0.20    | 0.87        | 0.73        |
|                              | N       | 2760 | μg/kg         | 0.20    | < 0.20      | < 0.20      |
| Trans-1,3-Dichloropropene    | I IN    |      |               |         |             |             |

| Client: Causeway Geotech Ltd |         |               | mtest Jo | 22-44367 | 22-44367    |             |
|------------------------------|---------|---------------|----------|----------|-------------|-------------|
| Quotation No.: Q22-28455     | (       |               | st Sam   |          | 1548480     | 1548491     |
|                              |         | Sa            | ample Lo |          | BH121       | BH121       |
|                              |         |               |          | e Type:  | SOIL        | SOIL        |
|                              |         |               | Top Dep  |          | 0.5         | 6           |
|                              |         |               | Date Sa  | ampled:  | 15-Nov-2022 | 15-Nov-2022 |
|                              |         | Asbestos Lab: |          |          |             | DURHAM      |
| Determinand                  | Accred. |               |          |          |             |             |
| Tetrachloroethene            | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,3-Dichloropropane          | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| Dibromochloromethane         | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,2-Dibromoethane            | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| Chlorobenzene                | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,1,1,2-Tetrachloroethane    | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| Ethylbenzene                 | N       | 2760          | μg/kg    | 0.20     | 0.26        | 0.21        |
| m & p-Xylene                 | N       | 2760          | μg/kg    | 0.20     | 0.50        | 0.37        |
| o-Xylene                     | N       | 2760          | μg/kg    | 0.20     | 0.43        | 0.34        |
| Styrene                      | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| Tribromomethane              | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| Isopropylbenzene             | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| Bromobenzene                 | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,2,3-Trichloropropane       | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| N-Propylbenzene              | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 2-Chlorotoluene              | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,3,5-Trimethylbenzene       | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 4-Chlorotoluene              | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| Tert-Butylbenzene            | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,2,4-Trimethylbenzene       | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| Sec-Butylbenzene             | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,3-Dichlorobenzene          | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 4-Isopropyltoluene           | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,4-Dichlorobenzene          | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| N-Butylbenzene               | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,2-Dichlorobenzene          | N       | 2760          | µg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,2,4-Trichlorobenzene       | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| Hexachlorobutadiene          | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| 1,2,3-Trichlorobenzene       | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| Methyl Tert-Butyl Ether      | N       | 2760          | μg/kg    | 0.20     | < 0.20      | < 0.20      |
| N-Nitrosodimethylamine       | N       | 2790          | mg/kg    |          | < 0.20      | < 0.20      |
| Phenol                       | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2-Chlorophenol               | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Bis-(2-Chloroethyl)Ether     | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 1,3-Dichlorobenzene          | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 1,4-Dichlorobenzene          | N       | 2790          |          |          | 0.25        | < 0.050     |
| -                            |         |               |          | 0.050    |             |             |
| 1,2-Dichlorobenzene          | N       | 2790          | 0        | 0.050    | < 0.050     | < 0.050     |
| 2-Methylphenol               | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |

| Client: Causeway Geotech Ltd |         |               | mtest Jo |          | 22-44367    | 22-44367    |
|------------------------------|---------|---------------|----------|----------|-------------|-------------|
| Quotation No.: Q22-28455     |         |               | est Sam  |          | 1548480     | 1548491     |
|                              |         | Sa            | ample Lo | ocation: | BH121       | BH121       |
|                              |         | Sample Type:  |          |          |             | SOIL        |
|                              |         |               | Top Dep  | 0.5      | 6           |             |
|                              |         |               | Date Sa  | ampled:  | 15-Nov-2022 | 15-Nov-2022 |
|                              |         | Asbestos Lab: |          |          |             | DURHAM      |
| Determinand                  | Accred. | SOP           | Units    | LOD      |             |             |
| Bis(2-Chloroisopropyl)Ether  | N       | 2790          | mg/kg    |          | < 0.050     | < 0.050     |
| Hexachloroethane             | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| N-Nitrosodi-n-propylamine    | N       | 2790          | mg/kg    |          | < 0.050     | < 0.050     |
| 4-Methylphenol               | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Nitrobenzene                 | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Isophorone                   | N       | 2790          | mg/kg    |          | < 0.050     | < 0.050     |
| 2-Nitrophenol                | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2,4-Dimethylphenol           | N       | 2790          | mg/kg    |          | < 0.050     | < 0.050     |
| Bis(2-Chloroethoxy)Methane   | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2,4-Dichlorophenol           | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 1,2,4-Trichlorobenzene       | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Naphthalene                  | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 4-Chloroaniline              | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Hexachlorobutadiene          | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 4-Chloro-3-Methylphenol      | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2-Methylnaphthalene          | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Hexachlorocyclopentadiene    | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2,4,6-Trichlorophenol        | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2,4,5-Trichlorophenol        | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2-Chloronaphthalene          | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2-Nitroaniline               | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Acenaphthylene               | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Dimethylphthalate            | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2,6-Dinitrotoluene           | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Acenaphthene                 | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 3-Nitroaniline               | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Dibenzofuran                 | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 4-Chlorophenylphenylether    | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2,4-Dinitrotoluene           | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Fluorene                     | N       | 2790          | mg/kg    | 0.050    | 0.059       | < 0.050     |
| Diethyl Phthalate            | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 4-Nitroaniline               | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| 2-Methyl-4,6-Dinitrophenol   | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Azobenzene                   | N       | 2790          | mg/kg    |          | < 0.050     | < 0.050     |
| 4-Bromophenylphenyl Ether    | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Hexachlorobenzene            | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Pentachlorophenol            | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Phenanthrene                 | N       | 2790          | mg/kg    |          | 0.80        | 0.20        |
| Anthracene                   | N       | 2790          | mg/kg    | 0.050    | 0.21        | 0.054       |

| Client: Causeway Geotech Ltd |         |               | mtest Jo |          | 22-44367    | 22-44367    |
|------------------------------|---------|---------------|----------|----------|-------------|-------------|
| Quotation No.: Q22-28455     |         |               | est Sam  |          | 1548480     | 1548491     |
|                              |         | Sa            | ample Lo | ocation: | BH121       | BH121       |
|                              |         |               | Sampl    | SOIL     | SOIL        |             |
|                              |         |               | Top Dep  | 0.5      | 6           |             |
|                              |         |               | Date Sa  | ampled:  | 15-Nov-2022 | 15-Nov-2022 |
|                              |         | Asbestos Lab: |          |          |             | DURHAM      |
| Determinand                  | Accred. | SOP           | Units    | LOD      |             |             |
| Carbazole                    | N       | 2790          | mg/kg    | 0.050    | 0.083       | < 0.050     |
| Di-N-Butyl Phthalate         | N       | 2790          | mg/kg    | 0.050    | 0.90        | 0.31        |
| Fluoranthene                 | N       | 2790          | mg/kg    | 0.050    | 1.8         | 0.28        |
| Pyrene                       | N       | 2790          | mg/kg    | 0.050    | 1.5         | < 0.050     |
| Butylbenzyl Phthalate        | N       | 2790          | mg/kg    | 0.050    | < 0.050     | 0.13        |
| Benzo[a]anthracene           | N       | 2790          | mg/kg    | 0.050    | 0.83        | 0.16        |
| Chrysene                     | N       | 2790          |          |          | 0.88        | < 0.050     |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790          | mg/kg    |          | 8.1         | < 0.050     |
| Di-N-Octyl Phthalate         | N       | 2790          | mg/kg    | 0.050    | < 0.050     | < 0.050     |
| Benzo[b]fluoranthene         | N       | 2790          | mg/kg    |          | 1.1         | 0.16        |
| Benzo[k]fluoranthene         | N       | 2790          | mg/kg    |          | 0.42        | 0.054       |
| Benzo[a]pyrene               | N       | 2790          | mg/kg    |          | 0.90        | 0.13        |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790          | mg/kg    |          | 0.46        | 0.065       |
| Dibenz(a,h)Anthracene        | N       | 2790          | mg/kg    |          | 0.13        | < 0.050     |
| Benzo[g,h,i]perylene         | N       | 2790          | mg/kg    | 0.050    | 0.55        | 0.098       |
| 4-Nitrophenol                | N       | 2790          |          |          | < 0.050     | < 0.050     |
| Naphthalene                  | N       | 2800          | mg/kg    |          | 0.37        | < 0.010     |
| Acenaphthylene               | N       | 2800          | mg/kg    |          | 0.14        | < 0.010     |
| Acenaphthene                 | N       | 2800          | mg/kg    |          | 0.16        | < 0.010     |
| Fluorene                     | N       | 2800          | mg/kg    |          | 0.20        | < 0.010     |
| Phenanthrene                 | N       | 2800          | mg/kg    |          | 1.2         | 0.26        |
| Anthracene                   | N       | 2800          |          |          | 0.33        | < 0.010     |
| Fluoranthene                 | N       |               | mg/kg    |          | 1.9         | 0.36        |
| Pyrene                       | N       | 2800          | mg/kg    |          | 1.7         | 0.25        |
| Benzo[a]anthracene           | N       | 2800          | mg/kg    |          | 1.0         | < 0.010     |
| Chrysene                     | N       | 2800          | mg/kg    |          | 1.1         | < 0.010     |
| Benzo[b]fluoranthene         | N       | 2800          | mg/kg    |          | 1.2         | < 0.010     |
| Benzo[k]fluoranthene         | N       | 2800          | mg/kg    |          | 0.45        | < 0.010     |
| Benzo[a]pyrene               | N       | 2800          | mg/kg    |          | 1.4         | < 0.010     |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2800          |          |          | 0.90        | < 0.010     |
| Dibenz(a,h)Anthracene        | N       | 2800          |          | 0.010    | 0.15        | < 0.010     |
| Benzo[g,h,i]perylene         | N       | 2800          | 0 0      |          | 0.77        | < 0.010     |
| Total Of 16 PAH's            | N       | 2800          | mg/kg    | 0.20     | 13          | 0.87        |
| Resorcinol                   | U       | 2920          | mg/kg    |          | < 0.020     | < 0.020     |
| Phenol                       | U       | 2920          | mg/kg    |          | < 0.020     | < 0.020     |
| Cresols                      | U       | 2920          | mg/kg    |          | 0.020       | < 0.020     |
| Xylenols                     | U       | 2920          | mg/kg    |          | < 0.020     | < 0.020     |
| 1-Naphthol                   | N       | 2920          | mg/kg    |          | < 0.020     | < 0.020     |
| ι-ιναριιαιθί                 | U       | 2920          | 0        | 0.020    | < 0.020     | < 0.020     |

| Client: Causeway Geotech Ltd |         | Che    | mtest Jo | 22-44367 | 22-44367    |             |
|------------------------------|---------|--------|----------|----------|-------------|-------------|
| Quotation No.: Q22-28455     | (       | Chemte | st Sam   | 1548480  | 1548491     |             |
|                              |         | Sa     | ample Lo | BH121    | BH121       |             |
|                              |         |        | Sample   | е Туре:  | SOIL        | SOIL        |
|                              |         |        | Top Dep  | oth (m): | 0.5         | 6           |
|                              |         |        | Date Sa  | ampled:  | 15-Nov-2022 | 15-Nov-2022 |
|                              |         |        | Asbest   | os Lab:  | DURHAM      | DURHAM      |
| Determinand                  | Accred. | SOP    | Units    | LOD      |             |             |
| Total Phenols                | U       | 2920   | mg/kg    | 0.10     | < 0.10      | < 0.10      |

### **Test Methods**

| SOP  | Title                                                                                   | Parameters included                                                                                                                                                                                                                                          | Method summary                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1010 | pH Value of Waters                                                                      | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 1220 | Anions, Alkalinity & Ammonium in Waters                                                 | Fluoride; Chloride; Nitrite; Nitrate; Total;<br>Oxidisable Nitrogen (TON); Sulfate; Phosphate;<br>Alkalinity; Ammonium                                                                                                                                       | Automated colorimetric analysis using<br>'Aquakem 600' Discrete Analyser.                                                                        |
| 1300 | Cyanides & Thiocyanate in Waters                                                        | Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                              | Continuous Flow Analysis.                                                                                                                        |
| 1325 | Sulphide in Waters                                                                      | Sulphides                                                                                                                                                                                                                                                    | Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.                                         |
| 1455 | Metals in Waters by ICP-MS                                                              | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc                                                                   | determination by inductively coupled plasma                                                                                                      |
| 1495 | Low Level Hexavalent<br>Chromium in Waters                                              | Chromium [VI]                                                                                                                                                                                                                                                | Colorimetric determination of hexavalent chromium expressed as Cr (VI) µg/l in water, using Ion Chromatography and UV-visible spectrophotometry. |
| 1675 | TPH Aliphatic/Aromatic split in<br>Waters by GC-FID(cf. Texas<br>Method 1006 / TPH CWG) | Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35, >C35-C44                                                                              | Pentane extraction / GCxGC FID detection                                                                                                         |
| 1760 | Volatile Organic Compounds<br>(VOCs) in Waters by<br>Headspace GC-MS                    | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)                                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.     |
| 1790 | Semi-Volatile Organic<br>Compounds (SVOCs) in<br>Waters by GC-MS                        | Semi-volatile organic compounds                                                                                                                                                                                                                              | Solvent extraction / GCMS detection                                                                                                              |
| 1800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Waters by GC-MS              | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene | Pentane extraction / GCMS detection                                                                                                              |
| 1815 | Polychlorinated Biphenyls<br>(PCB) ICES7 Congeners in<br>Waters by GC-MS                | ICES7 PCB congeners                                                                                                                                                                                                                                          | Solvent extraction / GCMS detection                                                                                                              |
| 1900 | Phenols in Waters by GC-MS                                                              | Approximately 24 substituted Phenols, including Chlorophenols                                                                                                                                                                                                | Solvent extraction / GCMS detection                                                                                                              |
| 2010 | pH Value of Soils                                                                       | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS)                              | Moisture content                                                                                                                                                                                                                                             | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                             |
| 2040 | Soil Description(Requirement of MCERTS)                                                 | Soil description                                                                                                                                                                                                                                             | As received soil is described based upon BS5930                                                                                                  |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                                  | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                         | Aqueous extraction / ICP-OES                                                                                                                     |
| 2175 | Total Sulphur in Soils                                                                  | Total Sulphur                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                       |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                                    | Sulphur                                                                                                                                                                                                                                                      | Dichloromethane extraction / HPLC with UV detection                                                                                              |
| 2192 | Asbestos                                                                                | Asbestos                                                                                                                                                                                                                                                     | Polarised light microscopy / Gravimetry                                                                                                          |
| 2300 | Cyanides & Thiocyanate in Soils                                                         | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                           | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                             |

### **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA Method 8270)                                                                                                                                                                                                                    | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |
| 640  | Characterisation of Waste (Leaching C10)                                 | Waste material including soil, sludges and granular waste                                                                                                                                                                                                                 | ComplianceTest for Leaching of Granular<br>Waste Material and Sludge                                                                                                                   |

### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-44935-1

Initial Date of Issue: 21-Dec-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Francy

Stephen Franey Stephen McCracken Stephen Watson

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 22-Nov-2022

Order No.: Date Instructed: 28-Nov-2022

No. of Samples: 5

Turnaround (Wkdays): 10 Results Due: 09-Dec-2022

Date Approved: 21-Dec-2022

Approved By:

**Details:** Stuart Henderson, Technical

Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

| Client: Causeway Geotech Ltd             |         | Chemtest Job No.: |              |              |              |             |  |  |  |  |
|------------------------------------------|---------|-------------------|--------------|--------------|--------------|-------------|--|--|--|--|
| Quotation No.: Q22-28455                 |         |                   |              | st Sam       |              | 1550635     |  |  |  |  |
|                                          |         |                   | Sa           | ample Lo     | ocation:     | BH125       |  |  |  |  |
|                                          |         | Sample Type:      |              |              |              |             |  |  |  |  |
|                                          |         | Top Depth (m):    |              |              |              |             |  |  |  |  |
|                                          |         |                   |              | Date Sa      |              | 18-Nov-2022 |  |  |  |  |
| Determinand                              | Accred. | SOP               | Type         | Units        |              |             |  |  |  |  |
| pH                                       | U       | 1010              | 10:1         |              | N/A          | 8.4         |  |  |  |  |
| Phosphate as P                           | U       | 1220              | 10:1         | mg/l         | 0.050        | < 0.050     |  |  |  |  |
| Sulphur                                  | N       | 1220              | 10:1         | mg/l         | 1.0          | 24          |  |  |  |  |
| Cyanide (Total)                          | U       | 1300              | 10:1         | mg/l         | 0.050        | 0.16        |  |  |  |  |
| Cyanide (Free)                           | U       | 1300              | 10:1         | mg/l         | 0.050        | < 0.050     |  |  |  |  |
| Sulphide                                 | U       | 1325              | 10:1         | mg/l         | 0.050        | < 0.050     |  |  |  |  |
| Calcium                                  | U       | 1455              | 10:1         | mg/l         | 2.00         | 38          |  |  |  |  |
| Aluminium (Dissolved)                    | N       | 1455              | 10:1         | μg/l         | 5.0          | 30          |  |  |  |  |
| Arsenic (Dissolved)                      | U       | 1455              | 10:1         | μg/l         | 0.20         | 5.6         |  |  |  |  |
| Boron (Dissolved)                        | U       | 1455              | 10:1         | μg/l         | 10.0         | 120         |  |  |  |  |
| Barium (Dissolved)                       | U       | 1455              | 10:1         | μg/l         | 5.00         | 25          |  |  |  |  |
| Beryllium (Dissolved)                    | U       | 1455              | 10:1         | μg/l         | 1.00         | < 1.0       |  |  |  |  |
| Cadmium (Dissolved)                      | U       | 1455              | 10:1         | μg/l         | 0.11         | < 0.11      |  |  |  |  |
| Chromium (Dissolved)                     | U       | 1455              | 10:1         | μg/l         | 0.50         | 0.71        |  |  |  |  |
| Copper (Dissolved)                       | U       | 1455              | 10:1         | μg/l         | 0.50         | 3.5         |  |  |  |  |
| Mercury (Dissolved)                      | U       | 1455              | 10:1         | μg/l         | 0.05         | < 0.05      |  |  |  |  |
| Manganese (Dissolved) Nickel (Dissolved) | U       | 1455<br>1455      | 10:1         | μg/l         | 0.50         | 15          |  |  |  |  |
| Lead (Dissolved)                         | U       | 1455              | 10:1<br>10:1 | μg/l         | 0.50<br>0.50 | 3.8<br>1.5  |  |  |  |  |
| Selenium (Dissolved)                     | U       | 1455              | 10:1         | μg/l         | 0.50         | 1.5         |  |  |  |  |
| Vanadium (Dissolved)                     | U       | 1455              | 10:1         | μg/l<br>μg/l | 0.50         | 5.1         |  |  |  |  |
| Zinc (Dissolved)                         | U       | 1455              | 10:1         | μg/l         | 2.5          | < 2.5       |  |  |  |  |
| Iron (Dissolved)                         | N       | 1455              | 10:1         | μg/l         | 5.0          | 19          |  |  |  |  |
| Low-Level Chromium (Hexavalent)          | N       | 1495              | 10:1         | μg/l         | 0.10         | 0.34        |  |  |  |  |
| Aliphatic TPH >C5-C6                     | N       | 1675              | 10:1         | μg/l         | 0.010        | < 0.010     |  |  |  |  |
| Aliphatic TPH >C6-C8                     | N N     | 1675              | 10:1         | μg/l         | 0.010        | < 0.010     |  |  |  |  |
| Aliphatic TPH >C8-C10                    | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |
| Aliphatic TPH >C10-C12                   | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |
| Aliphatic TPH >C12-C16                   | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |
| Aliphatic TPH >C16-C21                   | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |
| Aliphatic TPH >C21-C35                   | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |
| Aliphatic TPH >C35-C44                   | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |
| Total Aliphatic Hydrocarbons             | N       | 1675              | 10:1         | µg/l         | 1.0          | < 1.0       |  |  |  |  |
| Aromatic TPH >C5-C7                      | N       | 1675              | 10:1         | μg/l         | 0.010        | < 0.010     |  |  |  |  |
| Aromatic TPH >C7-C8                      | N       | 1675              | 10:1         | μg/l         | 0.010        | < 0.010     |  |  |  |  |
| Aromatic TPH >C8-C10                     | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |
| Aromatic TPH >C10-C12                    | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |
| Aromatic TPH >C12-C16                    | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |
| Aromatic TPH >C16-C21                    | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |
| Aromatic TPH >C21-C35                    | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |  |  |

| Client: Causeway Geotech Ltd              | Chemtest Job No.: 22-44935 Chemtest Sample ID.: 1550635 |                  |              |              |             |                  |  |
|-------------------------------------------|---------------------------------------------------------|------------------|--------------|--------------|-------------|------------------|--|
| Quotation No.: Q22-28455                  |                                                         | 1550635          |              |              |             |                  |  |
|                                           |                                                         | Sample Location: |              |              |             |                  |  |
|                                           |                                                         | Sample Type:     |              |              |             |                  |  |
|                                           |                                                         | Top Depth (m):   |              |              |             |                  |  |
|                                           |                                                         | Date Sampled:    |              |              |             |                  |  |
| Determinand                               | Accred.                                                 | SOP              | Туре         | Units        |             |                  |  |
| Aromatic TPH >C35-C44                     | N                                                       | 1675             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Total Aromatic Hydrocarbons               | N                                                       | 1675             | 10:1         | μg/l         | 1.0         | < 1.0            |  |
| Total Petroleum Hydrocarbons              | N                                                       | 1675             | 10:1         | μg/l         | 2.0         | < 2.0            |  |
| Dichlorodifluoromethane                   | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Chloromethane                             | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Vinyl Chloride                            | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Bromomethane                              | N N                                                     | 1760             | 10:1         | μg/l         | 2.0         | < 2.0            |  |
| Chloroethane                              | N<br>N                                                  | 1760             | 10:1         | μg/l         | 0.20        | < 0.20           |  |
| Trichlorofluoromethane 1,1-Dichloroethene | N<br>N                                                  | 1760<br>1760     | 10:1<br>10:1 | μg/l<br>μg/l | 0.10        | < 0.10<br>< 0.10 |  |
| Dichloromethane                           | N N                                                     | 1760             | 10:1         |              | 50          | < 50             |  |
| 1,1-Dichloroethane                        | N                                                       | 1760             | 10:1         | μg/l<br>μg/l | 0.10        | < 0.10           |  |
| cis 1,2-Dichloroethene                    | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Bromochloromethane                        | N                                                       | 1760             | 10:1         | μg/l         | 0.50        | < 0.50           |  |
| Trichloromethane                          | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| 1,1,1-Trichloroethane                     | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Tetrachloromethane                        | N                                                       | 1760             | 10:1         | µg/l         | 0.10        | < 0.10           |  |
| 1,1-Dichloropropene                       | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Benzene                                   | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| 1,2-Dichloroethane                        | N                                                       | 1760             | 10:1         | μg/l         | 0.20        | < 0.20           |  |
| Trichloroethene                           | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| 1,2-Dichloropropane                       | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Dibromomethane                            | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Bromodichloromethane                      | N                                                       | 1760             | 10:1         | μg/l         | 0.50        | < 0.50           |  |
| cis-1,3-Dichloropropene                   | N                                                       | 1760             | 10:1         | μg/l         | 1.0         | < 1.0            |  |
| Toluene                                   | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Trans-1,3-Dichloropropene                 | N                                                       | 1760             | 10:1         | μg/l         | 1.0         | < 1.0            |  |
| 1,1,2-Trichloroethane                     | N                                                       | 1760             | 10:1         | μg/l         | 1.0         | < 1.0            |  |
| Tetrachloroethene                         | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| 1,3-Dichloropropane                       | N                                                       | 1760             | 10:1         | μg/l         | 0.20        | < 0.20           |  |
| Dibromochloromethane                      | N                                                       | 1760             | 10:1         | μg/l         | 1.0         | < 1.0            |  |
| 1,2-Dibromoethane                         | N                                                       | 1760             | 10:1         | μg/l         | 0.50        | < 0.50           |  |
| Chlorobenzene                             | N                                                       | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| 1,1,1,2-Tetrachloroethane                 | N N                                                     | 1760             | 10:1         | μg/l         | 0.20        | < 0.20           |  |
| Ethylbenzene                              | N N                                                     | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| m & p-Xylene                              | N<br>N                                                  | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| o-Xylene                                  | N<br>N                                                  | 1760             | 10:1         | μg/l         | 0.10        | < 0.10           |  |
| Styrene<br>Tribromomethane                | N<br>N                                                  | 1760<br>1760     | 10:1         | μg/l         | 0.10<br>1.0 | < 0.10<br>< 1.0  |  |
| Isopropylbenzene                          | N<br>N                                                  | 1760             | 10:1<br>10:1 | μg/l         | 0.10        | < 0.10           |  |
| isopropyiberizerie                        | IN                                                      | 1760             | 10.1         | μg/l         | 0.10        | < 0.10           |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |      |       |       |         |  |  |
|------------------------------|---------|----------------------|------|-------|-------|---------|--|--|
| Quotation No.: Q22-28455     |         | Chemtest Sample ID.: |      |       |       |         |  |  |
|                              |         | Sample Location:     |      |       |       |         |  |  |
|                              |         | Sample Type:         |      |       |       |         |  |  |
|                              |         | Top Depth (m):       |      |       |       |         |  |  |
|                              |         | Date Sampled:        |      |       |       |         |  |  |
| Determinand                  | Accred. | SOP                  | Type | Units |       |         |  |  |
| Bromobenzene                 | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 1,2,3-Trichloropropane       | N       | 1760                 | 10:1 | μg/l  | 5.0   | < 5.0   |  |  |
| N-Propylbenzene              | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 2-Chlorotoluene              | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 1,3,5-Trimethylbenzene       | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 4-Chlorotoluene              | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| Tert-Butylbenzene            | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 1,2,4-Trimethylbenzene       | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| Sec-Butylbenzene             | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 1,3-Dichlorobenzene          | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 4-Isopropyltoluene           | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 1,4-Dichlorobenzene          | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| N-Butylbenzene               | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 1,2-Dichlorobenzene          | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 1760                 | 10:1 | μg/l  | 5.0   | < 5.0   |  |  |
| 1,2,4-Trichlorobenzene       | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| Hexachlorobutadiene          | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| 1,2,3-Trichlorobenzene       | N       | 1760                 | 10:1 | μg/l  | 0.20  | < 0.20  |  |  |
| Naphthalene                  | N       | 1760                 | 10:1 | μg/l  | 0.10  | < 0.10  |  |  |
| Phenol                       | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2-Chlorophenol               | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Bis-(2-Chloroethyl)Ether     | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 1,3-Dichlorobenzene          | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 1,4-Dichlorobenzene          | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 1,2-Dichlorobenzene          | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2-Methylphenol (o-Cresol)    | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Bis(2-Chloroisopropyl)Ether  | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Hexachloroethane             | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| N-Nitrosodi-n-propylamine    | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 4-Methylphenol               | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Nitrobenzene                 | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Isophorone                   | N N     | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2-Nitrophenol                | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2,4-Dimethylphenol           | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Bis(2-Chloroethoxy)Methane   | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2,4-Dichlorophenol           | N N     | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 1,2,4-Trichlorobenzene       | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Naphthalene                  | N N     | 1790                 | 10:1 |       | 0.050 | < 0.050 |  |  |
| 4-Chloroaniline              | N N     | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
|                              |         |                      |      | μg/l  |       |         |  |  |
| Hexachlorobutadiene          | N       | 1790                 | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |

| Client: Causeway Geotech Ltd | Chemtest Job No.: 22-44935 Chemtest Sample ID.: 1550635 |                                           |      |       |       |         |  |
|------------------------------|---------------------------------------------------------|-------------------------------------------|------|-------|-------|---------|--|
| Quotation No.: Q22-28455     |                                                         | Chemtest Sample ID.:                      |      |       |       |         |  |
|                              |                                                         | Sample Location:                          |      |       |       |         |  |
|                              |                                                         | Sample Type: Top Depth (m): Date Sampled: |      |       |       |         |  |
|                              |                                                         |                                           |      |       |       |         |  |
|                              |                                                         |                                           |      |       |       |         |  |
| Determinand                  | Accred.                                                 | SOP                                       | Туре | Units | LOD   |         |  |
| 4-Chloro-3-Methylphenol      | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2-Methylnaphthalene          | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Hexachlorocyclopentadiene    | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2,4,6-Trichlorophenol        | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2,4,5-Trichlorophenol        | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2-Chloronaphthalene          | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2-Nitroaniline               | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Acenaphthylene               | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Dimethylphthalate            | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2,6-Dinitrotoluene           | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Acenaphthene                 | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 3-Nitroaniline               | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Dibenzofuran                 | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 4-Chlorophenylphenylether    | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2,4-Dinitrotoluene           | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Fluorene                     | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Diethyl Phthalate            | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 4-Nitroaniline               | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2-Methyl-4,6-Dinitrophenol   | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Azobenzene                   | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 4-Bromophenylphenyl Ether    | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Hexachlorobenzene            | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Pentachlorophenol            | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Phenanthrene                 | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | 5.3     |  |
| Anthracene                   | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | 1.2     |  |
| Carbazole                    | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | 1.7     |  |
| Di-N-Butyl Phthalate         | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Fluoranthene                 | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | 2.7     |  |
| Pyrene                       | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | 2.5     |  |
| Butylbenzyl Phthalate        | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Benzo[a]anthracene           | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Chrysene                     | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Bis(2-Ethylhexyl)Phthalate   | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Di-N-Octyl Phthalate         | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Benzo[b]fluoranthene         | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Benzo[k]fluoranthene         | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Benzo[a]pyrene               | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Indeno(1,2,3-c,d)Pyrene      | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Dibenz(a,h)Anthracene        | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Benzo[g,h,i]perylene         | N                                                       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |      |       |       |         |  |  |
|------------------------------|---------|----------------------|------|-------|-------|---------|--|--|
| Quotation No.: Q22-28455     |         | Chemtest Sample ID.: |      |       |       |         |  |  |
|                              |         | Sample Location:     |      |       |       |         |  |  |
|                              |         | Sample Type:         |      |       |       |         |  |  |
|                              |         | Top Depth (m):       |      |       |       |         |  |  |
|                              |         | Date Sampled:        |      |       |       |         |  |  |
| Determinand                  | Accred. | SOP                  | Туре | Units | LOD   |         |  |  |
| Naphthalene                  | N       | 1800                 | 10:1 | μg/l  | 0.010 | 1.6     |  |  |
| Acenaphthylene               | N       | 1800                 | 10:1 | μg/l  | 0.010 | 4.8     |  |  |
| Acenaphthene                 | N       | 1800                 | 10:1 | μg/l  | 0.010 | 2.4     |  |  |
| Fluorene                     | N       | 1800                 | 10:1 | μg/l  | 0.010 | 3.0     |  |  |
| Phenanthrene                 | N       | 1800                 | 10:1 | μg/l  | 0.010 | 5.8     |  |  |
| Anthracene                   | N       | 1800                 | 10:1 | μg/l  | 0.010 | 1.7     |  |  |
| Fluoranthene                 | N       | 1800                 | 10:1 | μg/l  | 0.010 | 3.4     |  |  |
| Pyrene                       | N       | 1800                 | 10:1 | μg/l  | 0.010 | 2.6     |  |  |
| Benzo[a]anthracene           | N       | 1800                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| Chrysene                     | N       | 1800                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| Benzo[b]fluoranthene         | N       | 1800                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| Benzo[k]fluoranthene         | N       | 1800                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| Benzo[a]pyrene               | N       | 1800                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 1800                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| Dibenz(a,h)Anthracene        | N       | 1800                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| Benzo[g,h,i]perylene         | N       | 1800                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| Total Of 16 PAH's            | N       | 1800                 | 10:1 | μg/l  | 0.20  | 25      |  |  |
| PCB 81                       | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 77                       | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 105                      | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 114                      | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 118                      | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 123                      | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 126                      | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 156                      | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 157                      | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 167                      | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 169                      | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| PCB 189                      | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| Total PCBs (12 Congeners)    | N       | 1815                 | 10:1 | μg/l  | 0.010 | < 0.010 |  |  |
| Phenol                       | N       | 1900                 | 10:1 | μg/l  | 0.20  | < 0.20  |  |  |
| 2-Chlorophenol               | N N     | 1900                 | 10:1 | μg/l  | 0.20  | < 0.20  |  |  |
| 2-Methylphenol (o-Cresol)    | N       | 1900                 | 10:1 | μg/l  | 0.20  | < 0.20  |  |  |
| 3-Methylphenol               | N       | 1900                 | 10:1 | μg/l  | 0.20  | < 0.20  |  |  |
| 4-Methylphenol               | N       | 1900                 | 10:1 | μg/l  | 0.20  | < 0.20  |  |  |
| 2-Nitrophenol                | N       | 1900                 | 10:1 | μg/l  | 0.20  | < 0.20  |  |  |
| 2,4-Dimethylphenol           | N       | 1900                 | 10:1 | μg/l  | 0.20  | < 0.20  |  |  |
| 2,4-Dimethylphenol           | N       | 1900                 | 10:1 |       | 0.20  | < 0.20  |  |  |
|                              | N N     | 1900                 | 10:1 | μg/l  |       |         |  |  |
| 2,6-Dichlorophenol           |         | _                    |      | μg/l  | 0.20  | < 0.20  |  |  |
| 4-Chloro-3-Methylphenol      | N       | 1900                 | 10:1 | μg/l  | 0.20  | < 0.20  |  |  |

| Client: Causeway Geotech Ltd  |                             | 22-44935                   |      |         |          |        |  |  |
|-------------------------------|-----------------------------|----------------------------|------|---------|----------|--------|--|--|
| Quotation No.: Q22-28455      |                             | 1550635                    |      |         |          |        |  |  |
|                               |                             | Sample Location:           |      |         |          |        |  |  |
|                               |                             | Sample Type:               |      |         |          |        |  |  |
|                               |                             |                            |      | Top Dep | oth (m): | 1      |  |  |
|                               |                             | Date Sampled:              |      |         |          |        |  |  |
| Determinand                   | Accred.                     | Accred. SOP Type Units LOD |      |         |          |        |  |  |
| 2,3,4-Trichlorophenol         | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 2,3,5-Trichlorophenol         | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 2,3,6-Trichlorophenol         | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 2,4,6-Trichlorophenol         | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 2,4,5-Trichlorophenol         | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 4-Nitrophenol                 | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 2,3,4,5-Tetrachlorophenol     | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 2,3,4,6-Tetrachlorophenol     | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 2,3,5,6-Tetrachlorophenol     | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 3,4,5-Trichlorophenol         | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 2-Methyl-4,6-Dinitrophenol    | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| Pentachlorophenol             | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| 2-Sec-Butyl-4,6-Dinitrophenol | N                           | 1900                       | 10:1 | μg/l    | 0.20     | < 0.20 |  |  |
| Total Phenols                 | N 1900 10:1 μg/l 5.00 < 5.0 |                            |      |         |          |        |  |  |

| Client: Causeway Geotech Ltd        |         |      | mtest J  |          | 22-44935    | 22-44935    | 22-44935    | 22-44935    |
|-------------------------------------|---------|------|----------|----------|-------------|-------------|-------------|-------------|
| Quotation No.: Q22-28455            | (       |      | st Sam   | •        | 1550626     | 1550628     | 1550632     | 1550634     |
|                                     |         | Sa   | ample Lo | ocation: | BH122       | BH123       | BH124       | BH125       |
|                                     |         |      | Sampl    | e Type:  | SOIL        | SOIL        | SOIL        | SOIL        |
|                                     |         |      | Top De   | oth (m): | 1           | 0.5         | 1           | 0.5         |
|                                     |         |      |          | ampled:  | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-2022 |
|                                     |         |      | Asbest   | os Lab:  | NEW-ASB     | NEW-ASB     | NEW-ASB     | NEW-ASB     |
| Determinand                         | Accred. | SOP  | Units    | LOD      |             |             |             |             |
| ACM Type                            | U       | 2192 |          | N/A      | -           | 1           | -           | -           |
| Asbestos Identification             | U       | 2192 |          | N/A      | No Asbestos | No Asbestos | No Asbestos | No Asbestos |
| Aspestos identification             | U       | 2132 |          | IN/A     | Detected    | Detected    | Detected    | Detected    |
| Moisture                            | N       | 2030 | %        | 0.020    | 18          | 9.7         | 16          | 12          |
| Natural Moisture Content            | N       | 2030 | %        | 0.020    | 22          | 11          | 19          | 14          |
| Soil Colour                         | N       | 2040 |          | N/A      | Brown       | Brown       | Brown       | Brown       |
| Other Material                      | N       | 2040 |          | N/A      | Stones      | Stones      | Stones      | Stones      |
| Soil Texture                        | N       | 2040 |          | N/A      | Sand        | Sand        | Sand        | Sand        |
| рН                                  | U       | 2010 |          | 4.0      | 8.4         | 7.9         | 9.6         | 8.5         |
| Boron (Hot Water Soluble)           | U       | 2120 | mg/kg    | 0.40     | 0.87        | < 0.40      | < 0.40      | 1.1         |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120 | g/l      | 0.010    | 0.11        | 0.066       | 0.20        | 0.19        |
| Total Sulphur                       | U       | 2175 | %        | 0.010    | 0.067       | 0.055       | 0.076       | 0.088       |
| Sulphur (Elemental)                 | U       | 2180 | mg/kg    | 1.0      | 13          | 49          | 20          | 43          |
| Cyanide (Free)                      | U       | 2300 | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      | < 0.50      |
| Cyanide (Total)                     | U       | 2300 | mg/kg    | 0.50     | < 0.50      | < 0.50      | 0.50        | < 0.50      |
| Thiocyanate                         | U       | 2300 | mg/kg    | 5.0      | < 5.0       | < 5.0       | < 5.0       | < 5.0       |
| Aluminium (Total)                   | N       | 2430 | mg/kg    | 100      | 1500        | 920         | 1300        | 1500        |
| Iron (Total)                        | N       | 2430 | mg/kg    | 100      | 4900        | 3200        | 5000        | 6900        |
| Arsenic                             | U       | 2455 | mg/kg    | 0.5      | 4.6         | 2.5         | 4.0         | 5.5         |
| Barium                              | U       | 2455 | mg/kg    | 0        | 15          | 9           | 13          | 15          |
| Beryllium                           | U       | 2455 | mg/kg    | 0.5      | < 0.5       | < 0.5       | < 0.5       | < 0.5       |
| Cadmium                             | U       | 2455 | mg/kg    | 0.10     | 0.12        | < 0.10      | < 0.10      | < 0.10      |
| Chromium                            | U       | 2455 | mg/kg    | 0.5      | 8.7         | 5.3         | 7.0         | 9.1         |
| Manganese                           | Ü       | 2455 | mg/kg    | 1.0      | 82          | 55          | 87          | 110         |
| Copper                              | U       | 2455 | mg/kg    |          | 3.8         | 2.4         | 3.2         | 4.4         |
| Mercury                             | Ü       | 2455 | mg/kg    | 0.05     | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Nickel                              | Ü       | 2455 | mg/kg    | 0.50     | 10          | 6.8         | 11          | 17          |
| Lead                                | Ü       | 2455 | mg/kg    | 0.50     | 4.1         | 3.3         | 3.0         | 4.1         |
| Selenium                            | Ü       | 2455 | mg/kg    | 0.25     | 0.53        | 0.32        | 0.33        | 0.48        |
| Vanadium                            | U       | 2455 | mg/kg    | 0.5      | 13          | 8.6         | 11          | 14          |
| Zinc                                | U       | 2455 | mg/kg    | 0.50     | 12          | 7.9         | 12          | 18          |
| Chromium (Hexavalent)               | N       | 2490 | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      | < 0.50      |
| Organic Matter                      | U       | 2625 | %        | 0.40     | 6.2         | 6.3         | 0.72        | 0.99        |
| Total Organic Carbon                | U       | 2625 | %        | 0.40     | 3.6         | 3.6         | 0.42        | 0.57        |
| Aliphatic TPH >C5-C6                | N       | 2680 | mg/kg    | 0.20     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Aliphatic TPH >C6-C8                | N       | 2680 | mg/kg    |          | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Aliphatic TPH >C8-C10               | N       | 2680 | mg/kg    | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Aliphatic TPH >C10-C12              | N       | 2680 | mg/kg    |          | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| •                                   | N N     |      |          |          |             |             |             |             |
| Aliphatic TPH >C12-C16              | IN      | 2680 | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      |

| Quotation No.: Q22-28455          |                                  |                      | st Sam  | ple ID.: | 1550626     | 1550628     | 1550632     | 1550634     |
|-----------------------------------|----------------------------------|----------------------|---------|----------|-------------|-------------|-------------|-------------|
|                                   |                                  | Chemtest Sample ID.: |         |          |             |             |             | 100000+     |
|                                   | Sample Location:<br>Sample Type: |                      |         |          | BH122       | BH123       | BH124       | BH125       |
|                                   |                                  |                      |         |          | SOIL        | SOIL        | SOIL        | SOIL        |
|                                   |                                  |                      | Top Dep | , ,      | 1           | 0.5         | 1           | 0.5         |
|                                   |                                  |                      | Date Sa |          | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-2022 |
|                                   |                                  |                      | Asbest  | os Lab:  | NEW-ASB     | NEW-ASB     | NEW-ASB     | NEW-ASB     |
| Determinand                       | Accred.                          | SOP                  | Units   | LOD      |             |             |             |             |
| Aliphatic TPH >C16-C21            | N                                | 2680                 | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C21-C35            | N                                | 2680                 | mg/kg   |          | < 0.10      | 830         | < 0.10      | < 0.10      |
| Aliphatic TPH >C35-C44            | N                                | 2680                 | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Total Aliphatic Hydrocarbons      | N                                | 2680                 | mg/kg   | 1.0      | < 1.0       | 830         | < 1.0       | < 1.0       |
| Aromatic TPH >C5-C7               | N                                | 2680                 | mg/kg   | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Aromatic TPH >C7-C8               | N                                | 2680                 | mg/kg   | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Aromatic TPH >C8-C10              | N                                | 2680                 | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C10-C12             | N                                | 2680                 | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C12-C16             | N                                | 2680                 | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C16-C21             | N                                | 2680                 | mg/kg   | 0.10     | < 0.10      | 42          | < 0.10      | < 0.10      |
| Aromatic TPH >C21-C35             | N                                | 2680                 | mg/kg   | 0.10     | < 0.10      | 150         | < 0.10      | < 0.10      |
| Aromatic TPH >C35-C44             | N                                | 2680                 | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Total Aromatic Hydrocarbons       | N                                | 2680                 | mg/kg   | 1.0      | < 1.0       | 190         | < 1.0       | < 1.0       |
| Total Petroleum Hydrocarbons      | N                                | 2680                 | mg/kg   | 2.0      | < 2.0       | 1000        | < 2.0       | < 2.0       |
| Dichlorodifluoromethane           | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Chloromethane                     | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Vinyl Chloride                    | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Bromomethane                      | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Chloroethane                      | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Trichlorofluoromethane            | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| 1,1-Dichloroethene                | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Trans 1,2-Dichloroethene          | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| 1,1-Dichloroethane                | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| cis 1,2-Dichloroethene            | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Bromochloromethane                | N                                | 2760                 | μg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      | < 0.50      |
| Trichloromethane                  | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| 1,1,1-Trichloroethane             | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Tetrachloromethane                | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| 1,1-Dichloropropene               | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Benzene                           | N                                | 2760                 | μg/kg   | 0.20     | 0.39        | < 0.20      | < 0.20      | < 0.20      |
| 1,2-Dichloroethane                | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Trichloroethene                   | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| 1,2-Dichloropropane               | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Dibromomethane                    | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Bromodichloromethane              | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| cis-1,3-Dichloropropene           | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| 1 1 1 1 1                         | N                                | 2760                 | μg/kg   | 0.20     | 0.70        | 0.55        | 0.82        | 0.60        |
| Toluene                           |                                  |                      |         |          |             |             |             |             |
| Toluene Trans-1,3-Dichloropropene | N                                | 2760                 | μg/kg   | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |

| Client: Causeway Geotech Ltd |         |         | mtest Jo |         | 22-44935    | 22-44935    | 22-44935    | 22-44935   |
|------------------------------|---------|---------|----------|---------|-------------|-------------|-------------|------------|
| Quotation No.: Q22-28455     | (       |         | st Sam   |         | 1550626     | 1550628     | 1550632     | 1550634    |
|                              |         | Sa      | ample Lo |         | BH122       | BH123       | BH124       | BH125      |
|                              |         |         | Sample   |         | SOIL        | SOIL        | SOIL        | SOIL       |
|                              |         |         | Top Dep  | , ,     | 1           | 0.5         | 1           | 0.5        |
|                              |         |         | Date Sa  | ampled: | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-202 |
|                              |         |         | Asbest   | os Lab: | NEW-ASB     | NEW-ASB     | NEW-ASB     | NEW-ASB    |
| Determinand                  | Accred. | SOP     | Units    | LOD     |             |             |             |            |
| Tetrachloroethene            | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,3-Dichloropropane          | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| Dibromochloromethane         | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,2-Dibromoethane            | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| Chlorobenzene                | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,1,1,2-Tetrachloroethane    | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| Ethylbenzene                 | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | 0.20       |
| m & p-Xylene                 | N       | 2760    | μg/kg    | 0.20    | 0.27        | 0.24        | 0.29        | 0.30       |
| o-Xylene                     | N       | 2760    | μg/kg    | 0.20    | 0.24        | 0.25        | 0.29        | 0.24       |
| Styrene                      | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| Tribromomethane              | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| Isopropylbenzene             | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| Bromobenzene                 | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,2,3-Trichloropropane       | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| N-Propylbenzene              | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 2-Chlorotoluene              | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,3,5-Trimethylbenzene       | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 4-Chlorotoluene              | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| Tert-Butylbenzene            | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,2,4-Trimethylbenzene       | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| Sec-Butylbenzene             | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,3-Dichlorobenzene          | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 4-Isopropyltoluene           | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,4-Dichlorobenzene          | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| N-Butylbenzene               | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,2-Dichlorobenzene          | N       | 2760    | µg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,2,4-Trichlorobenzene       | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| Hexachlorobutadiene          | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| 1,2,3-Trichlorobenzene       | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| Methyl Tert-Butyl Ether      | N       | 2760    | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      | < 0.20     |
| N-Nitrosodimethylamine       | N       | 2790    | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Phenol                       | N       | 2790    | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2-Chlorophenol               | N       | 2790    | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Bis-(2-Chloroethyl)Ether     | N       | 2790    | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 1,3-Dichlorobenzene          | N       | 2790    | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 1.4-Dichlorobenzene          | N N     | 2790    | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 1,2-Dichlorobenzene          | N       | 2790    | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
|                              | I IN    | 1 Z1 3U | HIIU/KU  | 0.000   | < 0.000     | < 0.000     | < 0.000     | < 0.050    |

| Client: Causeway Geotech Ltd |         |      | mtest J  |         | 22-44935    | 22-44935    | 22-44935    | 22-44935   |
|------------------------------|---------|------|----------|---------|-------------|-------------|-------------|------------|
| Quotation No.: Q22-28455     | (       |      | st Sam   |         | 1550626     | 1550628     | 1550632     | 1550634    |
|                              |         | Sa   | ample Lo |         | BH122       | BH123       | BH124       | BH125      |
|                              |         |      |          | e Type: | SOIL        | SOIL        | SOIL        | SOIL       |
|                              |         |      | Top De   | , ,     | 1           | 0.5         | 1           | 0.5        |
|                              |         |      | Date Sa  | ampled: | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-202 |
|                              |         |      | Asbest   | os Lab: | NEW-ASB     | NEW-ASB     | NEW-ASB     | NEW-ASB    |
| Determinand                  | Accred. | SOP  | Units    | LOD     |             |             |             |            |
| Bis(2-Chloroisopropyl)Ether  | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Hexachloroethane             | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| N-Nitrosodi-n-propylamine    | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 4-Methylphenol               | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Nitrobenzene                 | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Isophorone                   | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2-Nitrophenol                | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2,4-Dimethylphenol           | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Bis(2-Chloroethoxy)Methane   | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2,4-Dichlorophenol           | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 1,2,4-Trichlorobenzene       | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Naphthalene                  | N       | 2790 | mg/kg    | 0.050   | 0.57        | 0.18        | 0.072       | 0.068      |
| 4-Chloroaniline              | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Hexachlorobutadiene          | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 4-Chloro-3-Methylphenol      | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2-Methylnaphthalene          | N       | 2790 | mg/kg    | 0.050   | 0.50        | 0.27        | < 0.050     | < 0.050    |
| Hexachlorocyclopentadiene    | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2,4,6-Trichlorophenol        | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2,4,5-Trichlorophenol        | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2-Chloronaphthalene          | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2-Nitroaniline               | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Acenaphthylene               | N       | 2790 | mg/kg    | 0.050   | 0.098       | 0.055       | < 0.050     | < 0.050    |
| Dimethylphthalate            | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2,6-Dinitrotoluene           | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Acenaphthene                 | N       | 2790 | mg/kg    | 0.050   | 1.3         | 0.61        | 0.084       | 0.11       |
| 3-Nitroaniline               | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Dibenzofuran                 | N       | 2790 | mg/kg    | 0.050   | 0.79        | 0.41        | 0.060       | 0.080      |
| 4-Chlorophenylphenylether    | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2,4-Dinitrotoluene           | N       | 2790 | mg/kg    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Fluorene                     | N       | 2790 | mg/kg    |         | 1.3         | 0.57        | 0.11        | 0.10       |
| Diethyl Phthalate            | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 4-Nitroaniline               | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 2-Methyl-4,6-Dinitrophenol   | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Azobenzene                   | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| 4-Bromophenylphenyl Ether    | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Hexachlorobenzene            | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Pentachlorophenol            | N       | 2790 | mg/kg    |         | < 0.050     | < 0.050     | < 0.050     | < 0.050    |
| Phenanthrene                 | N       | 2790 | mg/kg    |         | 6.3         | 3.8         | 0.55        | 0.83       |
| Anthracene                   | N       | 2790 | mg/kg    |         | 2.1         | 0.65        | 0.18        | 0.23       |

| Client: Causeway Geotech Ltd |         |      | mtest Jo |          |           | 22-44935    | 22-44935    | 22-44935   |
|------------------------------|---------|------|----------|----------|-----------|-------------|-------------|------------|
| Quotation No.: Q22-28455     | (       |      | est Sam  |          | 1550626   | 1550628     | 1550632     | 1550634    |
|                              |         | Sa   | ample Lo |          | BH122     | BH123       | BH124       | BH125      |
|                              |         |      |          | е Туре:  | SOIL      | SOIL        | SOIL        | SOIL       |
|                              |         |      | Top Dep  | oth (m): | 1         | 0.5         | 1           | 0.5        |
|                              |         |      | Date Sa  | ampled:  |           | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-202 |
|                              |         |      | Asbest   | os Lab:  | NEW-ASB   | NEW-ASB     | NEW-ASB     | NEW-ASB    |
| Determinand                  | Accred. | SOP  | Units    | LOD      |           |             |             |            |
| Carbazole                    | N       | 2790 | mg/kg    | 0.050    | 0.39      | 0.19        | < 0.050     | < 0.050    |
| Di-N-Butyl Phthalate         | N       | 2790 | mg/kg    | 0.050    | < 0.050   | < 0.050     | < 0.050     | < 0.050    |
| Fluoranthene                 | N       | 2790 | mg/kg    | 0.050    | 1.3       | 3.6         | 0.85        | 1.6        |
| Pyrene                       | N       | 2790 | mg/kg    | 0.050    | 6.9       | 3.1         | 0.78        | 1.5        |
| Butylbenzyl Phthalate        | N       | 2790 | mg/kg    | 0.050    | < 0.050   | < 0.050     | < 0.050     | < 0.050    |
| Benzo[a]anthracene           | N       | 2790 | mg/kg    | 0.050    | 3.5       | 1.6         | 0.44        | 0.81       |
| Chrysene                     | N       | 2790 | mg/kg    |          | 3.4       | 1.8         | 0.50        | 0.89       |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790 | mg/kg    |          | 0.098     | < 0.050     | < 0.050     | < 0.050    |
| Di-N-Octyl Phthalate         | N       | 2790 | mg/kg    | 0.050    | < 0.050   | < 0.050     | < 0.050     | < 0.050    |
| Benzo[b]fluoranthene         | N       | 2790 | mg/kg    |          | 4.1       | 1.8         | 0.61        | 1.1        |
| Benzo[k]fluoranthene         | N       | 2790 | mg/kg    |          | 1.6       | 0.69        | 0.22        | 0.34       |
| Benzo[a]pyrene               | N       | 2790 | mg/kg    |          | 3.6       | 1.6         | 0.53        | 0.93       |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790 | mg/kg    |          | 1.7       | 0.70        | 0.26        | 0.48       |
| Dibenz(a,h)Anthracene        | N       | 2790 | mg/kg    |          | < 0.050   | 0.22        | < 0.050     | 0.11       |
| Benzo[g,h,i]perylene         | N       | 2790 | mg/kg    |          | 2.0       | 0.96        | 0.35        | 0.55       |
| 4-Nitrophenol                | N       | 2790 | mg/kg    |          | < 0.050   | < 0.050     | < 0.050     | < 0.050    |
| Naphthalene                  | N       | 2800 | mg/kg    |          | 0.32      | 0.21        | 0.055       | 0.13       |
| Acenaphthylene               | N       | 2800 | mg/kg    |          | 0.13      | < 0.010     | < 0.010     | 0.093      |
| Acenaphthene                 | N       | 2800 | mg/kg    |          | 1.0       | 0.43        | < 0.010     | 0.14       |
| Fluorene                     | N       | 2800 | mg/kg    |          | 0.99      | 0.41        | < 0.010     | 0.13       |
| Phenanthrene                 | N       | 2800 | mg/kg    |          | 9.0       | 4.0         | 0.37        | 0.86       |
| Anthracene                   | N       | 2800 | mg/kg    |          | 2.9       | 0.49        | 0.14        | 0.21       |
| Fluoranthene                 | N       | 2800 | mg/kg    |          | 17        | 4.1         | 0.57        | 1.7        |
| Pyrene                       | N       | 2800 | mg/kg    |          | 13        | 3.8         | 0.52        | 1.5        |
| Benzo[a]anthracene           | N       | 2800 | mg/kg    |          | 6.8       | 1.6         | 0.26        | 0.88       |
| Chrysene                     | N       | 2800 | mg/kg    |          | 6.8       | 1.5         | 0.24        | 0.74       |
| Benzo[b]fluoranthene         | N       | 2800 | mg/kg    |          | 8.2       | 1.9         | < 0.010     | 0.87       |
| Benzo[k]fluoranthene         | N       | 2800 | mg/kg    |          | 3.1       | 0.57        | < 0.010     | 0.24       |
| Benzo[a]pyrene               | N       | 2800 | mg/kg    |          | 6.6       | 1.5         | < 0.010     | 0.85       |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2800 | mg/kg    |          | 3.8       | 0.91        | 0.19        | 0.58       |
| Dibenz(a,h)Anthracene        | N       | 2800 | mg/kg    |          | 0.67      | 0.14        | < 0.010     | < 0.010    |
| Benzo[g,h,i]perylene         | N       | 2800 | mg/kg    |          | 3.3       | 0.14        | < 0.010     | 0.56       |
| Total Of 16 PAH's            | N       | 2800 | mg/kg    | 0.010    | 3.3<br>84 | 22          | 2.4         | 9.5        |
| Resorcinol                   | U       | 2920 | mg/kg    |          | < 0.020   | < 0.020     | < 0.020     | < 0.020    |
| Phenol                       | U       | 2920 | mg/kg    |          | < 0.020   | < 0.020     | < 0.020     | < 0.020    |
| Cresols                      | U       | 2920 | mg/kg    |          | < 0.020   | < 0.020     | < 0.020     | < 0.020    |
| Xylenols                     | U       | 2920 | mg/kg    |          | < 0.020   | < 0.020     | < 0.020     | < 0.020    |
| ·                            |         |      | 0        |          |           |             |             |            |
| 1-Naphthol                   | N       | 2920 | mg/kg    |          | < 0.020   | < 0.020     | < 0.020     | < 0.020    |
| Trimethylphenols             | U       | 2920 | mg/kg    | 0.020    | < 0.020   | < 0.020     | < 0.020     | < 0.020    |

| Client: Causeway Geotech Ltd |                      | Chemtest Job No.: |                 | 22-44935 | 22-44935    | 22-44935    | 22-44935    |             |
|------------------------------|----------------------|-------------------|-----------------|----------|-------------|-------------|-------------|-------------|
| Quotation No.: Q22-28455     | Chemtest Sample ID.: |                   |                 | 1550626  | 1550628     | 1550632     | 1550634     |             |
|                              | Sample Location:     |                   |                 |          | BH122       | BH123       | BH124       | BH125       |
|                              | Sample Type:         |                   |                 | SOIL     | SOIL        | SOIL        | SOIL        |             |
|                              | Top Depth (m):       |                   |                 | 1        | 0.5         | 1           | 0.5         |             |
|                              |                      |                   | Date Sa         | ampled:  | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-2022 | 18-Nov-2022 |
|                              |                      |                   | Asbest          | os Lab:  | NEW-ASB     | NEW-ASB     | NEW-ASB     | NEW-ASB     |
| Determinand                  | Accred.              | SOP               | SOP Units LOD   |          |             |             |             |             |
| Total Phenols                | U                    | 2920              | 2920 mg/kg 0.10 |          | < 0.10      | < 0.10      | < 0.10      | < 0.10      |

## **Test Methods**

| SOP  | Title                                                                                   | Parameters included                                                                                                                                                                                                                                          | Method summary                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1010 | pH Value of Waters                                                                      | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 1220 | Anions, Alkalinity & Ammonium in Waters                                                 | Fluoride; Chloride; Nitrite; Nitrate; Total;<br>Oxidisable Nitrogen (TON); Sulfate; Phosphate;<br>Alkalinity; Ammonium                                                                                                                                       | Automated colorimetric analysis using<br>'Aquakem 600' Discrete Analyser.                                                                        |
| 1300 | Cyanides & Thiocyanate in Waters                                                        | Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                              | Continuous Flow Analysis.                                                                                                                        |
| 1325 | Sulphide in Waters                                                                      | Sulphides                                                                                                                                                                                                                                                    | Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.                                         |
| 1455 | Metals in Waters by ICP-MS                                                              | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc                                                                   | determination by inductively coupled plasma                                                                                                      |
| 1495 | Low Level Hexavalent<br>Chromium in Waters                                              | Chromium [VI]                                                                                                                                                                                                                                                | Colorimetric determination of hexavalent chromium expressed as Cr (VI) µg/l in water, using Ion Chromatography and UV-visible spectrophotometry. |
| 1675 | TPH Aliphatic/Aromatic split in<br>Waters by GC-FID(cf. Texas<br>Method 1006 / TPH CWG) | Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35, >C35-C44                                                                              | Pentane extraction / GCxGC FID detection                                                                                                         |
| 1760 | Volatile Organic Compounds<br>(VOCs) in Waters by<br>Headspace GC-MS                    | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)                                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.     |
| 1790 | Semi-Volatile Organic<br>Compounds (SVOCs) in<br>Waters by GC-MS                        | Semi-volatile organic compounds                                                                                                                                                                                                                              | Solvent extraction / GCMS detection                                                                                                              |
| 1800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Waters by GC-MS              | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene | Pentane extraction / GCMS detection                                                                                                              |
| 1815 | Polychlorinated Biphenyls<br>(PCB) ICES7 Congeners in<br>Waters by GC-MS                | ICES7 PCB congeners                                                                                                                                                                                                                                          | Solvent extraction / GCMS detection                                                                                                              |
| 1900 | Phenols in Waters by GC-MS                                                              | Approximately 24 substituted Phenols, including Chlorophenols                                                                                                                                                                                                | Solvent extraction / GCMS detection                                                                                                              |
| 2010 | pH Value of Soils                                                                       | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS)                              | Moisture content                                                                                                                                                                                                                                             | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                             |
| 2040 | Soil Description(Requirement of MCERTS)                                                 | Soil description                                                                                                                                                                                                                                             | As received soil is described based upon BS5930                                                                                                  |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                                  | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                         | Aqueous extraction / ICP-OES                                                                                                                     |
| 2175 | Total Sulphur in Soils                                                                  | Total Sulphur                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                       |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                                    | Sulphur                                                                                                                                                                                                                                                      | Dichloromethane extraction / HPLC with UV detection                                                                                              |
| 2192 | Asbestos                                                                                | Asbestos                                                                                                                                                                                                                                                     | Polarised light microscopy / Gravimetry                                                                                                          |
| 2300 | Cyanides & Thiocyanate in Soils                                                         | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                           | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                             |

## **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA Method 8270)                                                                                                                                                                                                                    | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |
| 640  | Characterisation of Waste (Leaching C10)                                 | Waste material including soil, sludges and granular waste                                                                                                                                                                                                                 | ComplianceTest for Leaching of Granular<br>Waste Material and Sludge                                                                                                                   |

### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-45125-1

Initial Date of Issue: 21-Dec-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen McCracken Stephen Watson

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 23-Nov-2022

Order No.: Date Instructed: 28-Nov-2022

No. of Samples: 4

Turnaround (Wkdays): 10 Results Due: 09-Dec-2022

Date Approved: 21-Dec-2022

Approved By:

**Details:** Stuart Henderson, Technical

Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

| Client: Causeway Geotech Ltd              |         |              |              | mtest Jo     |             |             |
|-------------------------------------------|---------|--------------|--------------|--------------|-------------|-------------|
| Quotation No.: Q22-28455                  |         | (            |              | st Sam       |             | 1551502     |
|                                           |         |              | Sa           | ample Lo     |             | BH120       |
|                                           |         |              |              |              | e Type:     | SOIL        |
|                                           |         |              |              | Top De       | , ,         | 1.00        |
|                                           |         |              | _            |              | ampled:     | 21-Nov-2022 |
| Determinand                               | Accred. | SOP          | Туре         | Units        |             |             |
| pH                                        | U       | 1010         | 10:1         |              | N/A         | 7.8         |
| Phosphate as P                            | U       | 1220         | 10:1         | mg/l         | 0.050       | < 0.050     |
| Sulphur                                   | N       | 1220         | 10:1         | mg/l         | 1.0         | 23          |
| Cyanide (Total)                           | U       | 1300         | 10:1         | mg/l         | 0.050       | < 0.050     |
| Cyanide (Free)                            | U       | 1300         | 10:1         | mg/l         | 0.050       | < 0.050     |
| Sulphide                                  | U       | 1325         | 10:1         | mg/l         | 0.050       | < 0.050     |
| Calcium                                   | N       | 1455<br>1455 | 10:1<br>10:1 | mg/l         | 2.00        | 40<br>44    |
| Aluminium (Dissolved) Arsenic (Dissolved) | U       | 1455         | 10:1         | μg/l<br>μg/l | 5.0<br>0.20 | 3.3         |
| Boron (Dissolved)                         | U       | 1455         | 10:1         |              | 10.0        | 35          |
| Barium (Dissolved)                        | U       | 1455         | 10:1         | μg/l<br>μg/l | 5.00        | 42          |
| Beryllium (Dissolved)                     | U       | 1455         | 10:1         | μg/l         | 1.00        | < 1.0       |
| Cadmium (Dissolved)                       | U       | 1455         | 10:1         | μg/l         | 0.11        | < 0.11      |
| Chromium (Dissolved)                      | Ü       | 1455         | 10:1         | μg/l         | 0.50        | < 0.50      |
| Copper (Dissolved)                        | Ü       | 1455         | 10:1         | μg/l         | 0.50        | 1.1         |
| Mercury (Dissolved)                       | U       | 1455         | 10:1         | μg/l         | 0.05        | < 0.05      |
| Manganese (Dissolved)                     | Ü       | 1455         | 10:1         | μg/l         | 0.50        | 67          |
| Nickel (Dissolved)                        | Ü       | 1455         | 10:1         | μg/l         | 0.50        | 1.8         |
| Lead (Dissolved)                          | U       | 1455         | 10:1         | μg/l         | 0.50        | 0.72        |
| Selenium (Dissolved)                      | U       | 1455         | 10:1         | μg/l         | 0.50        | 2.1         |
| Vanadium (Dissolved)                      | U       | 1455         | 10:1         | μg/l         | 0.50        | 1.1         |
| Zinc (Dissolved)                          | U       | 1455         | 10:1         | μg/l         | 2.5         | 3.0         |
| Iron (Dissolved)                          | N       | 1455         | 10:1         | μg/l         | 5.0         | 8.4         |
| Low-Level Chromium (Hexavalent)           | N       | 1495         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Aliphatic TPH >C5-C6                      | N       | 1675         | 10:1         | μg/l         | 0.010       | < 0.010     |
| Aliphatic TPH >C6-C8                      | N       | 1675         | 10:1         | μg/l         | 0.010       | < 0.010     |
| Aliphatic TPH >C8-C10                     | N       | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Aliphatic TPH >C10-C12                    | N       | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Aliphatic TPH >C12-C16                    | N       | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Aliphatic TPH >C16-C21                    | N       | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Aliphatic TPH >C21-C35                    | N       | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Aliphatic TPH >C35-C44                    | N       | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Total Aliphatic Hydrocarbons              | N       | 1675         | 10:1         | μg/l         | 1.0         | < 1.0       |
| Aromatic TPH >C5-C7                       | N N     | 1675         | 10:1         | μg/l         | 0.010       | < 0.010     |
| Aromatic TPH > C7-C8                      | N       | 1675         | 10:1         | μg/l         | 0.010       | < 0.010     |
| Aromatic TPH > C8-C10                     | N       | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Aromatic TPH > C10-C12                    | N<br>N  | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Aromatic TPH >C12-C16                     | _       | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Aromatic TPH > C16-C21                    | N<br>N  | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |
| Aromatic TPH >C21-C35                     | N       | 1675         | 10:1         | μg/l         | 0.10        | < 0.10      |

| Client: Causeway Geotech Ltd              |         |              | ob No.:      | 22-45125     |         |                  |
|-------------------------------------------|---------|--------------|--------------|--------------|---------|------------------|
| Quotation No.: Q22-28455                  |         |              |              | st Sam       |         | 1551502          |
|                                           |         |              | Sa           | ample Lo     |         | BH120            |
|                                           |         |              |              |              | e Type: | SOIL             |
|                                           |         |              |              | Top Dep      | , ,     | 1.00             |
|                                           |         |              |              | Date Sa      |         | 21-Nov-2022      |
| Determinand                               | Accred. | SOP          | Type         | Units        |         |                  |
| Aromatic TPH >C35-C44                     | N       | 1675         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Total Aromatic Hydrocarbons               | N       | 1675         | 10:1         | μg/l         | 1.0     | < 1.0            |
| Total Petroleum Hydrocarbons              | N       | 1675         | 10:1         | μg/l         | 2.0     | < 2.0            |
| Dichlorodifluoromethane                   | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Chloromethane                             | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Vinyl Chloride                            | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Bromomethane                              | N N     | 1760         | 10:1         | μg/l         | 2.0     | < 2.0            |
| Chloroethane Trichlorofluoromethane       | N<br>N  | 1760         | 10:1         | μg/l         | 0.20    | < 0.20           |
| Trichlorofluoromethane 1,1-Dichloroethene | N N     | 1760<br>1760 | 10:1<br>10:1 | μg/l         | 0.10    | < 0.10<br>< 0.10 |
| Dichloromethane                           | N N     | 1760         | 10:1         | μg/l<br>μg/l | 50      | < 50.10          |
| 1,1-Dichloroethane                        | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| cis 1.2-Dichloroethene                    | T N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Bromochloromethane                        | T N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Trichloromethane                          | T N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| 1,1,1-Trichloroethane                     | T N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Tetrachloromethane                        | T N     | 1760         | 10:1         | µg/l         | 0.10    | < 0.10           |
| 1,1-Dichloropropene                       | N N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Benzene                                   | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| 1,2-Dichloroethane                        | N       | 1760         | 10:1         | μg/l         | 0.20    | < 0.20           |
| Trichloroethene                           | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| 1,2-Dichloropropane                       | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Dibromomethane                            | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Bromodichloromethane                      | N       | 1760         | 10:1         | μg/l         | 0.50    | < 0.50           |
| cis-1,3-Dichloropropene                   | N       | 1760         | 10:1         | μg/l         | 1.0     | < 1.0            |
| Toluene                                   | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Trans-1,3-Dichloropropene                 | N       | 1760         | 10:1         | μg/l         | 1.0     | < 1.0            |
| 1,1,2-Trichloroethane                     | N       | 1760         | 10:1         | μg/l         | 1.0     | < 1.0            |
| Tetrachloroethene                         | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| 1,3-Dichloropropane                       | N       | 1760         | 10:1         | μg/l         | 0.20    | < 0.20           |
| Dibromochloromethane                      | N       | 1760         | 10:1         | μg/l         | 1.0     | < 1.0            |
| 1,2-Dibromoethane                         | N       | 1760         | 10:1         | μg/l         | 0.50    | < 0.50           |
| Chlorobenzene                             | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| 1,1,1,2-Tetrachloroethane                 | N       | 1760         | 10:1         | μg/l         | 0.20    | < 0.20           |
| Ethylbenzene                              | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| m & p-Xylene                              | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| o-Xylene                                  | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Styrene                                   | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |
| Tribromomethane                           | N       | 1760         | 10:1         | μg/l         | 1.0     | < 1.0            |
| Isopropylbenzene                          | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10           |

| Client: Causeway Geotech Ltd |         |      |      | mtest Jo |         | 22-45125    |
|------------------------------|---------|------|------|----------|---------|-------------|
| Quotation No.: Q22-28455     |         | (    |      | st Sam   |         | 1551502     |
|                              |         |      | Sa   | ample Lo |         | BH120       |
|                              |         |      |      |          | e Type: | SOIL        |
|                              |         |      |      | Top De   |         | 1.00        |
|                              |         |      |      | Date Sa  |         | 21-Nov-2022 |
| Determinand                  | Accred. | SOP  | Type | Units    | LOD     |             |
| Bromobenzene                 | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 1,2,3-Trichloropropane       | N       | 1760 | 10:1 | μg/l     | 5.0     | < 5.0       |
| N-Propylbenzene              | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 2-Chlorotoluene              | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 1,3,5-Trimethylbenzene       | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 4-Chlorotoluene              | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| Tert-Butylbenzene            | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 1,2,4-Trimethylbenzene       | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| Sec-Butylbenzene             | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 1,3-Dichlorobenzene          | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 4-Isopropyltoluene           | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 1,4-Dichlorobenzene          | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| N-Butylbenzene               | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 1,2-Dichlorobenzene          | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 1,2-Dibromo-3-Chloropropane  | N       | 1760 | 10:1 | μg/l     | 5.0     | < 5.0       |
| 1,2,4-Trichlorobenzene       | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| Hexachlorobutadiene          | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| 1,2,3-Trichlorobenzene       | N       | 1760 | 10:1 | μg/l     | 0.20    | < 0.20      |
| Naphthalene                  | N       | 1760 | 10:1 | μg/l     | 0.10    | < 0.10      |
| Phenol                       | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2-Chlorophenol               | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Bis-(2-Chloroethyl)Ether     | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 1,3-Dichlorobenzene          | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 1,4-Dichlorobenzene          | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 1,2-Dichlorobenzene          | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2-Methylphenol (o-Cresol)    | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Bis(2-Chloroisopropyl)Ether  | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Hexachloroethane             | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| N-Nitrosodi-n-propylamine    | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 4-Methylphenol               | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Nitrobenzene                 | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Isophorone                   | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2-Nitrophenol                | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2,4-Dimethylphenol           | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Bis(2-Chloroethoxy)Methane   | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2,4-Dichlorophenol           | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 1,2,4-Trichlorobenzene       | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Naphthalene                  | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 4-Chloroaniline              | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Hexachlorobutadiene          | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |

| Client: Causeway Geotech Ltd |         |      |      | mtest Jo |         | 22-45125    |
|------------------------------|---------|------|------|----------|---------|-------------|
| Quotation No.: Q22-28455     |         | (    |      | st Sam   |         | 1551502     |
|                              |         |      | Sa   | ample Lo |         | BH120       |
|                              |         |      |      |          | e Type: | SOIL        |
|                              |         |      |      | Top De   |         | 1.00        |
|                              |         |      |      | Date Sa  | ampled: | 21-Nov-2022 |
| Determinand                  | Accred. | SOP  | Type | Units    | LOD     |             |
| 4-Chloro-3-Methylphenol      | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2-Methylnaphthalene          | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Hexachlorocyclopentadiene    | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2,4,6-Trichlorophenol        | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2,4,5-Trichlorophenol        | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2-Chloronaphthalene          | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2-Nitroaniline               | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Acenaphthylene               | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Dimethylphthalate            | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2,6-Dinitrotoluene           | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Acenaphthene                 | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 3-Nitroaniline               | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Dibenzofuran                 | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 4-Chlorophenylphenylether    | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2,4-Dinitrotoluene           | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Fluorene                     | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Diethyl Phthalate            | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 4-Nitroaniline               | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 2-Methyl-4,6-Dinitrophenol   | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Azobenzene                   | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| 4-Bromophenylphenyl Ether    | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Hexachlorobenzene            | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Pentachlorophenol            | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Phenanthrene                 | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Anthracene                   | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Carbazole                    | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Di-N-Butyl Phthalate         | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Fluoranthene                 | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Pyrene                       | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Butylbenzyl Phthalate        | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Benzo[a]anthracene           | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Chrysene                     | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Bis(2-Ethylhexyl)Phthalate   | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Di-N-Octyl Phthalate         | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Benzo[b]fluoranthene         | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Benzo[k]fluoranthene         | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Benzo[a]pyrene               | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Indeno(1,2,3-c,d)Pyrene      | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Dibenz(a,h)Anthracene        | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |
| Benzo[g,h,i]perylene         | N       | 1790 | 10:1 | μg/l     | 0.050   | < 0.050     |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.: |      |          |         |         |  |  |
|------------------------------|---------|-------------------|------|----------|---------|---------|--|--|
| Quotation No.: Q22-28455     |         | (                 |      | st Sam   |         | 1551502 |  |  |
|                              |         |                   | Sa   | ample Lo |         | BH120   |  |  |
|                              |         |                   |      |          | e Type: | SOIL    |  |  |
|                              |         |                   |      | Top De   |         | 1.00    |  |  |
|                              |         | Date Sampled      |      |          |         |         |  |  |
| Determinand                  | Accred. | SOP               | Type | Units    | LOD     |         |  |  |
| Naphthalene                  | N       | 1800              | 10:1 | μg/l     | 0.010   | 1.1     |  |  |
| Acenaphthylene               | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Acenaphthene                 | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Fluorene                     | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Phenanthrene                 | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Anthracene                   | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Fluoranthene                 | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Pyrene                       | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Benzo[a]anthracene           | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Chrysene                     | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Benzo[b]fluoranthene         | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Benzo[k]fluoranthene         | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Benzo[a]pyrene               | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Dibenz(a,h)Anthracene        | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Benzo[g,h,i]perylene         | N       | 1800              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Total Of 16 PAH's            | N       | 1800              | 10:1 | μg/l     | 0.20    | 1.1     |  |  |
| PCB 81                       | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| PCB 77                       | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| PCB 105                      | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| PCB 114                      | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| PCB 118                      | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| PCB 123                      | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| PCB 126                      | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| PCB 156                      | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| PCB 157                      | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| PCB 167                      | N       | 1815              | 10:1 | µg/l     | 0.010   | < 0.010 |  |  |
| PCB 169                      | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| PCB 189                      | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Total PCBs (12 Congeners)    | N       | 1815              | 10:1 | μg/l     | 0.010   | < 0.010 |  |  |
| Phenol                       | N N     | 1900              | 10:1 | μg/l     | 0.20    | < 0.20  |  |  |
| 2-Chlorophenol               | N       | 1900              | 10:1 | μg/l     | 0.20    | < 0.20  |  |  |
| 2-Methylphenol (o-Cresol)    | N       | 1900              | 10:1 | μg/l     | 0.20    | < 0.20  |  |  |
| 3-Methylphenol               | N       | 1900              | 10:1 | μg/l     | 0.20    | < 0.20  |  |  |
| 4-Methylphenol               | N       | 1900              | 10:1 | μg/l     | 0.20    | < 0.20  |  |  |
| 2-Nitrophenol                | N       | 1900              | 10:1 | μg/l     | 0.20    | < 0.20  |  |  |
| 2,4-Dimethylphenol           | N       | 1900              | 10:1 | μg/l     | 0.20    | < 0.20  |  |  |
| 2,4-Dichlorophenol           | N N     | 1900              | 10:1 | μg/l     | 0.20    | < 0.20  |  |  |
| 2,6-Dichlorophenol           | N       | 1900              | 10:1 | μg/l     | 0.20    | < 0.20  |  |  |
| 4-Chloro-3-Methylphenol      | N N     | 1900              | 10:1 | μg/l     | 0.20    | < 0.20  |  |  |

| 1 TO COL. 22 TO THAT I MIT I ATTIMITY DESIGN OF |         |      |          |          |          |             |  |  |  |
|-------------------------------------------------|---------|------|----------|----------|----------|-------------|--|--|--|
| Client: Causeway Geotech Ltd                    |         |      | Che      | mtest Jo | ob No.:  | 22-45125    |  |  |  |
| Quotation No.: Q22-28455                        |         | (    | Chemte   | st Sam   | ple ID.: | 1551502     |  |  |  |
|                                                 |         |      | ocation: | BH120    |          |             |  |  |  |
|                                                 |         |      |          | Sample   | е Туре:  | SOIL        |  |  |  |
|                                                 |         |      |          | Top Dep  | ` '      | 1.00        |  |  |  |
|                                                 |         |      |          | Date Sa  | ampled:  | 21-Nov-2022 |  |  |  |
| Determinand                                     | Accred. | SOP  | Type     | Units    | LOD      |             |  |  |  |
| 2,3,4-Trichlorophenol                           | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 2,3,5-Trichlorophenol                           | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 2,3,6-Trichlorophenol                           | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 2,4,6-Trichlorophenol                           | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 2,4,5-Trichlorophenol                           | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 4-Nitrophenol                                   | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 2,3,4,5-Tetrachlorophenol                       | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 2,3,4,6-Tetrachlorophenol                       | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 2,3,5,6-Tetrachlorophenol                       | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 3,4,5-Trichlorophenol                           | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 2-Methyl-4,6-Dinitrophenol                      | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| Pentachlorophenol                               | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| 2-Sec-Butyl-4,6-Dinitrophenol                   | N       | 1900 | 10:1     | μg/l     | 0.20     | < 0.20      |  |  |  |
| Total Phenols                                   | N       | 1900 | 10:1     | μg/l     | 5.00     | < 5.0       |  |  |  |

| Client: Causeway Geotech Ltd        | Chemtest Job No.: |                      |          | ob No.:  | 22-45125      | 22-45125      | 22-45125                |
|-------------------------------------|-------------------|----------------------|----------|----------|---------------|---------------|-------------------------|
| Quotation No.: Q22-28455            |                   | Chemte               | est Sam  | ple ID.: | 1551499       | 1551501       | 1551513                 |
|                                     |                   | Sa                   | ample Lo | ocation: | BH119         | BH120         | BH120                   |
|                                     |                   |                      | Sampl    | е Туре:  | SOIL          | SOIL          | SOIL                    |
|                                     |                   |                      | Top Dep  | oth (m): | 1.00          | 0.50          | 6.50                    |
|                                     |                   |                      | Date Sa  | ampled:  | 21-Nov-2022   | 21-Nov-2022   | 21-Nov-2022             |
|                                     |                   | Asbestos Lab: DURHAM |          | DURHAM   | DURHAM        |               |                         |
| Determinand                         | Accred.           | SOP                  | Units    | LOD      |               |               |                         |
| ACM Type                            | U                 | 2192                 |          | N/A      | Fibres/Clumps | Fibres/Clumps | -                       |
| Asbestos Identification             | U                 | 2192                 |          | N/A      | Amosite       | Chrysotile    | No Asbestos<br>Detected |
| Asbestos by Gravimetry              | U                 | 2192                 | %        | 0.001    | 0.004         | 0.002         |                         |
| Total Asbestos                      | U                 | 2192                 | %        | 0.001    | 0.004         | 0.002         |                         |
| Moisture                            | N                 | 2030                 | %        | 0.020    | 10            | 9.7           | 9.5                     |
| Natural Moisture Content            | N                 | 2030                 | %        | 0.020    | 11            | 11            | 10                      |
| Soil Colour                         | N                 | 2040                 |          | N/A      | Brown         | Brown         | Brown                   |
| Other Material                      | N                 | 2040                 |          | N/A      | Stones        | Stones        | Stones                  |
| Soil Texture                        | N                 | 2040                 |          | N/A      | Gravel        | Sand          | Sand                    |
| рН                                  | U                 | 2010                 |          | 4.0      | 10.0          | 8.4           | 8.4                     |
| Boron (Hot Water Soluble)           | U                 | 2120                 | mg/kg    | 0.40     | 1.3           | 0.48          | < 0.40                  |
| Sulphate (2:1 Water Soluble) as SO4 | U                 | 2120                 | g/l      | 0.010    | 0.48          | 0.27          | 0.027                   |
| Total Sulphur                       | U                 | 2175                 |          | 0.010    | 0.099         | 0.26          | 0.14                    |
| Sulphur (Elemental)                 | U                 | 2180                 |          | 1.0      | 38            | 420           | 160                     |
| Cyanide (Free)                      | U                 | 2300                 |          | 0.50     | < 0.50        | < 0.50        | < 0.50                  |
| Cyanide (Total)                     | U                 | 2300                 | mg/kg    | 0.50     | < 0.50        | < 0.50        | < 0.50                  |
| Thiocyanate                         | U                 | 2300                 |          | 5.0      | < 5.0         | < 5.0         | < 5.0                   |
| Aluminium (Total)                   | N                 | 2430                 | mg/kg    | 100      | 3200          | 4200          | 1600                    |
| Iron (Total)                        | N                 | 2430                 |          | 100      | 8200          | 12000         | 6000                    |
| Arsenic                             | U                 | 2455                 |          | 0.5      | 8.5           | 16            | 4.4                     |
| Barium                              | U                 | 2455                 |          | 0        | 71            | 190           | 24                      |
| Beryllium                           | U                 | 2455                 |          | 0.5      | < 0.5         | < 0.5         | < 0.5                   |
| Cadmium                             | U                 | 2455                 |          | 0.10     | 0.57          | 0.88          | 0.23                    |
| Chromium                            | U                 | 2455                 |          | 0.5      | 15            | 16            | 9.1                     |
| Manganese                           | U                 | 2455                 | mg/kg    | 1.0      | 610           | 1100          | 1200                    |
| Copper                              | U                 | 2455                 |          | 0.50     | 19            | 44            | 27                      |
| Mercury                             | U                 | 2455                 |          | 0.05     | 0.07          | 0.45          | 0.08                    |
| Nickel                              | U                 | 2455                 |          | 0.50     | 16            | 24            | 11                      |
| Lead                                | U                 | 2455                 | 0        | 0.50     | 40            | 260           | 25                      |
| Selenium                            | U                 | 2455                 | mg/kg    | 0.25     | 0.79          | 1.2           | 0.39                    |
| Vanadium                            | U                 | 2455                 | mg/kg    | 0.5      | 24            | 20            | 9.5                     |
| Zinc                                | U                 | 2455                 | mg/kg    | 0.50     | 62            | 170           | 49                      |
| Chromium (Hexavalent)               | N                 | 2490                 |          | 0.50     | < 0.50        | < 0.50        | < 0.50                  |
| Organic Matter                      | U                 | 2625                 | %        | 0.40     | 3.2           | 5.5           | 4.8                     |
| Total Organic Carbon                | U                 | 2625                 | %        | 0.20     | 1.9           | 3.2           | 2.8                     |
| Aliphatic TPH >C5-C6                | N                 | 2680                 | mg/kg    | 0.010    | < 0.010       | < 0.010       | < 0.010                 |
| Aliphatic TPH >C6-C8                | N                 | 2680                 |          |          | < 0.010       | < 0.010       | < 0.010                 |
| Aliphatic TPH >C8-C10               | N                 | 2680                 |          |          | < 0.10        | < 0.10        | < 0.10                  |

| Client: Causeway Geotech Ltd |         |               | mtest Jo       |          | 22-45125    | 22-45125    | 22-45125    |
|------------------------------|---------|---------------|----------------|----------|-------------|-------------|-------------|
| Quotation No.: Q22-28455     | (       |               | st Sam         |          | 1551499     | 1551501     | 1551513     |
|                              |         | Sa            | ample Lo       | ocation: | BH119       | BH120       | BH120       |
|                              |         |               |                | e Type:  | SOIL        | SOIL        | SOIL        |
|                              |         |               | Top Dep        | oth (m): | 1.00        | 0.50        | 6.50        |
|                              |         | Date Sampled: |                |          | 21-Nov-2022 | 21-Nov-2022 | 21-Nov-2022 |
|                              |         |               | Asbest         | os Lab:  | DURHAM      | DURHAM      | DURHAM      |
| Determinand                  | Accred. | SOP           | Units          | LOD      |             |             |             |
| Aliphatic TPH >C10-C12       | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C12-C16       | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C16-C21       | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C21-C35       | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C35-C44       | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Total Aliphatic Hydrocarbons | N       | 2680          | mg/kg          | 1.0      | < 1.0       | < 1.0       | < 1.0       |
| Aromatic TPH >C5-C7          | N       | 2680          | mg/kg          | _        | < 0.010     | < 0.010     | < 0.010     |
| Aromatic TPH >C7-C8          | N       | 2680          | mg/kg          | 0.010    | < 0.010     | < 0.010     | < 0.010     |
| Aromatic TPH >C8-C10         | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C10-C12        | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C12-C16        | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C16-C21        | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C21-C35        | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C35-C44        | N       | 2680          | mg/kg          | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Total Aromatic Hydrocarbons  | N       | 2680          | mg/kg          | 1.0      | < 1.0       | < 1.0       | < 1.0       |
| Total Petroleum Hydrocarbons | N       | 2680          | mg/kg          | 2.0      | < 2.0       | < 2.0       | < 2.0       |
| Dichlorodifluoromethane      | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Chloromethane                | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Vinyl Chloride               | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Bromomethane                 | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Chloroethane                 | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Trichlorofluoromethane       | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| 1,1-Dichloroethene           | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Trans 1.2-Dichloroethene     | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| 1.1-Dichloroethane           | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| cis 1,2-Dichloroethene       | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Bromochloromethane           | N       | 2760          | μg/kg          | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Trichloromethane             | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| 1,1,1-Trichloroethane        | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Tetrachloromethane           | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| 1,1-Dichloropropene          | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Benzene                      | N       | 2760          | μg/kg          | 0.20     | 0.38        | 0.68        | 0.29        |
| 1,2-Dichloroethane           | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.29      |
| Trichloroethene              | N       | 2760          | μg/kg          | 0.20     | 0.22        | < 0.20      | < 0.20      |
| 1,2-Dichloropropane          | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Dibromomethane               | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| Bromodichloromethane         | N       | 2760          | μg/kg          | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| cis-1,3-Dichloropropene      | N       | 2760          | μg/kg<br>μg/kg | 0.20     | < 0.20      | < 0.20      | < 0.20      |
| oio-1,o-Dioriioroproperie    | IN      | 2100          | μg/kg<br>μg/kg | 0.20     | < 0.∠0      | < 0.∠0      | < 0.∠0      |

| Client: Causeway Geotech Ltd  |         |                |                | ob No.: | 22-45125           | 22-45125           | 22-45125    |
|-------------------------------|---------|----------------|----------------|---------|--------------------|--------------------|-------------|
| Quotation No.: Q22-28455      | (       |                | st Sam         |         | 1551499            | 1551501            | 1551513     |
|                               |         | Sa             | ample Lo       |         | BH119              | BH120              | BH120       |
|                               |         |                |                | е Туре: | SOIL               | SOIL               | SOIL        |
|                               |         | Top Depth (m): |                |         | 1.00               | 0.50               | 6.50        |
|                               |         | Date Sampled:  |                |         | 21-Nov-2022        | 21-Nov-2022        | 21-Nov-2022 |
|                               |         |                | Asbest         | os Lab: | DURHAM             | DURHAM             | DURHAM      |
| Determinand                   | Accred. | SOP            | Units          | LOD     |                    |                    |             |
| Trans-1,3-Dichloropropene     | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,1,2-Trichloroethane         | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Tetrachloroethene             | N       | 2760           | μg/kg          | 0.20    | 0.21               | < 0.20             | < 0.20      |
| 1,3-Dichloropropane           | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Dibromochloromethane          | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,2-Dibromoethane             | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Chlorobenzene                 | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,1,1,2-Tetrachloroethane     | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Ethylbenzene                  | N       | 2760           | μg/kg          | 0.20    | < 0.20             | 0.29               | < 0.20      |
| m & p-Xylene                  | N       | 2760           | μg/kg          | 0.20    | 0.28               | 0.35               | 0.60        |
| o-Xylene                      | N       | 2760           | μg/kg          | 0.20    | < 0.20             | 0.40               | 0.30        |
| Styrene                       | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Tribromomethane               | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Isopropylbenzene              | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Bromobenzene                  | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,2,3-Trichloropropane        | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| N-Propylbenzene               | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 2-Chlorotoluene               | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,3,5-Trimethylbenzene        | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 4-Chlorotoluene               | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Tert-Butylbenzene             | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,2,4-Trimethylbenzene        | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Sec-Butylbenzene              | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1.3-Dichlorobenzene           | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 4-Isopropyltoluene            | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,4-Dichlorobenzene           | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| N-Butylbenzene                | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,2-Dichlorobenzene           | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,2-Dibromo-3-Chloropropane   | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,2,4-Trichlorobenzene        | N N     | 2760           | μg/kg<br>μg/kg | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Hexachlorobutadiene           | N       | 2760           | μg/kg          | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| 1,2,3-Trichlorobenzene        | N N     | 2760           | μg/kg<br>μg/kg | 0.20    | < 0.20             | < 0.20             | < 0.20      |
| Methyl Tert-Butyl Ether       | N N     | 2760           | μg/kg<br>μg/kg | 0.20    | < 0.20             | < 0.20             | < 0.20      |
|                               | N N     | 2790           | )              |         |                    |                    |             |
| N-Nitrosodimethylamine Phenol | N N     |                | mg/kg          |         | < 0.050            | < 0.050            | < 0.050     |
|                               | N N     | 2790<br>2790   | mg/kg          | 0.050   | < 0.050<br>< 0.050 | < 0.050<br>< 0.050 | < 0.050     |
| 2-Chlorophenol                |         |                | mg/kg          | 0.050   |                    |                    | < 0.050     |
| Bis-(2-Chloroethyl)Ether      | N       | 2790           | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050     |
| 1,3-Dichlorobenzene           | N       | 2790           | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050     |
| 1,4-Dichlorobenzene           | N       | 2790           | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050     |

| Client: Causeway Geotech Ltd Chemtest Job No.: 22-4 |         |        |          |          |             | 22-45125    | 22-45125    |
|-----------------------------------------------------|---------|--------|----------|----------|-------------|-------------|-------------|
| Quotation No.: Q22-28455                            |         | Chemte | st Sam   | ple ID.: | 1551499     | 1551501     | 1551513     |
|                                                     |         | Sa     | ample Lo | ocation: | BH119       | BH120       | BH120       |
|                                                     |         |        | Sample   | e Type:  | SOIL        | SOIL        | SOIL        |
|                                                     |         |        | Top Dep  | oth (m): | 1.00        | 0.50        | 6.50        |
|                                                     |         |        | Date Sa  | ampled:  | 21-Nov-2022 | 21-Nov-2022 | 21-Nov-2022 |
|                                                     |         |        | Asbest   | os Lab:  | DURHAM      | DURHAM      | DURHAM      |
| Determinand                                         | Accred. | SOP    | Units    | LOD      |             |             |             |
| 1,2-Dichlorobenzene                                 | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2-Methylphenol                                      | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Bis(2-Chloroisopropyl)Ether                         | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Hexachloroethane                                    | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| N-Nitrosodi-n-propylamine                           | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 4-Methylphenol                                      | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Nitrobenzene                                        | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Isophorone                                          | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2-Nitrophenol                                       | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2,4-Dimethylphenol                                  | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Bis(2-Chloroethoxy)Methane                          | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2,4-Dichlorophenol                                  | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 1,2,4-Trichlorobenzene                              | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Naphthalene                                         | N       | 2790   | mg/kg    | 0.050    | < 0.050     | 0.17        | < 0.050     |
| 4-Chloroaniline                                     | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Hexachlorobutadiene                                 | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 4-Chloro-3-Methylphenol                             | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2-Methylnaphthalene                                 | N       | 2790   | mg/kg    | 0.050    | < 0.050     | 0.17        | < 0.050     |
| Hexachlorocyclopentadiene                           | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2,4,6-Trichlorophenol                               | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2,4,5-Trichlorophenol                               | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2-Chloronaphthalene                                 | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2-Nitroaniline                                      | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Acenaphthylene                                      | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Dimethylphthalate                                   | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2,6-Dinitrotoluene                                  | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Acenaphthene                                        | N       | 2790   | mg/kg    | 0.050    | < 0.050     | 0.19        | < 0.050     |
| 3-Nitroaniline                                      | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Dibenzofuran                                        | N       | 2790   | mg/kg    | 0.050    | < 0.050     | 0.12        | < 0.050     |
| 4-Chlorophenylphenylether                           | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2,4-Dinitrotoluene                                  | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Fluorene                                            | N       | 2790   | mg/kg    | 0.050    | < 0.050     | 0.18        | < 0.050     |
| Diethyl Phthalate                                   | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 4-Nitroaniline                                      | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 2-Methyl-4,6-Dinitrophenol                          | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Azobenzene                                          | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| 4-Bromophenylphenyl Ether                           | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Hexachlorobenzene                                   | N       | 2790   | mg/kg    | 0.050    | < 0.050     | < 0.050     | < 0.050     |
| Pentachlorophenol                                   | N       | 2790   | mg/kg    | 0.050    | < 0.050     | 0.16        | < 0.050     |

| Client: Causeway Geotech Ltd |                           |        |             |             |             | 22-45125 | 22-45125 |
|------------------------------|---------------------------|--------|-------------|-------------|-------------|----------|----------|
| Quotation No.: Q22-28455     | (                         | Chemte | est Sam     | ple ID.:    | 1551499     | 1551501  | 1551513  |
|                              |                           | Sa     | ample Lo    | ocation:    | BH119       | BH120    | BH120    |
|                              |                           |        | Sampl       | e Type:     | SOIL        | SOIL     | SOIL     |
|                              |                           |        | Top Dep     | oth (m):    | 1.00        | 0.50     | 6.50     |
|                              | Date Sampled: 21-Nov-2022 |        | 21-Nov-2022 | 21-Nov-2022 | 21-Nov-2022 |          |          |
|                              |                           |        | Asbest      | os Lab:     | DURHAM      | DURHAM   | DURHAM   |
| Determinand                  | Accred.                   | SOP    | Units       | LOD         |             |          |          |
| Phenanthrene                 | N                         | 2790   | mg/kg       | 0.050       | 0.13        | 1.5      | < 0.050  |
| Anthracene                   | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | 0.48     | < 0.050  |
| Carbazole                    | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | 0.12     | < 0.050  |
| Di-N-Butyl Phthalate         | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | < 0.050  | < 0.050  |
| Fluoranthene                 | N                         | 2790   | mg/kg       | 0.050       | 0.18        | 3.1      | < 0.050  |
| Pyrene                       | N                         | 2790   | mg/kg       | 0.050       | 0.16        | 2.8      | < 0.050  |
| Butylbenzyl Phthalate        | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | < 0.050  | < 0.050  |
| Benzo[a]anthracene           | N                         | 2790   | mg/kg       | 0.050       | 0.078       | 1.5      | < 0.050  |
| Chrysene                     | N                         | 2790   | mg/kg       | 0.050       | 0.089       | 1.6      | < 0.050  |
| Bis(2-Ethylhexyl)Phthalate   | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | 0.10     | < 0.050  |
| Di-N-Octyl Phthalate         | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | < 0.050  | < 0.050  |
| Benzo[b]fluoranthene         | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | 1.7      | < 0.050  |
| Benzo[k]fluoranthene         | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | 0.69     | < 0.050  |
| Benzo[a]pyrene               | N                         | 2790   | mg/kg       | 0.050       | 0.067       | 1.4      | < 0.050  |
| Indeno(1,2,3-c,d)Pyrene      | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | 0.69     | < 0.050  |
| Dibenz(a,h)Anthracene        | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | 0.19     | < 0.050  |
| Benzo[g,h,i]perylene         | N                         | 2790   |             | 0.050       | < 0.050     | 0.82     | < 0.050  |
| 4-Nitrophenol                | N                         | 2790   | mg/kg       | 0.050       | < 0.050     | < 0.050  | < 0.050  |
| Naphthalene                  | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 0.38     | 0.12     |
| Acenaphthylene               | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 0.14     | < 0.010  |
| Acenaphthene                 | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 0.12     | < 0.010  |
| Fluorene                     | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 0.22     | < 0.010  |
| Phenanthrene                 | N                         | 2800   |             | 0.010       | < 0.010     | 1.5      | 0.34     |
| Anthracene                   | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 0.34     | 0.12     |
| Fluoranthene                 | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 1.9      | 0.37     |
| Pyrene                       | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 1.7      | 0.36     |
| Benzo[a]anthracene           | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 0.88     | < 0.010  |
| Chrysene                     | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 0.71     | < 0.010  |
| Benzo[b]fluoranthene         | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 0.93     | < 0.010  |
| Benzo[k]fluoranthene         | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 0.42     | < 0.010  |
| Benzo[a]pyrene               | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | 0.59     | < 0.010  |
| Indeno(1,2,3-c,d)Pyrene      | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | < 0.010  | < 0.010  |
| Dibenz(a,h)Anthracene        | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | < 0.010  | < 0.010  |
| Benzo[g,h,i]perylene         | N                         | 2800   | mg/kg       | 0.010       | < 0.010     | < 0.010  | < 0.010  |
| Total Of 16 PAH's            | N                         | 2800   | mg/kg       | 0.20        | < 0.20      | 9.8      | 1.3      |
| Resorcinol                   | U                         | 2920   | mg/kg       | 0.020       | < 0.020     | < 0.020  | < 0.020  |
| Phenol                       | U                         | 2920   | mg/kg       | 0.020       | < 0.020     | < 0.020  | < 0.020  |
| Cresols                      | U                         | 2920   | mg/kg       | 0.020       | < 0.020     | < 0.020  | < 0.020  |
| Xylenols                     | U                         | 2920   |             | 0.020       | < 0.020     | < 0.020  | < 0.020  |

| Client: Causeway Geotech Ltd |                  | Che                | mtest Jo | ob No.:     | 22-45125    | 22-45125    | 22-45125 |
|------------------------------|------------------|--------------------|----------|-------------|-------------|-------------|----------|
| Quotation No.: Q22-28455     | (                | Chemte             | st Sam   | ple ID.:    | 1551499     | 1551501     | 1551513  |
|                              | Sample Location: |                    |          | BH119       | BH120       | BH120       |          |
|                              | Sample Type:     |                    |          |             | SOIL        | SOIL        | SOIL     |
|                              | Top Depth (m):   |                    |          |             | 1.00        | 0.50        | 6.50     |
|                              | Date Sampled:    |                    |          | 21-Nov-2022 | 21-Nov-2022 | 21-Nov-2022 |          |
|                              |                  |                    | Asbest   | os Lab:     | DURHAM      | DURHAM      | DURHAM   |
| Determinand                  | Accred.          | SOP                | Units    | LOD         |             |             |          |
| 1-Naphthol                   | N                | 2920               | mg/kg    | 0.020       | < 0.020     | < 0.020     | < 0.020  |
| Trimethylphenols             | U                | U 2920 mg/kg 0.020 |          | < 0.020     | < 0.020     | < 0.020     |          |
| Total Phenols                | U                | 2920               | mg/kg    | 0.10        | < 0.10      | < 0.10      | < 0.10   |

## **Test Methods**

| SOP  | Title                                                                                   | Parameters included                                                                                                                                                                                                                                          | Method summary                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1010 | pH Value of Waters                                                                      | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 1220 | Anions, Alkalinity & Ammonium in Waters                                                 | Fluoride; Chloride; Nitrite; Nitrate; Total;<br>Oxidisable Nitrogen (TON); Sulfate; Phosphate;<br>Alkalinity; Ammonium                                                                                                                                       | Automated colorimetric analysis using<br>'Aquakem 600' Discrete Analyser.                                                                        |
| 1300 | Cyanides & Thiocyanate in Waters                                                        | Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                              | Continuous Flow Analysis.                                                                                                                        |
| 1325 | Sulphide in Waters                                                                      | Sulphides                                                                                                                                                                                                                                                    | Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.                                         |
| 1455 | Metals in Waters by ICP-MS                                                              | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc                                                                   | determination by inductively coupled plasma                                                                                                      |
| 1495 | Low Level Hexavalent<br>Chromium in Waters                                              | Chromium [VI]                                                                                                                                                                                                                                                | Colorimetric determination of hexavalent chromium expressed as Cr (VI) µg/l in water, using Ion Chromatography and UV-visible spectrophotometry. |
| 1675 | TPH Aliphatic/Aromatic split in<br>Waters by GC-FID(cf. Texas<br>Method 1006 / TPH CWG) | Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35, >C35-C44                                                                              | Pentane extraction / GCxGC FID detection                                                                                                         |
| 1760 | Volatile Organic Compounds<br>(VOCs) in Waters by<br>Headspace GC-MS                    | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)                                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.     |
| 1790 | Semi-Volatile Organic<br>Compounds (SVOCs) in<br>Waters by GC-MS                        | Semi-volatile organic compounds                                                                                                                                                                                                                              | Solvent extraction / GCMS detection                                                                                                              |
| 1800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Waters by GC-MS              | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene | Pentane extraction / GCMS detection                                                                                                              |
| 1815 | Polychlorinated Biphenyls<br>(PCB) ICES7 Congeners in<br>Waters by GC-MS                | ICES7 PCB congeners                                                                                                                                                                                                                                          | Solvent extraction / GCMS detection                                                                                                              |
| 1900 | Phenols in Waters by GC-MS                                                              | Approximately 24 substituted Phenols, including Chlorophenols                                                                                                                                                                                                | Solvent extraction / GCMS detection                                                                                                              |
| 2010 | pH Value of Soils                                                                       | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS)                              | Moisture content                                                                                                                                                                                                                                             | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                             |
| 2040 | Soil Description(Requirement of MCERTS)                                                 | Soil description                                                                                                                                                                                                                                             | As received soil is described based upon BS5930                                                                                                  |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                                  | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                         | Aqueous extraction / ICP-OES                                                                                                                     |
| 2175 | Total Sulphur in Soils                                                                  | Total Sulphur                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                       |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                                    | Sulphur                                                                                                                                                                                                                                                      | Dichloromethane extraction / HPLC with UV detection                                                                                              |
| 2192 | Asbestos                                                                                | Asbestos                                                                                                                                                                                                                                                     | Polarised light microscopy / Gravimetry                                                                                                          |
| 2300 | Cyanides & Thiocyanate in Soils                                                         | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                           | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                             |

## **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA Method 8270)                                                                                                                                                                                                                    | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |
| 640  | Characterisation of Waste (Leaching C10)                                 | Waste material including soil, sludges and granular waste                                                                                                                                                                                                                 | ComplianceTest for Leaching of Granular<br>Waste Material and Sludge                                                                                                                   |

### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-45332-1

Initial Date of Issue: 11-Jan-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen McCracken Stephen Watson

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 24-Nov-2022

Order No.: Date Instructed: 07-Dec-2022

No. of Samples: 2

Turnaround (Wkdays): 7 Results Due: 15-Dec-2022

Date Approved: 11-Jan-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

| Client: Causeway Geotech Ltd          |         | Chemtest Job No. |              |              |              |             |  |  |
|---------------------------------------|---------|------------------|--------------|--------------|--------------|-------------|--|--|
| Quotation No.: Q22-28455              |         |                  |              | st Sam       |              | 1552425     |  |  |
|                                       |         |                  | Sa           | ample Lo     |              | BH123       |  |  |
|                                       |         |                  |              |              | e Type:      | SOIL        |  |  |
|                                       |         |                  |              | Top De       |              | 4.0         |  |  |
|                                       |         |                  | _            | Date Sa      |              | 22-Nov-2022 |  |  |
| Determinand                           | Accred. | SOP              | Туре         | Units        | LOD          |             |  |  |
| pH                                    | U       | 1010             | 10:1         |              | N/A          | 8.4         |  |  |
| Phosphate as P                        | U       | 1220             | 10:1         | mg/l         | 0.050        | < 0.050     |  |  |
| Sulphur (Tatal)                       | N       | 1220             | 10:1         | mg/l         | 1.0          | 21          |  |  |
| Cyanide (Total)                       | U       | 1300             | 10:1         | mg/l         | 0.050        | 0.050       |  |  |
| Cyanide (Free)                        | U       | 1300             | 10:1         | mg/l         | 0.050        | < 0.050     |  |  |
| Sulphide                              | U       | 1325             | 10:1         | mg/l         | 0.050        | < 0.050     |  |  |
| Calcium                               |         | 1455             | 10:1         | mg/l         | 2.00         | 29          |  |  |
| Aluminium (Dissolved)                 | N<br>U  | 1455             | 10:1         | μg/l         | 5.0          | 130         |  |  |
| Arsenic (Dissolved) Boron (Dissolved) | U       | 1455<br>1455     | 10:1<br>10:1 | μg/l<br>μg/l | 0.20<br>10.0 | 8.7<br>130  |  |  |
| Barium (Dissolved)                    | U       | 1455             | 10:1         |              | 5.00         | 28          |  |  |
| Beryllium (Dissolved)                 | U       | 1455             | 10:1         | μg/l<br>μg/l | 1.00         | < 1.0       |  |  |
| Cadmium (Dissolved)                   | U       | 1455             | 10:1         | μg/l         | 0.11         | < 0.11      |  |  |
| Chromium (Dissolved)                  | Ü       | 1455             | 10:1         | μg/l         | 0.50         | < 0.50      |  |  |
| Copper (Dissolved)                    | Ü       | 1455             | 10:1         | μg/l         | 0.50         | < 0.50      |  |  |
| Mercury (Dissolved)                   | Ü       | 1455             | 10:1         | μg/l         | 0.05         | < 0.05      |  |  |
| Manganese (Dissolved)                 | Ü       | 1455             | 10:1         | μg/l         | 0.50         | 31          |  |  |
| Nickel (Dissolved)                    | Ü       | 1455             | 10:1         | μg/l         | 0.50         | 3.2         |  |  |
| Lead (Dissolved)                      | Ū       | 1455             | 10:1         | μg/l         | 0.50         | 2.7         |  |  |
| Selenium (Dissolved)                  | U       | 1455             | 10:1         | μg/l         | 0.50         | < 0.50      |  |  |
| Vanadium (Dissolved)                  | U       | 1455             | 10:1         | μg/l         | 0.50         | 0.91        |  |  |
| Zinc (Dissolved)                      | U       | 1455             | 10:1         | μg/l         | 2.5          | 2.9         |  |  |
| Iron (Dissolved)                      | N       | 1455             | 10:1         | μg/l         | 5.0          | 16          |  |  |
| Low-Level Chromium (Hexavalent)       | N       | 1495             | 10:1         | μg/l         | 0.10         | < 0.10      |  |  |
| Aliphatic TPH >C5-C6                  | N       | 1675             | 10:1         | μg/l         | 0.010        | [B] < 0.010 |  |  |
| Aliphatic TPH >C6-C8                  | N       | 1675             | 10:1         | μg/l         | 0.010        | [B] < 0.010 |  |  |
| Aliphatic TPH >C8-C10                 | N       | 1675             | 10:1         | μg/l         | 0.10         | [B] < 0.10  |  |  |
| Aliphatic TPH >C10-C12                | N       | 1675             | 10:1         | μg/l         | 0.10         | [B] 41      |  |  |
| Aliphatic TPH >C12-C16                | N       | 1675             | 10:1         | μg/l         | 0.10         | [B] 21      |  |  |
| Aliphatic TPH >C16-C21                | N       | 1675             | 10:1         | μg/l         | 0.10         | [B] < 0.10  |  |  |
| Aliphatic TPH >C21-C35                | N       | 1675             | 10:1         | μg/l         | 0.10         | [B] 100     |  |  |
| Aliphatic TPH >C35-C44                | N       | 1675             | 10:1         | μg/l         | 0.10         | [B] < 0.10  |  |  |
| Total Aliphatic Hydrocarbons          | N       | 1675             | 10:1         | μg/l         | 1.0          | [B] 170     |  |  |
| Aromatic TPH >C5-C7                   | N       | 1675             | 10:1         | μg/l         | 0.010        | [B] < 0.010 |  |  |
| Aromatic TPH >C7-C8                   | N       | 1675             | 10:1         | μg/l         | 0.010        | [B] < 0.010 |  |  |
| Aromatic TPH >C8-C10                  | N       | 1675             | 10:1         | μg/l         | 0.10         | [B] < 0.10  |  |  |
| Aromatic TPH >C10-C12                 | N       | 1675             | 10:1         | μg/l         | 0.10         | [B] 55      |  |  |
| Aromatic TPH > C12-C16                | N       | 1675             | 10:1         | μg/l         | 0.10         | [B] 67      |  |  |
| Aromatic TPH > C16-C21                | N N     | 1675             | 10:1         | μg/l         | 0.10         | [B] < 0.10  |  |  |
| Aromatic TPH >C21-C35                 | N       | 1675             | 10:1         | μg/l         | 0.10         | [B] 28      |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No. |      |          |         |             |  |  |
|------------------------------|---------|------------------|------|----------|---------|-------------|--|--|
| Quotation No.: Q22-28455     |         | (                |      | st Sam   |         | 1552425     |  |  |
|                              |         |                  | Sa   | ample Lo |         | BH123       |  |  |
|                              |         |                  |      |          | e Type: | SOIL        |  |  |
|                              |         |                  |      | Top Dep  |         | 4.0         |  |  |
|                              |         |                  |      | Date Sa  |         | 22-Nov-2022 |  |  |
| Determinand                  | Accred. | SOP              | Type | Units    | LOD     |             |  |  |
| Aromatic TPH >C35-C44        | N       | 1675             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Total Aromatic Hydrocarbons  | N       | 1675             | 10:1 | μg/l     | 1.0     | [B] 150     |  |  |
| Total Petroleum Hydrocarbons | N       | 1675             | 10:1 | μg/l     | 2.0     | [B] 320     |  |  |
| Dichlorodifluoromethane      | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Chloromethane                | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Vinyl Chloride               | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Bromomethane                 | N       | 1760             | 10:1 | μg/l     | 2.0     | [B] < 2.0   |  |  |
| Chloroethane                 | N       | 1760             | 10:1 | μg/l     | 0.20    | [B] < 0.20  |  |  |
| Trichlorofluoromethane       | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| 1,1-Dichloroethene           | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Dichloromethane              | N       | 1760             | 10:1 | μg/l     | 50      | [B] < 50    |  |  |
| 1,1-Dichloroethane           | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| cis 1,2-Dichloroethene       | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Bromochloromethane           | N       | 1760             | 10:1 | μg/l     | 0.50    | [B] < 0.50  |  |  |
| Trichloromethane             | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| 1,1,1-Trichloroethane        | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Tetrachloromethane           | N       | 1760             | 10:1 | µg/l     | 0.10    | [B] < 0.10  |  |  |
| 1,1-Dichloropropene          | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Benzene                      | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| 1,2-Dichloroethane           | N       | 1760             | 10:1 | μg/l     | 0.20    | [B] < 0.20  |  |  |
| Trichloroethene              | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| 1,2-Dichloropropane          | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Dibromomethane               | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Bromodichloromethane         | N       | 1760             | 10:1 | μg/l     | 0.50    | [B] < 0.50  |  |  |
| cis-1,3-Dichloropropene      | N       | 1760             | 10:1 | μg/l     | 1.0     | [B] < 1.0   |  |  |
| Toluene                      | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Trans-1,3-Dichloropropene    | N       | 1760             | 10:1 | µg/l     | 1.0     | [B] < 1.0   |  |  |
| 1,1,2-Trichloroethane        | N       | 1760             | 10:1 | μg/l     | 1.0     | [B] < 1.0   |  |  |
| Tetrachloroethene            | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| 1,3-Dichloropropane          | N       | 1760             | 10:1 | μg/l     | 0.20    | [B] < 0.20  |  |  |
| Dibromochloromethane         | N       | 1760             | 10:1 | μg/l     | 1.0     | [B] < 1.0   |  |  |
| 1.2-Dibromoethane            | N       | 1760             | 10:1 | μg/l     | 0.50    | [B] < 0.50  |  |  |
| Chlorobenzene                | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] 39      |  |  |
| 1,1,1,2-Tetrachloroethane    | N       | 1760             | 10:1 | μg/l     | 0.20    | [B] < 0.20  |  |  |
| Ethylbenzene                 | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| m & p-Xylene                 | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| o-Xylene                     | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Styrene                      | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |
| Tribromomethane              | N       | 1760             | 10:1 | μg/l     | 1.0     | [B] < 1.0   |  |  |
| Isopropylbenzene             | N       | 1760             | 10:1 | μg/l     | 0.10    | [B] < 0.10  |  |  |

| Client: Causeway Geotech Ltd |         | 22-45332<br>1552425  |      |         |         |             |  |
|------------------------------|---------|----------------------|------|---------|---------|-------------|--|
| Quotation No.: Q22-28455     |         | Chemtest Sample ID.: |      |         |         |             |  |
|                              |         | Sample Location:     |      |         |         |             |  |
|                              |         | Sample Type:         |      |         |         |             |  |
|                              |         | Top Depth (m):       |      |         |         |             |  |
|                              |         |                      |      | Date Sa | ampled: | 22-Nov-2022 |  |
| Determinand                  | Accred. | SOP                  | Туре | Units   | LOD     |             |  |
| Bromobenzene                 | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 1,2,3-Trichloropropane       | N       | 1760                 | 10:1 | μg/l    | 5.0     | [B] < 5.0   |  |
| N-Propylbenzene              | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 2-Chlorotoluene              | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 1,3,5-Trimethylbenzene       | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 4-Chlorotoluene              | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| Tert-Butylbenzene            | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 1,2,4-Trimethylbenzene       | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| Sec-Butylbenzene             | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 1,3-Dichlorobenzene          | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 4-Isopropyltoluene           | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 1,4-Dichlorobenzene          | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| N-Butylbenzene               | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 1,2-Dichlorobenzene          | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 1760                 | 10:1 | μg/l    | 5.0     | [B] < 5.0   |  |
| 1,2,4-Trichlorobenzene       | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| Hexachlorobutadiene          | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| 1,2,3-Trichlorobenzene       | N       | 1760                 | 10:1 | μg/l    | 0.20    | [B] < 0.20  |  |
| Naphthalene                  | N       | 1760                 | 10:1 | μg/l    | 0.10    | [B] < 0.10  |  |
| Phenol                       | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2-Chlorophenol               | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Bis-(2-Chloroethyl)Ether     | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 1,3-Dichlorobenzene          | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 1,4-Dichlorobenzene          | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 1,2-Dichlorobenzene          | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2-Methylphenol (o-Cresol)    | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Bis(2-Chloroisopropyl)Ether  | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Hexachloroethane             | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| N-Nitrosodi-n-propylamine    | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 4-Methylphenol               | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Nitrobenzene                 | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Isophorone                   | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2-Nitrophenol                | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2,4-Dimethylphenol           | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Bis(2-Chloroethoxy)Methane   | N       | 1790                 | 10:1 | µg/l    | 0.050   | < 0.050     |  |
| 2,4-Dichlorophenol           | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 1,2,4-Trichlorobenzene       | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Naphthalene                  | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 4-Chloroaniline              | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Hexachlorobutadiene          | N       | 1790                 | 10:1 | μg/l    | 0.050   | < 0.050     |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:                                                 |      |       |       |         |  |  |
|------------------------------|---------|-------------------------------------------------------------------|------|-------|-------|---------|--|--|
| Quotation No.: Q22-28455     |         | Chemtest Sample ID.: Sample Location: Sample Type: Top Depth (m): |      |       |       |         |  |  |
|                              |         |                                                                   |      |       |       |         |  |  |
|                              |         |                                                                   |      |       |       |         |  |  |
|                              |         |                                                                   |      |       |       |         |  |  |
|                              |         | Date Sampled:                                                     |      |       |       |         |  |  |
| Determinand                  | Accred. | SOP                                                               | Туре | Units | LOD   |         |  |  |
| 4-Chloro-3-Methylphenol      | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2-Methylnaphthalene          | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Hexachlorocyclopentadiene    | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2,4,6-Trichlorophenol        | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2,4,5-Trichlorophenol        | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2-Chloronaphthalene          | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2-Nitroaniline               | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Acenaphthylene               | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Dimethylphthalate            | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2,6-Dinitrotoluene           | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Acenaphthene                 | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 3-Nitroaniline               | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Dibenzofuran                 | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 4-Chlorophenylphenylether    | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2,4-Dinitrotoluene           | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Fluorene                     | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Diethyl Phthalate            | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 4-Nitroaniline               | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 2-Methyl-4,6-Dinitrophenol   | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Azobenzene                   | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| 4-Bromophenylphenyl Ether    | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Hexachlorobenzene            | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Pentachlorophenol            | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Phenanthrene                 | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Anthracene                   | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Carbazole                    | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Di-N-Butyl Phthalate         | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Fluoranthene                 | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Pyrene                       | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Butylbenzyl Phthalate        | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Benzo[a]anthracene           | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Chrysene                     | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 1790                                                              | 10:1 | µg/l  | 0.050 | < 0.050 |  |  |
| Di-N-Octyl Phthalate         | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Benzo[b]fluoranthene         | N       | 1790                                                              | 10:1 | µg/l  | 0.050 | < 0.050 |  |  |
| Benzo[k]fluoranthene         | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Benzo[a]pyrene               | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Dibenz(a,h)Anthracene        | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |
| Benzo[g,h,i]perylene         | N       | 1790                                                              | 10:1 | μg/l  | 0.050 | < 0.050 |  |  |

| Client: Causeway Geotech Ltd | Chemtest Job No.: 22-4533 Chemtest Sample ID.: 155242 |                      |              |              |       |                    |  |
|------------------------------|-------------------------------------------------------|----------------------|--------------|--------------|-------|--------------------|--|
| Quotation No.: Q22-28455     |                                                       | Chemtest Sample ID.: |              |              |       |                    |  |
|                              |                                                       | Sample Location:     |              |              |       |                    |  |
|                              |                                                       | Sample Type:         |              |              |       |                    |  |
|                              |                                                       | Top Depth (m):       |              |              |       |                    |  |
|                              |                                                       | Date Sampled:        |              |              |       |                    |  |
| Determinand                  | Accred.                                               | SOP                  | Type         |              |       |                    |  |
| Naphthalene                  | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | 0.74               |  |
| Acenaphthylene               | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | 0.31               |  |
| Acenaphthene                 | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | 0.52               |  |
| Fluorene                     | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | 0.20               |  |
| Phenanthrene                 | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | 0.21               |  |
| Anthracene                   | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Fluoranthene                 | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Pyrene                       | N N                                                   | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Benzo[a]anthracene           | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Chrysene                     | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Benzo[b]fluoranthene         | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Benzo[k]fluoranthene         | N N                                                   | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Benzo[a]pyrene               | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Indeno(1,2,3-c,d)Pyrene      | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Dibenz(a,h)Anthracene        | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Benzo[g,h,i]perylene         | N                                                     | 1800                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Total Of 16 PAH's            | N N                                                   | 1800                 | 10:1         | μg/l         | 0.20  | 2.0                |  |
| PCB 81                       | N<br>N                                                | 1815                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| PCB 77<br>PCB 105            | N<br>N                                                | 1815<br>1815         | 10:1<br>10:1 | μg/l         |       | < 0.010<br>< 0.010 |  |
| PCB 103                      | N N                                                   | 1815                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| PCB 114                      | N N                                                   | 1815                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| PCB 110                      | N N                                                   | 1815                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| PCB 126                      | N N                                                   | 1815                 | 10:1         | μg/l<br>μg/l | 0.010 | < 0.010            |  |
| PCB 156                      | N N                                                   | 1815                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| PCB 157                      | N                                                     | 1815                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| PCB 167                      | N                                                     | 1815                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| PCB 169                      | N                                                     | 1815                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| PCB 189                      | N                                                     | 1815                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Total PCBs (12 Congeners)    | N                                                     | 1815                 | 10:1         | μg/l         | 0.010 | < 0.010            |  |
| Phenol                       | N                                                     | 1900                 | 10:1         | μg/l         | 0.20  | < 0.20             |  |
| 2-Chlorophenol               | N                                                     | 1900                 | 10:1         | μg/l         | 0.20  | < 0.20             |  |
| 2-Methylphenol (o-Cresol)    | N N                                                   | 1900                 | 10:1         | μg/l         | 0.20  | < 0.20             |  |
| 3-Methylphenol               | N                                                     | 1900                 | 10:1         | μg/l         | 0.20  | < 0.20             |  |
| 4-Methylphenol               | N                                                     | 1900                 | 10:1         | μg/l         | 0.20  | < 0.20             |  |
| 2-Nitrophenol                | N                                                     | 1900                 | 10:1         | μg/l         | 0.20  | < 0.20             |  |
| 2,4-Dimethylphenol           | N                                                     | 1900                 | 10:1         | μg/l         | 0.20  | < 0.20             |  |
| 2,4-Dichlorophenol           | N                                                     | 1900                 | 10:1         | μg/l         | 0.20  | < 0.20             |  |
| 2,6-Dichlorophenol           | N                                                     | 1900                 | 10:1         | μg/l         | 0.20  | < 0.20             |  |
| 4-Chloro-3-Methylphenol      | N                                                     | 1900                 | 10:1         | μg/l         | 0.20  | < 0.20             |  |

| 1 Topot: 22 Tof TA OF III T latining Design Of |         |                      |      |         |      |        |  |
|------------------------------------------------|---------|----------------------|------|---------|------|--------|--|
| Client: Causeway Geotech Ltd                   |         | Chemtest Job No.:    |      |         |      |        |  |
| Quotation No.: Q22-28455                       |         | Chemtest Sample ID.: |      |         |      |        |  |
|                                                |         | Sample Location:     |      |         |      |        |  |
|                                                |         | Sample Type:         |      |         |      |        |  |
|                                                |         |                      |      | Top Dep | ( /  | 4.0    |  |
|                                                |         | Date Sampled:        |      |         |      |        |  |
| Determinand                                    | Accred. | SOP                  | Type | Units   | LOD  |        |  |
| 2,3,4-Trichlorophenol                          | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 2,3,5-Trichlorophenol                          | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 2,3,6-Trichlorophenol                          | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 2,4,6-Trichlorophenol                          | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 2,4,5-Trichlorophenol                          | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 4-Nitrophenol                                  | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 2,3,4,5-Tetrachlorophenol                      | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 2,3,4,6-Tetrachlorophenol                      | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 2,3,5,6-Tetrachlorophenol                      | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 3,4,5-Trichlorophenol                          | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 2-Methyl-4,6-Dinitrophenol                     | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| Pentachlorophenol                              | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| 2-Sec-Butyl-4,6-Dinitrophenol                  | N       | 1900                 | 10:1 | μg/l    | 0.20 | < 0.20 |  |
| Total Phenols                                  | N       | 1900                 | 10:1 | μg/l    | 5.00 | < 5.0  |  |

| Client: Causeway Geotech Ltd        |         | Chemtest Job No.:                                                               |        |         |                         |  |  |  |
|-------------------------------------|---------|---------------------------------------------------------------------------------|--------|---------|-------------------------|--|--|--|
| Quotation No.: Q22-28455            |         | Chemtest Sample ID.: Sample Location: Sample Type: Top Depth (m): Date Sampled: |        |         |                         |  |  |  |
|                                     |         |                                                                                 |        |         |                         |  |  |  |
|                                     |         |                                                                                 |        |         |                         |  |  |  |
|                                     |         |                                                                                 |        |         |                         |  |  |  |
|                                     |         |                                                                                 |        |         |                         |  |  |  |
|                                     |         |                                                                                 | Asbest | os Lab: | COVENTRY                |  |  |  |
| Determinand                         | Accred. | Accred. SOP Units LOD                                                           |        |         |                         |  |  |  |
| ACM Type                            | U       | 2192                                                                            |        | N/A     | -                       |  |  |  |
| Asbestos Identification             | U       | 2192                                                                            |        | N/A     | No Asbestos<br>Detected |  |  |  |
| Moisture                            | N       | 2030                                                                            | %      | 0.020   | 20                      |  |  |  |
| Natural Moisture Content            | N       | 2030                                                                            | %      | 0.020   | 25                      |  |  |  |
| Soil Colour                         | N       | 2040                                                                            |        | N/A     | Brown                   |  |  |  |
| Other Material                      | N       | 2040                                                                            |        | N/A     | Stones, Roots and Wood  |  |  |  |
| Soil Texture                        | N       | 2040                                                                            |        | N/A     | Clay                    |  |  |  |
| pH                                  | U       | 2010                                                                            |        | 4.0     | 8.1                     |  |  |  |
| Boron (Hot Water Soluble)           | Ü       | 2120                                                                            | mg/kg  | 0.40    | 2.6                     |  |  |  |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120                                                                            | g/l    | 0.010   | 1.3                     |  |  |  |
| Total Sulphur                       | U       | 2175                                                                            | %      | 0.010   | 0.77                    |  |  |  |
| Sulphur (Elemental)                 | Ü       | 2180                                                                            |        | 1.0     | 5900                    |  |  |  |
| Cyanide (Free)                      | Ü       | 2300                                                                            | 0 0    | 0.50    | [B] < 0.50              |  |  |  |
| Cyanide (Total)                     | U       | 2300                                                                            | 0 0    | 0.50    | [B] 1.1                 |  |  |  |
| Thiocyanate                         | Ü       | 2300                                                                            |        | 5.0     | [B] < 5.0               |  |  |  |
| Aluminium (Total)                   | N       | 2430                                                                            | mg/kg  | 100     | 4100                    |  |  |  |
| Iron (Total)                        | N       | 2430                                                                            |        | 100     | 18000                   |  |  |  |
| Arsenic                             | U       | 2455                                                                            |        | 0.5     | 16                      |  |  |  |
| Barium                              | U       | 2455                                                                            |        | 0       | 170                     |  |  |  |
| Beryllium                           | U       | 2455                                                                            |        | 0.5     | 0.5                     |  |  |  |
| Cadmium                             | U       | 2455                                                                            | 0      | 0.10    | 2.0                     |  |  |  |
| Chromium                            | Ü       | 2455                                                                            | 0      | 0.5     | 19                      |  |  |  |
| Manganese                           | Ü       | 2455                                                                            |        | 1.0     | 540                     |  |  |  |
| Copper                              | Ü       | 2455                                                                            |        | 0.50    | 56                      |  |  |  |
| Mercury                             | Ü       | 2455                                                                            | 0      | 0.05    | 0.79                    |  |  |  |
| Nickel                              | Ü       | 2455                                                                            |        |         | 24                      |  |  |  |
| Lead                                | Ü       | 2455                                                                            |        |         | 1400                    |  |  |  |
| Selenium                            | Ü       | 2455                                                                            | 0      |         | 0.66                    |  |  |  |
| Vanadium                            | Ü       | 2455                                                                            | 0      | 0.5     | 16                      |  |  |  |
| Zinc                                | U       | 2455                                                                            | mg/kg  | 0.50    | 200                     |  |  |  |
| Chromium (Hexavalent)               | N       | 2490                                                                            | mg/kg  | 0.50    | < 0.50                  |  |  |  |
| Organic Matter                      | U       | 2625                                                                            | %      | 0.40    | 8.2                     |  |  |  |
| Total Organic Carbon                | U       | 2625                                                                            | %      | 0.20    | 4.8                     |  |  |  |
| Aliphatic TPH >C5-C6                | N       | 2680                                                                            | mg/kg  |         | [B] < 0.010             |  |  |  |
| Aliphatic TPH >C6-C8                | N       | 2680                                                                            |        |         | [B] < 0.010             |  |  |  |
| Aliphatic TPH >C8-C10               | N       | 2680                                                                            | 0      | 0.10    | [B] < 0.10              |  |  |  |
| Aliphatic TPH >C10-C12              | N       | 2680                                                                            |        |         | [B] < 0.10              |  |  |  |

| Client: Causeway Geotech Ltd            |         | Chemtest Job No.: |                |         |                          |  |  |  |
|-----------------------------------------|---------|-------------------|----------------|---------|--------------------------|--|--|--|
| uotation No.: Q22-28455 Chemtest Sample |         |                   |                |         | 1552424<br>BH123         |  |  |  |
|                                         |         | Sample Location:  |                |         |                          |  |  |  |
| San                                     |         |                   |                |         | SOIL                     |  |  |  |
|                                         | Top Dep | oth (m):          | 3.5            |         |                          |  |  |  |
|                                         |         | Date Sampled:     |                |         |                          |  |  |  |
|                                         |         |                   | Asbest         | os Lab: | COVENTRY                 |  |  |  |
| Determinand                             | Accred. | SOP               |                |         |                          |  |  |  |
| Aliphatic TPH >C12-C16                  | N       | 2680              | mg/kg          | 0.10    | [B] < 0.10               |  |  |  |
| Aliphatic TPH >C16-C21                  | N       | 2680              |                | 0.10    | [B] < 0.10               |  |  |  |
| Aliphatic TPH >C21-C35                  | N       | 2680              | mg/kg          | 0.10    | [B] < 0.10               |  |  |  |
| Aliphatic TPH >C35-C44                  | N       | 2680              | mg/kg          | 0.10    | [B] < 0.10               |  |  |  |
| Total Aliphatic Hydrocarbons            | N       | 2680              | mg/kg          | 1.0     | [B] < 1.0                |  |  |  |
| Aromatic TPH >C5-C7                     | N       | 2680              | mg/kg          | 0.010   | [B] < 0.010              |  |  |  |
| Aromatic TPH >C7-C8                     | N       | 2680              | ,              |         | [B] < 0.010              |  |  |  |
| Aromatic TPH >C8-C10                    | N       | 2680              |                | 0.10    | [B] < 0.10               |  |  |  |
| Aromatic TPH >C10-C12                   | N       | 2680              | mg/kg          | 0.10    | [B] < 0.10               |  |  |  |
| Aromatic TPH >C12-C16                   | N       | 2680              | ט              |         | [B] < 0.10               |  |  |  |
| Aromatic TPH >C16-C21                   | N       | 2680              | mg/kg          |         | [B] < 0.10               |  |  |  |
| Aromatic TPH >C21-C35                   | N       | 2680              | mg/kg          | 0.10    | [B] < 0.10               |  |  |  |
| Aromatic TPH >C35-C44                   | N       | 2680              | )              | 0.10    | [B] < 0.10               |  |  |  |
| Total Aromatic Hydrocarbons             | N       | 2680              |                | 1.0     | [B] < 1.0                |  |  |  |
| Total Petroleum Hydrocarbons            | N       | 2680              |                | 2.0     | [B] < 2.0                |  |  |  |
| Dichlorodifluoromethane                 | N       | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| Chloromethane                           | N       | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| Vinyl Chloride                          | N       | 2760              | μg/kg          | 0.20    | [B] < 0.20               |  |  |  |
| Bromomethane                            | N       | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| Chloroethane                            | N       | 2760              | )              | 0.20    | [B] < 0.20               |  |  |  |
| Trichlorofluoromethane                  | N       | 2760              |                |         | [B] < 0.20               |  |  |  |
| 1,1-Dichloroethene                      | N       | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| Trans 1,2-Dichloroethene                | N       | 2760              | μg/kg          | 0.20    | [B] < 0.20               |  |  |  |
| 1,1-Dichloroethane                      | N       | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| cis 1,2-Dichloroethene                  | N       | 2760              | μg/kg          | 0.20    | [B] < 0.20               |  |  |  |
| Bromochloromethane                      | N       | 2760              |                | 0.50    | [B] < 0.50               |  |  |  |
| Trichloromethane                        | N       | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| 1,1,1-Trichloroethane                   | N       | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| Tetrachloromethane                      | N       | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| 1,1-Dichloropropene                     | N N     | 2760              | μg/kg<br>μg/kg | 0.20    | [B] < 0.20               |  |  |  |
| Benzene                                 | N N     | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| 1,2-Dichloroethane                      | N N     | 2760              | μg/kg<br>μg/kg |         |                          |  |  |  |
| Trichloroethene                         | N N     | 2760              |                | 0.20    | [B] < 0.20<br>[B] < 0.20 |  |  |  |
|                                         | N N     |                   |                |         |                          |  |  |  |
| 1,2-Dichloropropane Dibromomethane      | N N     | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
|                                         |         | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| Bromodichloromethane                    | N       | 2760              |                | 0.20    | [B] < 0.20               |  |  |  |
| cis-1,3-Dichloropropene                 | N       | 2760              | μg/kg          | 0.20    | [B] < 0.20               |  |  |  |
| Toluene                                 | N       | 2760              | )              | 0.20    | [B] 0.66                 |  |  |  |
| Trans-1,3-Dichloropropene               | N       | 2760              | μg/kg          | 0.20    | [B] < 0.20               |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:                                  |         |         |             |  |  |  |  |
|------------------------------|---------|----------------------------------------------------|---------|---------|-------------|--|--|--|--|
| Quotation No.: Q22-28455     |         | Chemtest Sample ID.: Sample Location: Sample Type: |         |         |             |  |  |  |  |
|                              |         |                                                    |         |         |             |  |  |  |  |
|                              |         |                                                    |         |         |             |  |  |  |  |
|                              |         |                                                    | Top Dep |         | 3.5         |  |  |  |  |
|                              |         |                                                    | Date Sa |         | 22-Nov-2022 |  |  |  |  |
|                              |         |                                                    | Asbest  | os Lab: | COVENTRY    |  |  |  |  |
| Determinand                  | Accred. | SOP                                                |         | LOD     |             |  |  |  |  |
| 1,1,2-Trichloroethane        | N       | 2760                                               | 100     | 0.20    | [B] < 0.20  |  |  |  |  |
| Tetrachloroethene            | N       | 2760                                               | )       | 0.20    | [B] < 0.20  |  |  |  |  |
| 1,3-Dichloropropane          | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| Dibromochloromethane         | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| 1,2-Dibromoethane            | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| Chlorobenzene                | N       | 2760                                               | μg/kg   | 0.20    | [B] 190     |  |  |  |  |
| 1,1,1,2-Tetrachloroethane    | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| Ethylbenzene                 | N       | 2760                                               | μg/kg   | 0.20    | [B] 0.39    |  |  |  |  |
| m & p-Xylene                 | N       | 2760                                               | μg/kg   | 0.20    | [B] 0.53    |  |  |  |  |
| o-Xylene                     | N       | 2760                                               | μg/kg   | 0.20    | [B] 0.66    |  |  |  |  |
| Styrene                      | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| Tribromomethane              | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| Isopropylbenzene             | N       | 2760                                               | μg/kg   | 0.20    | [B] 0.74    |  |  |  |  |
| Bromobenzene                 | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| 1,2,3-Trichloropropane       | N       | 2760                                               |         | 0.20    | [B] < 0.20  |  |  |  |  |
| N-Propylbenzene              | N       | 2760                                               | μg/kg   | 0.20    | [B] 0.58    |  |  |  |  |
| 2-Chlorotoluene              | N       | 2760                                               |         | 0.20    | [B] < 0.20  |  |  |  |  |
| 1,3,5-Trimethylbenzene       | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| 4-Chlorotoluene              | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| Tert-Butylbenzene            | N       | 2760                                               | μg/kg   | 0.20    | [B] 0.25    |  |  |  |  |
| 1,2,4-Trimethylbenzene       | N       | 2760                                               |         | 0.20    | [B] 0.55    |  |  |  |  |
| Sec-Butylbenzene             | N       | 2760                                               |         | 0.20    | [B] 0.55    |  |  |  |  |
| 1,3-Dichlorobenzene          | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| 4-Isopropyltoluene           | N       | 2760                                               |         | 0.20    | [B] 0.25    |  |  |  |  |
| 1,4-Dichlorobenzene          | N       | 2760                                               | μg/kg   | 0.20    | [B] 25      |  |  |  |  |
| N-Butylbenzene               | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| 1,2-Dichlorobenzene          | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2760                                               |         | 0.20    | [B] < 0.20  |  |  |  |  |
| Hexachlorobutadiene          | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| 1,2,3-Trichlorobenzene       | N       | 2760                                               |         | 0.20    | [B] < 0.20  |  |  |  |  |
| Methyl Tert-Butyl Ether      | N       | 2760                                               | μg/kg   | 0.20    | [B] < 0.20  |  |  |  |  |
| N-Nitrosodimethylamine       | N       | 2790                                               | mg/kg   |         | [B] < 0.050 |  |  |  |  |
| Phenol                       | N       | 2790                                               | mg/kg   |         | [B] < 0.050 |  |  |  |  |
| 2-Chlorophenol               | N       | 2790                                               |         |         | [B] < 0.050 |  |  |  |  |
| Bis-(2-Chloroethyl)Ether     | N       | 2790                                               |         |         | [B] < 0.050 |  |  |  |  |
| 1,3-Dichlorobenzene          | N       | 2790                                               |         |         | [B] < 0.050 |  |  |  |  |
| 1,4-Dichlorobenzene          | N       | 2790                                               | mg/kg   |         | [B] < 0.050 |  |  |  |  |
| 1,2-Dichlorobenzene          | N       | 2790                                               |         | 0.050   | [B] 2.6     |  |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.: |          |          |             |  |  |  |
|------------------------------|---------|-------------------|----------|----------|-------------|--|--|--|
| Quotation No.: Q22-28455     |         | Chemte            | st Sam   | ple ID.: | 1552424     |  |  |  |
|                              |         | Sa                | ocation: | BH123    |             |  |  |  |
|                              |         | Sample Type       |          |          |             |  |  |  |
|                              |         |                   | oth (m): | 3.5      |             |  |  |  |
|                              |         |                   | Date Sa  | ampled:  | 22-Nov-2022 |  |  |  |
|                              |         |                   | Asbest   | os Lab:  | COVENTRY    |  |  |  |
| Determinand                  | Accred. | SOP               | Units    | LOD      |             |  |  |  |
| 2-Methylphenol               | N       | 2790              | mg/kg    | 0.050    | [B] < 0.050 |  |  |  |
| Bis(2-Chloroisopropyl)Ether  | N       | 2790              | mg/kg    | 0.050    | [B] < 0.050 |  |  |  |
| Hexachloroethane             | N       | 2790              | mg/kg    | 0.050    | [B] < 0.050 |  |  |  |
| N-Nitrosodi-n-propylamine    | N       | 2790              | mg/kg    | 0.050    | [B] < 0.050 |  |  |  |
| 4-Methylphenol               | N       | 2790              | mg/kg    | 0.050    | [B] < 0.050 |  |  |  |
| Nitrobenzene                 | N       | 2790              | mg/kg    | 0.050    | [B] < 0.050 |  |  |  |
| Isophorone                   | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 2-Nitrophenol                | N       | 2790              | mg/kg    | 0.050    | [B] < 0.050 |  |  |  |
| 2,4-Dimethylphenol           | N       | 2790              | mg/kg    | 0.050    | [B] < 0.050 |  |  |  |
| Bis(2-Chloroethoxy)Methane   | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 2,4-Dichlorophenol           | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| Naphthalene                  | N       | 2790              | mg/kg    |          | [B] 0.63    |  |  |  |
| 4-Chloroaniline              | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| Hexachlorobutadiene          | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 4-Chloro-3-Methylphenol      | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 2-Methylnaphthalene          | N       | 2790              | mg/kg    |          | [B] 0.31    |  |  |  |
| Hexachlorocyclopentadiene    | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 2,4,6-Trichlorophenol        | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 2,4,5-Trichlorophenol        | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 2-Chloronaphthalene          | N       | 2790              | mg/kg    |          | [B] 0.33    |  |  |  |
| 2-Nitroaniline               | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| Acenaphthylene               | N       | 2790              | mg/kg    |          | [B] 0.10    |  |  |  |
| Dimethylphthalate            | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 2,6-Dinitrotoluene           | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| Acenaphthene                 | N       | 2790              | mg/kg    |          | [B] 0.35    |  |  |  |
| 3-Nitroaniline               | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| Dibenzofuran                 | N       | 2790              | mg/kg    |          | [B] 0.29    |  |  |  |
| 4-Chlorophenylphenylether    | N       | 2790              | mg/kg    | 0.050    | [B] < 0.050 |  |  |  |
| 2,4-Dinitrotoluene           | N       | 2790              | mg/kg    | 0.050    | [B] < 0.050 |  |  |  |
| Fluorene                     | N       | 2790              | mg/kg    |          | [B] 0.44    |  |  |  |
| Diethyl Phthalate            | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 4-Nitroaniline               | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 2-Methyl-4,6-Dinitrophenol   | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| Azobenzene                   | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| 4-Bromophenylphenyl Ether    | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| Hexachlorobenzene            | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| Pentachlorophenol            | N       | 2790              | mg/kg    |          | [B] < 0.050 |  |  |  |
| i citacinolopiloloi          | 1.4     | 2100              | mg/kg    | 0.000    | [2] < 0.000 |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |         |         |             |  |  |  |  |
|------------------------------|---------|----------------------|---------|---------|-------------|--|--|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |         |         |             |  |  |  |  |
|                              |         | Sample Location:     |         |         |             |  |  |  |  |
|                              |         | Sample Type:         |         |         |             |  |  |  |  |
|                              |         |                      | Top Dep | , ,     | 3.5         |  |  |  |  |
|                              |         |                      | Date Sa | ampled: | 22-Nov-2022 |  |  |  |  |
|                              |         |                      | Asbest  | os Lab: | COVENTRY    |  |  |  |  |
| Determinand                  | Accred. | SOP                  | Units   | LOD     |             |  |  |  |  |
| Anthracene                   | N       | 2790                 | mg/kg   | 0.050   | [B] 0.78    |  |  |  |  |
| Carbazole                    | N       | 2790                 | mg/kg   | 0.050   | [B] 0.35    |  |  |  |  |
| Di-N-Butyl Phthalate         | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |  |
| Fluoranthene                 | N       | 2790                 | mg/kg   | 0.050   | [B] 6.2     |  |  |  |  |
| Pyrene                       | N       | 2790                 | mg/kg   | 0.050   | [B] 5.7     |  |  |  |  |
| Butylbenzyl Phthalate        | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |  |
| Benzo[a]anthracene           | N       | 2790                 | mg/kg   | 0.050   | [B] 3.5     |  |  |  |  |
| Chrysene                     | N       | 2790                 | mg/kg   | 0.050   | [B] 3.6     |  |  |  |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |  |
| Di-N-Octyl Phthalate         | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |  |
| Benzo[b]fluoranthene         | N       | 2790                 | mg/kg   | 0.050   | [B] 3.7     |  |  |  |  |
| Benzo[k]fluoranthene         | N       | 2790                 | mg/kg   | 0.050   | [B] 1.4     |  |  |  |  |
| Benzo[a]pyrene               | N       | 2790                 | mg/kg   | 0.050   | [B] 3.1     |  |  |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790                 | mg/kg   |         | [B] 1.3     |  |  |  |  |
| Dibenz(a,h)Anthracene        | N       | 2790                 |         |         | [B] < 0.050 |  |  |  |  |
| Benzo[g,h,i]perylene         | N       | 2790                 | mg/kg   | 0.050   | [B] 1.7     |  |  |  |  |
| 4-Nitrophenol                | N       | 2790                 |         |         | [B] < 0.050 |  |  |  |  |
| Naphthalene                  | N       | 2800                 | mg/kg   |         | 0.58        |  |  |  |  |
| Acenaphthylene               | N       | 2800                 | mg/kg   |         | 0.22        |  |  |  |  |
| Acenaphthene                 | N       | 2800                 | mg/kg   | 0.010   | 0.57        |  |  |  |  |
| Fluorene                     | N       | 2800                 |         |         | 0.81        |  |  |  |  |
| Phenanthrene                 | N       | 2800                 |         |         | 4.8         |  |  |  |  |
| Anthracene                   | N       | 2800                 | mg/kg   | 0.010   | 1.7         |  |  |  |  |
| Fluoranthene                 | N       | 2800                 | ,       |         | 9.0         |  |  |  |  |
| Pyrene                       | N       | 2800                 | mg/kg   |         | 7.4         |  |  |  |  |
| Benzo[a]anthracene           | N       | 2800                 | mg/kg   |         | 5.3         |  |  |  |  |
| Chrysene                     | N       | 2800                 |         |         | 4.5         |  |  |  |  |
| Benzo[b]fluoranthene         | N       | 2800                 | mg/kg   |         | 5.6         |  |  |  |  |
| Benzo[k]fluoranthene         | N       | 2800                 |         |         | 2.2         |  |  |  |  |
| Benzo[a]pyrene               | N       | 2800                 | 0       |         | 7.1         |  |  |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2800                 | _       |         | 3.3         |  |  |  |  |
| Dibenz(a,h)Anthracene        | N       | 2800                 | mg/kg   |         | 0.71        |  |  |  |  |
| Benzo[g,h,i]perylene         | N       | 2800                 | mg/kg   |         | 2.3         |  |  |  |  |
| Total Of 16 PAH's            | N       | 2800                 | mg/kg   | 0.20    | 56          |  |  |  |  |
| Resorcinol                   | Ü       | 2920                 | mg/kg   |         | < 0.020     |  |  |  |  |
| Phenol                       | Ü       | 2920                 |         |         | < 0.020     |  |  |  |  |
| Cresols                      | Ü       | 2920                 |         |         | < 0.020     |  |  |  |  |
|                              | U       | 2920                 |         |         | < 0.020     |  |  |  |  |
| Xylenols                     | l U     | 1920                 |         | 0.020   | < 0.070     |  |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |          |             |         |  |  |
|------------------------------|---------|----------------------|----------|-------------|---------|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |          |             |         |  |  |
|                              |         | Sa                   | ample Lo | ocation:    | BH123   |  |  |
|                              |         |                      | е Туре:  | SOIL        |         |  |  |
|                              |         |                      | oth (m): | 3.5         |         |  |  |
|                              |         |                      | ampled:  | 22-Nov-2022 |         |  |  |
|                              |         |                      | os Lab:  | COVENTRY    |         |  |  |
| Determinand                  | Accred. | SOP                  | Units    | LOD         |         |  |  |
| Trimethylphenols             | U       | 2920                 | mg/kg    | 0.020       | < 0.020 |  |  |
| Total Phenols                | U       | 2920                 | mg/kg    | 0.10        | < 0.10  |  |  |

### **Deviations**

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

| Sample: | Sample Ref: | Sample ID: | Sample<br>Location: | Sampled<br>Date: | Deviation Code(s): | Containers<br>Received: |
|---------|-------------|------------|---------------------|------------------|--------------------|-------------------------|
| 1552424 |             |            | BH123               | 22-Nov-2022      | В                  | Amber Glass<br>250ml    |
| 1552424 |             |            | BH123               | 22-Nov-2022      | В                  | Amber Glass<br>60ml     |
| 1552424 |             |            | BH123               | 22-Nov-2022      | В                  | Plastic Tub<br>500g     |
| 1552425 |             |            | BH123               | 22-Nov-2022      | В                  | Amber Glass<br>250ml    |
| 1552425 |             |            | BH123               | 22-Nov-2022      | В                  | Amber Glass<br>60ml     |
| 1552425 |             |            | BH123               | 22-Nov-2022      | В                  | Plastic Tub<br>500g     |

# **Test Methods**

| SOP  | Title                                                                                   | Parameters included                                                                                                                                                                                                                                          | Method summary                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1010 | pH Value of Waters                                                                      | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 1220 | Anions, Alkalinity & Ammonium in Waters                                                 | Fluoride; Chloride; Nitrite; Nitrate; Total;<br>Oxidisable Nitrogen (TON); Sulfate; Phosphate;<br>Alkalinity; Ammonium                                                                                                                                       | Automated colorimetric analysis using<br>'Aquakem 600' Discrete Analyser.                                                                        |
| 1300 | Cyanides & Thiocyanate in Waters                                                        | Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                              | Continuous Flow Analysis.                                                                                                                        |
| 1325 | Sulphide in Waters                                                                      | Sulphides                                                                                                                                                                                                                                                    | Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.                                         |
| 1455 | Metals in Waters by ICP-MS                                                              | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc                                                                   | determination by inductively coupled plasma                                                                                                      |
| 1495 | Low Level Hexavalent<br>Chromium in Waters                                              | Chromium [VI]                                                                                                                                                                                                                                                | Colorimetric determination of hexavalent chromium expressed as Cr (VI) µg/l in water, using Ion Chromatography and UV-visible spectrophotometry. |
| 1675 | TPH Aliphatic/Aromatic split in<br>Waters by GC-FID(cf. Texas<br>Method 1006 / TPH CWG) | Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35, >C35-C44                                                                              | Pentane extraction / GCxGC FID detection                                                                                                         |
| 1760 | Volatile Organic Compounds<br>(VOCs) in Waters by<br>Headspace GC-MS                    | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)                                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.     |
| 1790 | Semi-Volatile Organic<br>Compounds (SVOCs) in<br>Waters by GC-MS                        | Semi-volatile organic compounds                                                                                                                                                                                                                              | Solvent extraction / GCMS detection                                                                                                              |
| 1800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Waters by GC-MS              | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene | Pentane extraction / GCMS detection                                                                                                              |
| 1815 | Polychlorinated Biphenyls<br>(PCB) ICES7 Congeners in<br>Waters by GC-MS                | ICES7 PCB congeners                                                                                                                                                                                                                                          | Solvent extraction / GCMS detection                                                                                                              |
| 1900 | Phenols in Waters by GC-MS                                                              | Approximately 24 substituted Phenols, including Chlorophenols                                                                                                                                                                                                | Solvent extraction / GCMS detection                                                                                                              |
| 2010 | pH Value of Soils                                                                       | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS)                              | Moisture content                                                                                                                                                                                                                                             | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                             |
| 2040 | Soil Description(Requirement of MCERTS)                                                 | Soil description                                                                                                                                                                                                                                             | As received soil is described based upon BS5930                                                                                                  |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                                  | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                         | Aqueous extraction / ICP-OES                                                                                                                     |
| 2175 | Total Sulphur in Soils                                                                  | Total Sulphur                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                       |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                                    | Sulphur                                                                                                                                                                                                                                                      | Dichloromethane extraction / HPLC with UV detection                                                                                              |
| 2192 | Asbestos                                                                                | Asbestos                                                                                                                                                                                                                                                     | Polarised light microscopy / Gravimetry                                                                                                          |
| 2300 | Cyanides & Thiocyanate in Soils                                                         | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                           | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                             |

# **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA Method 8270)                                                                                                                                                                                                                    | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |
| 640  | Characterisation of Waste (Leaching C10)                                 | Waste material including soil, sludges and granular waste                                                                                                                                                                                                                 | ComplianceTest for Leaching of Granular<br>Waste Material and Sludge                                                                                                                   |

### **Report Information**

| Key |                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------|
| U   | UKAS accredited                                                                                               |
| М   | MCERTS and UKAS accredited                                                                                    |
| N   | Unaccredited                                                                                                  |
| S   | This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis     |
| SN  | This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis |
| Τ   | This analysis has been subcontracted to an unaccredited laboratory                                            |
| I/S | Insufficient Sample                                                                                           |
| U/S | Unsuitable Sample                                                                                             |
| N/E | not evaluated                                                                                                 |
| <   | "less than"                                                                                                   |
| >   | "greater than"                                                                                                |
| SOP | Standard operating procedure                                                                                  |
| LOD | Limit of detection                                                                                            |

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-45548-1

Initial Date of Issue: 10-Jan-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Francy

Stephen McCracken
Stephen Watson

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 25-Nov-2022

Order No.: Date Instructed: 07-Dec-2022

No. of Samples: 3

Turnaround (Wkdays): 7 Results Due: 15-Dec-2022

Date Approved: 10-Jan-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

| Client: Causeway Geotech Ltd        |         |                      | mtest Jo       |          | 22-45548                | 22-45548                | 22-45548                |
|-------------------------------------|---------|----------------------|----------------|----------|-------------------------|-------------------------|-------------------------|
| Quotation No.: Q22-28455            |         | Chemtest Sample ID.: |                |          | 1553287                 | 1553290                 | 1553293                 |
|                                     |         | Sa                   | ample Lo       | ocation: | BH101                   | BH126                   | BH128                   |
|                                     |         | Sample Type:         |                |          |                         | SOIL                    | SOIL                    |
|                                     |         |                      | Top Dep        | oth (m): | 0.5                     | 0.5                     | 0.5                     |
|                                     |         |                      | Date Sa        | ampled:  | 23-Nov-2022             | 23-Nov-2022             | 23-Nov-2022             |
|                                     |         |                      | Asbest         | os Lab:  | NEW-ASB                 | NEW-ASB                 | NEW-ASB                 |
| Determinand                         | Accred. | SOP                  | Units          | LOD      |                         |                         |                         |
| ACM Type                            | U       | 2192                 |                | N/A      | -                       | -                       | -                       |
| Asbestos Identification             | U       | 2192                 |                | N/A      | No Asbestos<br>Detected | No Asbestos<br>Detected | No Asbestos<br>Detected |
| Moisture                            | N       | 2030                 | %              | 0.020    | 5.9                     | 4.6                     | 3.2                     |
| Natural Moisture Content            | N       | 2030                 | %              | 0.020    | 6.2                     | 4.9                     | 3.3                     |
| Soil Colour                         | N       | 2040                 | 70             | N/A      | Brown                   | Brown                   | Brown                   |
| Other Material                      | N       | 2040                 |                | N/A      | Stones                  | Stones                  | Stones                  |
| Soil Texture                        | N       | 2040                 |                | N/A      | Sand                    | Sand                    | Sand                    |
| pH                                  | U       | 2010                 |                | 4.0      | 8.2                     | 8.1                     | 8.2                     |
| Boron (Hot Water Soluble)           | U       | 2120                 | mg/kg          | 0.40     | 0.43                    | 2.0                     | 0.76                    |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120                 | g/l            | 0.010    | 0.11                    | 0.34                    | 0.11                    |
| Total Sulphur                       | U       | 2175                 | %              | 0.010    | 0.048                   | 0.18                    | 0.17                    |
| Sulphur (Elemental)                 | U       | 2180                 | mg/kg          | 1.0      | 5.2                     | 270                     | 26                      |
| Cyanide (Free)                      | U       | 2300                 | mg/kg          | 0.50     | < 0.50                  | < 0.50                  | < 0.50                  |
| Cyanide (Free) Cyanide (Total)      | U       | 2300                 | mg/kg          | 0.50     | < 0.50                  | < 0.50                  | < 0.50                  |
| Thiocyanate                         | U       | 2300                 | 0 0            | 5.0      | < 5.0                   | < 5.0                   | < 5.0                   |
| Aluminium (Total)                   | N       | 2430                 | mg/kg<br>mg/kg | 100      | 5200                    | 7100                    | 8300                    |
| Iron (Total)                        | N       | 2430                 |                | 100      | 12000                   | 12000                   | 18000                   |
| Arsenic                             | U       | 2455                 | mg/kg          | 0.5      | 12000                   | 12000                   | 13                      |
| Barium                              | U       | 2455                 | mg/kg          | 0.5      | 17                      | 150                     | 110                     |
|                                     | U       | 2455                 | mg/kg          | 0.5      | < 0.5                   | < 0.5                   | < 0.5                   |
| Beryllium                           | U       |                      | mg/kg          |          |                         |                         |                         |
| Cadmium                             | U       | 2455                 | mg/kg          | 0.10     | 0.30                    | 0.76<br>40              | 0.36<br>57              |
| Chromium                            |         | 2455                 | mg/kg          | 0.5      | 13                      | _                       | _                       |
| Manganese                           | U       | 2455                 | mg/kg          | 1.0      | 380                     | 510                     | 660                     |
| Copper                              | U       | 2455                 | mg/kg          | 0.50     | 12                      | 53                      | 66                      |
| Mercury                             |         | 2455                 | mg/kg          | 0.05     | 0.11                    | 0.16                    | 0.05                    |
| Nickel                              | U       | 2455                 | mg/kg          | 0.50     | 16                      | 34                      | 31                      |
| Lead                                | U       | 2455                 | mg/kg          | 0.50     | 31                      | 100                     | 69                      |
| Selenium                            | U       | 2455                 | mg/kg          | 0.25     | 0.47                    | 2.0                     | 0.45                    |
| Vanadium                            | U       | 2455                 | mg/kg          | 0.5      | 14                      | 20                      | 26                      |
| Zinc                                | U       | 2455                 | mg/kg          | 0.50     | 42                      | 330                     | 190                     |
| Chromium (Hexavalent)               | N       | 2490                 | mg/kg          | 0.50     | < 0.50                  | < 0.50                  | < 0.50                  |
| Organic Matter                      | U       | 2625                 | %              | 0.40     | 0.97                    | 5.9                     | 4.9                     |
| Total Organic Carbon                | U       | 2625                 | %              | 0.20     | 0.56                    | 3.4                     | 2.9                     |
| Aliphatic TPH >C5-C6                | N       | 2680                 | mg/kg          | 0.010    | < 0.010                 | < 0.010                 | < 0.010                 |
| Aliphatic TPH >C6-C8                | N       | 2680                 | mg/kg          | 0.010    | < 0.010                 | < 0.010                 | < 0.010                 |
| Aliphatic TPH >C8-C10               | N       | 2680                 | mg/kg          | 0.10     | < 0.10                  | < 0.10                  | < 0.10                  |
| Aliphatic TPH >C10-C12              | N       | 2680                 | mg/kg          | 0.10     | < 0.10                  | < 0.10                  | < 0.10                  |
| Aliphatic TPH >C12-C16              | N       | 2680                 | mg/kg          | 0.10     | < 0.10                  | < 0.10                  | < 0.10                  |

| Client: Causeway Geotech Ltd |                |                      | mtest Jo |         | 22-45548    | 22-45548    | 22-45548    |
|------------------------------|----------------|----------------------|----------|---------|-------------|-------------|-------------|
| Quotation No.: Q22-28455     | (              | Chemtest Sample ID.: |          |         | 1553287     | 1553290     | 1553293     |
|                              |                | Sa                   | ample Lo |         | BH101       | BH126       | BH128       |
|                              | Sample Type:   |                      |          |         | SOIL        | SOIL        | SOIL        |
|                              | Top Depth (m): |                      |          |         | 0.5         | 0.5         | 0.5         |
|                              |                |                      | Date Sa  |         | 23-Nov-2022 | 23-Nov-2022 | 23-Nov-2022 |
|                              |                |                      | Asbest   | os Lab: | NEW-ASB     | NEW-ASB     | NEW-ASB     |
| Determinand                  | Accred.        | SOP                  | Units    | LOD     |             |             |             |
| Aliphatic TPH >C16-C21       | N              | 2680                 | mg/kg    | 0.10    | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C21-C35       | N              | 2680                 | mg/kg    | 0.10    | < 0.10      | 370         | 270         |
| Aliphatic TPH >C35-C44       | N              | 2680                 | mg/kg    | 0.10    | < 0.10      | < 0.10      | < 0.10      |
| Total Aliphatic Hydrocarbons | N              | 2680                 | mg/kg    | 1.0     | < 1.0       | 370         | 270         |
| Aromatic TPH >C5-C7          | N              | 2680                 | mg/kg    | 0.010   | < 0.010     | < 0.010     | < 0.010     |
| Aromatic TPH >C7-C8          | N              | 2680                 | mg/kg    | 0.010   | < 0.010     | < 0.010     | < 0.010     |
| Aromatic TPH >C8-C10         | N              | 2680                 | mg/kg    | 0.10    | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C10-C12        | N              | 2680                 | mg/kg    | 0.10    | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C12-C16        | N              | 2680                 | mg/kg    | 0.10    | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C16-C21        | N              | 2680                 | mg/kg    | 0.10    | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C21-C35        | N              | 2680                 | mg/kg    | 0.10    | < 0.10      | 500         | 890         |
| Aromatic TPH >C35-C44        | N              | 2680                 | mg/kg    | 0.10    | < 0.10      | 23          | 99          |
| Total Aromatic Hydrocarbons  | N              | 2680                 | mg/kg    | 1.0     | < 1.0       | 520         | 990         |
| Total Petroleum Hydrocarbons | N              | 2680                 | mg/kg    | 2.0     | < 2.0       | 900         | 1300        |
| Dichlorodifluoromethane      | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Chloromethane                | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Vinyl Chloride               | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Bromomethane                 | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Chloroethane                 | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Trichlorofluoromethane       | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| 1,1-Dichloroethene           | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Trans 1,2-Dichloroethene     | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| 1,1-Dichloroethane           | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| cis 1,2-Dichloroethene       | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Bromochloromethane           | N              | 2760                 | μg/kg    | 0.50    | < 0.50      | < 0.50      | < 0.50      |
| Trichloromethane             | N              | 2760                 | μg/kg    | 0.20    | 2.5         | < 0.20      | < 0.20      |
| 1,1,1-Trichloroethane        | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Tetrachloromethane           | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| 1,1-Dichloropropene          | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Benzene                      | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | 0.76        |
| 1,2-Dichloroethane           | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Trichloroethene              | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| 1,2-Dichloropropane          | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Dibromomethane               | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Bromodichloromethane         | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| cis-1,3-Dichloropropene      | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| Toluene                      | N              | 2760                 | μg/kg    | 0.20    | 0.70        | 0.81        | 0.98        |
| Trans-1,3-Dichloropropene    | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |
| 1,1,2-Trichloroethane        | N              | 2760                 | μg/kg    | 0.20    | < 0.20      | < 0.20      | < 0.20      |

| Client: Causeway Geotech Ltd |         |                      | mtest J  |          | 22-45548<br>1553287 | 22-45548    | 22-45548    |
|------------------------------|---------|----------------------|----------|----------|---------------------|-------------|-------------|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |          |          |                     | 1553290     | 1553293     |
|                              |         | Sa                   | ample Lo |          | BH101               | BH126       | BH128       |
|                              |         | Sample Type:         |          |          |                     | SOIL        | SOIL        |
|                              |         |                      | Top De   | oth (m): | 0.5                 | 0.5         | 0.5         |
|                              |         |                      | Date Sa  | ampled:  | 23-Nov-2022         | 23-Nov-2022 | 23-Nov-2022 |
|                              |         |                      | Asbest   | os Lab:  | NEW-ASB             | NEW-ASB     | NEW-ASB     |
| Determinand                  | Accred. | SOP                  | Units    | LOD      |                     |             |             |
| Tetrachloroethene            | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,3-Dichloropropane          | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Dibromochloromethane         | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,2-Dibromoethane            | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Chlorobenzene                | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,1,1,2-Tetrachloroethane    | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Ethylbenzene                 | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| m & p-Xylene                 | N       | 2760                 | μg/kg    | 0.20     | 0.34                | < 0.20      | < 0.20      |
| o-Xylene                     | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Styrene                      | N       | 2760                 | µg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Tribromomethane              | N       | 2760                 | µg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Isopropylbenzene             | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Bromobenzene                 | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,2,3-Trichloropropane       | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| N-Propylbenzene              | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 2-Chlorotoluene              | N       | 2760                 | µg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,3,5-Trimethylbenzene       | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 4-Chlorotoluene              | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Tert-Butylbenzene            | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,2,4-Trimethylbenzene       | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Sec-Butylbenzene             | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,3-Dichlorobenzene          | N       | 2760                 | µg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 4-Isopropyltoluene           | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,4-Dichlorobenzene          | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| N-Butylbenzene               | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,2-Dichlorobenzene          | N       | 2760                 | µg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,2,4-Trichlorobenzene       | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Hexachlorobutadiene          | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| 1,2,3-Trichlorobenzene       | T N     | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| Methyl Tert-Butyl Ether      | N       | 2760                 | μg/kg    | 0.20     | < 0.20              | < 0.20      | < 0.20      |
| N-Nitrosodimethylamine       | N       | 2790                 | mg/kg    | 0.050    | < 0.050             | < 0.050     | < 0.050     |
| Phenol                       | N       | 2790                 | mg/kg    | 0.050    | < 0.050             | < 0.050     | < 0.050     |
| 2-Chlorophenol               | N       | 2790                 | mg/kg    | 0.050    | < 0.050             | < 0.050     | < 0.050     |
| Bis-(2-Chloroethyl)Ether     | N       | 2790                 | mg/kg    | 0.050    | < 0.050             | < 0.050     | < 0.050     |
| 1,3-Dichlorobenzene          | N       | 2790                 | mg/kg    | 0.050    | < 0.050             | < 0.050     | < 0.050     |
| 1.4-Dichlorobenzene          | N       | 2790                 | mg/kg    | 0.050    | < 0.050             | < 0.050     | < 0.050     |
| 1,2-Dichlorobenzene          | N       | 2790                 | mg/kg    | 0.050    | < 0.050             | < 0.050     | < 0.050     |
| 1,2 DIGITIONOTIZOTIC         | N       | 2750                 | mg/kg    |          | < 0.050             | < 0.050     | < 0.050     |

| Client: Causeway Geotech Ltd   |                      |              | mtest Jo       |         | 22-45548           | 22-45548           | 22-45548           |
|--------------------------------|----------------------|--------------|----------------|---------|--------------------|--------------------|--------------------|
| Quotation No.: Q22-28455       | Chemtest Sample ID.: |              |                | 1553287 | 1553290            | 1553293            |                    |
|                                |                      | Sa           | ample Lo       |         | BH101              | BH126              | BH128              |
|                                |                      |              |                | e Type: | SOIL               | SOIL               | SOIL               |
|                                |                      |              | Top Dep        |         | 0.5                | 0.5                | 0.5                |
|                                |                      |              | Date Sa        |         | 23-Nov-2022        | 23-Nov-2022        | 23-Nov-2022        |
|                                |                      |              | Asbest         | os Lab: | NEW-ASB            | NEW-ASB            | NEW-ASB            |
| Determinand                    | Accred.              | SOP          | Units          | LOD     |                    |                    |                    |
| Bis(2-Chloroisopropyl)Ether    | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Hexachloroethane               | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| N-Nitrosodi-n-propylamine      | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 4-Methylphenol                 | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Nitrobenzene                   | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Isophorone                     | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2-Nitrophenol                  | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2,4-Dimethylphenol             | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Bis(2-Chloroethoxy)Methane     | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2,4-Dichlorophenol             | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 1,2,4-Trichlorobenzene         | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Naphthalene                    | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 4-Chloroaniline                | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Hexachlorobutadiene            | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 4-Chloro-3-Methylphenol        | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2-Methylnaphthalene            | N                    | 2790         |                |         | < 0.050            | < 0.050            | < 0.050            |
| Hexachlorocyclopentadiene      | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2,4,6-Trichlorophenol          | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2,4,5-Trichlorophenol          | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2-Chloronaphthalene            | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2-Nitroaniline                 | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Acenaphthylene                 | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Dimethylphthalate              | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2,6-Dinitrotoluene             | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Acenaphthene                   | N                    | 2790         |                | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 3-Nitroaniline                 | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Dibenzofuran                   | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 4-Chlorophenylphenylether      | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2,4-Dinitrotoluene             | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Fluorene                       | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Diethyl Phthalate              | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 4-Nitroaniline                 | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 2-Methyl-4,6-Dinitrophenol     | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Azobenzene                     | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| 4-Bromophenylphenyl Ether      | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Hexachlorobenzene              | N                    | 2790         | mg/kg          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
|                                |                      | 55           | 9,9            |         |                    |                    |                    |
| Pentachlorophenol              | N                    | 2790         | ma/ka          | 0.050   | < 0.050            | < 0.050            | < 0.050            |
| Pentachlorophenol Phenanthrene | N<br>N               | 2790<br>2790 | mg/kg<br>mg/kg | 0.050   | < 0.050<br>< 0.050 | < 0.050<br>< 0.050 | < 0.050<br>< 0.050 |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:                |         |         |             | 22-45548    | 22-45548    |
|------------------------------|---------|----------------------------------|---------|---------|-------------|-------------|-------------|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.:             |         |         | 1553287     | 1553290     | 1553293     |
|                              |         | Sample Location:<br>Sample Type: |         |         | BH101       | BH126       | BH128       |
|                              |         |                                  |         |         | SOIL        | SOIL        | SOIL        |
|                              |         |                                  | Top De  |         | 0.5         | 0.5         | 0.5         |
|                              |         |                                  | Date Sa |         | 23-Nov-2022 | 23-Nov-2022 | 23-Nov-2022 |
|                              |         |                                  | Asbest  | os Lab: | NEW-ASB     | NEW-ASB     | NEW-ASB     |
| Determinand                  | Accred. | SOP                              | Units   | LOD     |             |             |             |
| Carbazole                    | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Di-N-Butyl Phthalate         | N       | 2790                             | 0       | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Fluoranthene                 | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | 0.11        | 0.083       |
| Pyrene                       | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | 0.11        | 0.072       |
| Butylbenzyl Phthalate        | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Benzo[a]anthracene           | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Chrysene                     | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Di-N-Octyl Phthalate         | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Benzo[b]fluoranthene         | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Benzo[k]fluoranthene         | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Benzo[a]pyrene               | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Dibenz(a,h)Anthracene        | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| Benzo[g,h,i]perylene         | N       | 2790                             | mg/kg   | 0.050   | < 0.050     | < 0.050     | < 0.050     |
| 4-Nitrophenol                | N       | 2790                             | mg/kg   |         | < 0.050     | < 0.050     | < 0.050     |
| Naphthalene                  | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 0.24        | 0.11        |
| Acenaphthylene               | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 0.093       | < 0.010     |
| Acenaphthene                 | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 0.13        | < 0.010     |
| Fluorene                     | N       | 2800                             | mg/kg   |         | < 0.010     | 0.15        | < 0.010     |
| Phenanthrene                 | N       | 2800                             | mg/kg   |         | 0.16        | 0.64        | 0.26        |
| Anthracene                   | N       | 2800                             | mg/kg   | 0.010   | 0.086       | 0.15        | 0.12        |
| Fluoranthene                 | N       | 2800                             | mg/kg   | 0.010   | 0.18        | 0.90        | 0.36        |
| Pyrene                       | N       | 2800                             | mg/kg   |         | 0.21        | 0.75        | 0.37        |
| Benzo[a]anthracene           | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 0.65        | 0.32        |
| Chrysene                     | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 0.49        | 0.21        |
| Benzo[b]fluoranthene         | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 0.80        | 0.47        |
| Benzo[k]fluoranthene         | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 0.33        | 0.24        |
| Benzo[a]pyrene               | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 1.0         | 0.57        |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 0.62        | 0.44        |
| Dibenz(a,h)Anthracene        | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 0.15        | < 0.010     |
| Benzo[g,h,i]perylene         | N       | 2800                             | mg/kg   | 0.010   | < 0.010     | 0.42        | 0.30        |
| Total Of 16 PAH's            | N       | 2800                             | mg/kg   | 0.20    | 0.64        | 7.5         | 3.8         |
| Resorcinol                   | U       | 2920                             | mg/kg   | 0.020   | < 0.020     | < 0.020     | < 0.020     |
| Phenol                       | U       | 2920                             | mg/kg   | 0.020   | < 0.020     | < 0.020     | < 0.020     |
| Cresols                      | U       | 2920                             | mg/kg   | 0.020   | < 0.020     | < 0.020     | < 0.020     |
| Xylenols                     | U       | 2920                             | mg/kg   | 0.020   | < 0.020     | < 0.020     | < 0.020     |
| 1-Naphthol                   | N       | 2920                             | mg/kg   |         | < 0.020     | < 0.020     | < 0.020     |
|                              | U       | 2920                             |         |         |             |             |             |
| Trimethylphenols             | U       | 2920                             | mg/kg   | 0.020   | < 0.020     | < 0.020     | < 0.020     |

| Client: Causeway Geotech Ltd | Chemtest Job No.:    |      |             | 22-45548 | 22-45548    | 22-45548    |             |
|------------------------------|----------------------|------|-------------|----------|-------------|-------------|-------------|
| Quotation No.: Q22-28455     | Chemtest Sample ID.: |      |             | 1553287  | 1553290     | 1553293     |             |
|                              | Sample Location:     |      |             | BH101    | BH126       | BH128       |             |
|                              | Sample Type:         |      |             | SOIL     | SOIL        | SOIL        |             |
|                              |                      |      | Top Dep     | oth (m): | 0.5         | 0.5         | 0.5         |
|                              |                      |      | Date Sa     | ımpled:  | 23-Nov-2022 | 23-Nov-2022 | 23-Nov-2022 |
|                              |                      |      | Asbest      | os Lab:  | NEW-ASB     | NEW-ASB     | NEW-ASB     |
| Determinand                  | Accred.              | SOP  | P Units LOD |          |             |             |             |
| Total Phenols                | U                    | 2920 | mg/kg       | 0.10     | < 0.10      | < 0.10      | < 0.10      |

# **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                        | рН                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)         | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                                  | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                                   | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                     | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                          | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA<br>Method 8270)                                                                                                                                                                                                                 | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |

### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis This analysis has been subcontracted to an unaccredited laboratory Т I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-45743-1

Initial Date of Issue: 08-Jan-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey
Stephen McCracken

Project 22-1041A 3FM Planning Design GI

Stephen Watson

Quotation No.: Q22-28455 Date Received: 28-Nov-2022

Order No.: Date Instructed: 07-Dec-2022

No. of Samples: 1

Turnaround (Wkdays): 7 Results Due: 15-Dec-2022

Date Approved: 08-Jan-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

| Client: Causeway Geotech Ltd              |         | Chemtest Job No. |            |          |                         |  |  |  |
|-------------------------------------------|---------|------------------|------------|----------|-------------------------|--|--|--|
| Quotation No.: Q22-28455                  | (       |                  | st Sam     |          | 1554176                 |  |  |  |
|                                           |         | Sa               | ample Lo   |          | BH119                   |  |  |  |
|                                           |         |                  |            | е Туре:  | SOIL                    |  |  |  |
|                                           |         |                  | Top Dep    | oth (m): | 2.5                     |  |  |  |
|                                           |         |                  | Date Sa    | ampled:  | 24-Nov-2022             |  |  |  |
|                                           |         |                  | Asbest     | os Lab:  | COVENTRY                |  |  |  |
| Determinand                               | Accred. | SOP              | Units      | LOD      |                         |  |  |  |
| ACM Type                                  | U       | 2192             |            | N/A      | -                       |  |  |  |
| Asbestos Identification                   | U       | 2192             |            | N/A      | No Asbestos<br>Detected |  |  |  |
| Moisture                                  | N       | 2030             | %          | 0.020    | 12                      |  |  |  |
| Natural Moisture Content                  | N       | 2030             | %          | 0.020    | 14                      |  |  |  |
| Soil Colour                               | N       | 2040             |            | N/A      | Brown                   |  |  |  |
| Other Material                            | N       | 2040             |            | N/A      | Stones                  |  |  |  |
| Soil Texture                              | N       | 2040             |            | N/A      | Clay                    |  |  |  |
| pH                                        | U       | 2010             |            | 4.0      | 8.1                     |  |  |  |
| Boron (Hot Water Soluble)                 | U       | 2120             | mg/kg      | 0.40     | 1.6                     |  |  |  |
| Sulphate (2:1 Water Soluble) as SO4       | U       | 2120             | g/l        | 0.010    | 0.30                    |  |  |  |
| Total Sulphur                             | U       | 2175             | %          | 0.010    | 0.14                    |  |  |  |
| Sulphur (Elemental)                       | Ü       | _                | mg/kg      | 1.0      | 310                     |  |  |  |
| Cyanide (Free)                            | Ü       | 2300             |            | 0.50     | < 0.50                  |  |  |  |
| Cyanide (Total)                           | Ü       |                  | mg/kg      | 0.50     | < 0.50                  |  |  |  |
| Thiocyanate                               | U       | 2300             | )          | 5.0      | < 5.0                   |  |  |  |
| Aluminium (Total)                         | N       | 2430             |            | 100      | 8000                    |  |  |  |
| Iron (Total)                              | N       | 2430             |            | 100      | 23000                   |  |  |  |
| Arsenic                                   | U       | 2455             |            | 0.5      | 17                      |  |  |  |
| Barium                                    | Ü       | 2455             | Ü          | 0        | 110                     |  |  |  |
| Beryllium                                 | Ü       | 2455             |            | 0.5      | 0.8                     |  |  |  |
| Cadmium                                   | Ü       |                  | mg/kg      | 0.10     | 1.7                     |  |  |  |
| Chromium                                  | U       | 2455             | 0          | 0.5      | 16                      |  |  |  |
| Manganese                                 | U       | 2455             |            | 1.0      | 1100                    |  |  |  |
| Copper                                    | U       | 2455             |            | 0.50     | 62                      |  |  |  |
| Mercury                                   | U       | 2455             |            | 0.05     | 0.45                    |  |  |  |
| Nickel                                    | U       | 2455             |            | 0.50     | 41                      |  |  |  |
| Lead                                      | U       | 2455             |            | 0.50     | 190                     |  |  |  |
| Selenium                                  | U       | 2455             |            | 0.30     | 1.7                     |  |  |  |
| Vanadium                                  | U       | 2455             | 0 0        | 0.25     | 25                      |  |  |  |
| Zinc                                      | U       | 2455             |            | 0.50     | 140                     |  |  |  |
| Chromium (Hexavalent)                     | N       | 2490             |            | 0.50     | < 0.50                  |  |  |  |
| Organic Matter                            | U       | 2625             | mg/kg<br>% | 0.30     | 4.2                     |  |  |  |
| Total Organic Carbon                      | U       | 2625             |            | 0.40     | 2.4                     |  |  |  |
|                                           | _       | _                |            |          |                         |  |  |  |
| Aliphatic TPH >C5-C6 Aliphatic TPH >C6-C8 | N       | 2680             |            |          | < 0.010                 |  |  |  |
|                                           | N       |                  | mg/kg      |          | < 0.010                 |  |  |  |
| Aliphatic TPH >C8-C10                     | N       | 2680             | 0          | 0.10     | < 0.10                  |  |  |  |
| Aliphatic TPH >C10-C12                    | N       | 2680             | ט          |          | < 0.10                  |  |  |  |
| Aliphatic TPH >C12-C16                    | N       | 2680             | mg/kg      | 0.10     | < 0.10                  |  |  |  |

| Client: Causeway Geotech Ltd      |         |              | mtest Jo |          |               |  |  |  |
|-----------------------------------|---------|--------------|----------|----------|---------------|--|--|--|
| Quotation No.: Q22-28455          |         | Chemte       | st Sam   | ple ID.: | 1554176       |  |  |  |
|                                   |         | Sa           | ample Lo |          | BH119<br>SOIL |  |  |  |
|                                   |         | Sample Type: |          |          |               |  |  |  |
|                                   |         |              | Top Dep  |          | 2.5           |  |  |  |
|                                   |         |              | Date Sa  | ampled:  | 24-Nov-2022   |  |  |  |
|                                   |         |              | Asbest   | os Lab:  | COVENTRY      |  |  |  |
| Determinand                       | Accred. | SOP          | Units    | LOD      |               |  |  |  |
| Aliphatic TPH >C16-C21            | N       | 2680         | mg/kg    | 0.10     | < 0.10        |  |  |  |
| Aliphatic TPH >C21-C35            | N       | 2680         | mg/kg    | 0.10     | 44            |  |  |  |
| Aliphatic TPH >C35-C44            | N       | 2680         | mg/kg    | 0.10     | < 0.10        |  |  |  |
| Total Aliphatic Hydrocarbons      | N       | 2680         | mg/kg    | 1.0      | 44            |  |  |  |
| Aromatic TPH >C5-C7               | N       | 2680         | mg/kg    | 0.010    | < 0.010       |  |  |  |
| Aromatic TPH >C7-C8               | N       | 2680         | mg/kg    | 0.010    | < 0.010       |  |  |  |
| Aromatic TPH >C8-C10              | N       |              | mg/kg    | 0.10     | < 0.10        |  |  |  |
| Aromatic TPH >C10-C12             | N       | 2680         | mg/kg    | 0.10     | < 0.10        |  |  |  |
| Aromatic TPH >C12-C16             | N       | 2680         | mg/kg    | 0.10     | < 0.10        |  |  |  |
| Aromatic TPH >C16-C21             | N       | 2680         |          | 0.10     | < 0.10        |  |  |  |
| Aromatic TPH >C21-C35             | N       | 2680         |          | 0.10     | 190           |  |  |  |
| Aromatic TPH >C35-C44             | N       | 2680         | mg/kg    | 0.10     | < 0.10        |  |  |  |
| Total Aromatic Hydrocarbons       | N       | 2680         |          | 1.0      | 190           |  |  |  |
| Total Petroleum Hydrocarbons      | N       |              | mg/kg    | 2.0      | 240           |  |  |  |
| Dichlorodifluoromethane           | N       | 2760         |          | 0.20     | < 0.20        |  |  |  |
| Chloromethane                     | N       | 2760         |          | 0.20     | < 0.20        |  |  |  |
| Vinyl Chloride                    | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| Bromomethane                      | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| Chloroethane                      | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| Trichlorofluoromethane            | N       | 2760         |          | 0.20     | < 0.20        |  |  |  |
| 1,1-Dichloroethene                | N       | 2760         |          | 0.20     | < 0.20        |  |  |  |
| Trans 1,2-Dichloroethene          | N       | 2760         |          | 0.20     | < 0.20        |  |  |  |
| 1,1-Dichloroethane                | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| cis 1,2-Dichloroethene            | N       | 2760         | μg/kg    | 0.20     | 2.7           |  |  |  |
| Bromochloromethane                | N       | 2760         | μg/kg    | 0.50     | < 0.50        |  |  |  |
| Trichloromethane                  | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| 1,1,1-Trichloroethane             | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| Tetrachloromethane                | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| 1,1-Dichloropropene               | N       | 2760         |          | 0.20     | < 0.20        |  |  |  |
| Benzene                           | N       | 2760         | μg/kg    | 0.20     | 1.0           |  |  |  |
| 1,2-Dichloroethane                | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| Trichloroethene                   | N       | 2760         | μg/kg    | 0.20     | 0.42          |  |  |  |
| 1,2-Dichloropropane               | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| Dibromomethane                    | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| Bromodichloromethane              | N       | 2760         | μg/kg    | 0.20     | < 0.20        |  |  |  |
| cis-1,3-Dichloropropene           |         | 2760         |          | 0.20     | < 0.20        |  |  |  |
| ICIS-1,3-DICHIDIODIODENE          | N       |              |          |          |               |  |  |  |
|                                   |         |              |          |          |               |  |  |  |
| Toluene Trans-1,3-Dichloropropene | N<br>N  | 2760<br>2760 | μg/kg    | 0.20     | 1.1 < 0.20    |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No. |          |         |               |  |  |  |
|------------------------------|---------|------------------|----------|---------|---------------|--|--|--|
| Quotation No.: Q22-28455     | (       |                  | st Sam   |         | 1554176       |  |  |  |
|                              |         | Sa               | ample Lo |         | BH119<br>SOIL |  |  |  |
|                              |         | Sample Type:     |          |         |               |  |  |  |
|                              |         |                  | Top Dep  |         | 2.5           |  |  |  |
|                              |         |                  | Date Sa  |         | 24-Nov-2022   |  |  |  |
|                              |         |                  | Asbest   | os Lab: | COVENTRY      |  |  |  |
| Determinand                  | Accred. | SOP              | Units    | LOD     |               |  |  |  |
| Tetrachloroethene            | N       | 2760             | 0        | 0.20    | < 0.20        |  |  |  |
| 1,3-Dichloropropane          | N       | 2760             | )        | 0.20    | < 0.20        |  |  |  |
| Dibromochloromethane         | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| 1,2-Dibromoethane            | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| Chlorobenzene                | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| 1,1,1,2-Tetrachloroethane    | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| Ethylbenzene                 | N       | 2760             | μg/kg    | 0.20    | 0.33          |  |  |  |
| m & p-Xylene                 | N       | 2760             |          | 0.20    | 0.48          |  |  |  |
| o-Xylene                     | N       | 2760             | μg/kg    | 0.20    | 0.26          |  |  |  |
| Styrene                      | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| Tribromomethane              | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| Isopropylbenzene             | N       | 2760             |          | 0.20    | < 0.20        |  |  |  |
| Bromobenzene                 | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| 1,2,3-Trichloropropane       | N       | 2760             |          | 0.20    | < 0.20        |  |  |  |
| N-Propylbenzene              | N       | 2760             |          | 0.20    | < 0.20        |  |  |  |
| 2-Chlorotoluene              | N       | 2760             |          | 0.20    | < 0.20        |  |  |  |
| 1,3,5-Trimethylbenzene       | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| 4-Chlorotoluene              | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| Tert-Butylbenzene            | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| 1,2,4-Trimethylbenzene       | N       | 2760             |          | 0.20    | < 0.20        |  |  |  |
| Sec-Butylbenzene             | N       | 2760             |          | 0.20    | < 0.20        |  |  |  |
| 1,3-Dichlorobenzene          | N       | 2760             |          | 0.20    | < 0.20        |  |  |  |
| 4-Isopropyltoluene           | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| 1,4-Dichlorobenzene          | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| N-Butylbenzene               | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| 1,2-Dichlorobenzene          | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| Hexachlorobutadiene          | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| 1,2,3-Trichlorobenzene       | N       | 2760             | μg/kg    | 0.20    | < 0.20        |  |  |  |
| Methyl Tert-Butyl Ether      | N       | 2760             |          | 0.20    | < 0.20        |  |  |  |
| N-Nitrosodimethylamine       | N       | 2790             | mg/kg    |         | < 0.050       |  |  |  |
| Phenol                       | N       | 2790             | mg/kg    |         | < 0.050       |  |  |  |
| 2-Chlorophenol               | N       | 2790             |          |         | < 0.050       |  |  |  |
| Bis-(2-Chloroethyl)Ether     | N       | 2790             |          |         | < 0.050       |  |  |  |
| 1,3-Dichlorobenzene          | N       |                  | mg/kg    |         | < 0.050       |  |  |  |
| 1,4-Dichlorobenzene          | N       |                  |          |         | < 0.050       |  |  |  |
| 1,2-Dichlorobenzene          | N       |                  | mg/kg    |         | < 0.050       |  |  |  |
| 2-Methylphenol               | N N     |                  | mg/kg    |         | < 0.050       |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.: |         |          |             |  |  |  |
|------------------------------|---------|-------------------|---------|----------|-------------|--|--|--|
| Quotation No.: Q22-28455     | (       | Chemte            | st Sam  | ple ID.: | 1554176     |  |  |  |
|                              |         | Sample Location   |         |          |             |  |  |  |
|                              |         |                   |         | e Type:  | SOIL        |  |  |  |
|                              |         |                   | Top Dep | oth (m): | 2.5         |  |  |  |
|                              |         |                   | Date Sa | ampled:  | 24-Nov-2022 |  |  |  |
|                              |         |                   | Asbest  | os Lab:  | COVENTRY    |  |  |  |
| Determinand                  | Accred. | SOP               | Units   | LOD      |             |  |  |  |
| Bis(2-Chloroisopropyl)Ether  | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| Hexachloroethane             | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| N-Nitrosodi-n-propylamine    | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| 4-Methylphenol               | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| Nitrobenzene                 | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| Isophorone                   | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| 2-Nitrophenol                | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| 2,4-Dimethylphenol           | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| Bis(2-Chloroethoxy)Methane   | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| 2,4-Dichlorophenol           | N       | 2790              | mg/kg   |          | < 0.050     |  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2790              |         |          | < 0.050     |  |  |  |
| Naphthalene                  | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| 4-Chloroaniline              | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| Hexachlorobutadiene          | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| 4-Chloro-3-Methylphenol      | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| 2-Methylnaphthalene          | N       | 2790              |         |          | < 0.050     |  |  |  |
| Hexachlorocyclopentadiene    | N       | 2790              |         |          | < 0.050     |  |  |  |
| 2,4,6-Trichlorophenol        | N       | 2790              | mg/kg   |          | < 0.050     |  |  |  |
| 2,4,5-Trichlorophenol        | N       | 2790              |         |          | < 0.050     |  |  |  |
| 2-Chloronaphthalene          | N       | 2790              |         |          | < 0.050     |  |  |  |
| 2-Nitroaniline               | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| Acenaphthylene               | N       | 2790              | 0       |          | < 0.050     |  |  |  |
| Dimethylphthalate            | N       | 2790              |         |          | < 0.050     |  |  |  |
| 2,6-Dinitrotoluene           | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| Acenaphthene                 | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| 3-Nitroaniline               | N       | 2790              | mg/kg   |          | < 0.050     |  |  |  |
| Dibenzofuran                 | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| 4-Chlorophenylphenylether    | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| 2,4-Dinitrotoluene           | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| Fluorene                     | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| Diethyl Phthalate            | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| 4-Nitroaniline               | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| 2-Methyl-4,6-Dinitrophenol   | N       | 2790              |         |          | < 0.050     |  |  |  |
| Azobenzene                   | N       | 2790              | mg/kg   |          | < 0.050     |  |  |  |
| 4-Bromophenylphenyl Ether    | N       | 2790              |         |          | < 0.050     |  |  |  |
| Hexachlorobenzene            | N       | 2790              | mg/kg   | 0.050    | < 0.050     |  |  |  |
| Pentachlorophenol            | N       | 2790              |         | 0.050    | < 0.050     |  |  |  |
| i chtachiolophenoi           |         |                   |         |          |             |  |  |  |
| Phenanthrene                 | N       | 2790              | mg/kg   | 0.050    | 1.0         |  |  |  |

| Client: Causeway Geotech Ltd              |         | Chemtest Job No.    |          |          |             |  |  |  |
|-------------------------------------------|---------|---------------------|----------|----------|-------------|--|--|--|
| Quotation No.: Q22-28455                  | (       | Chemtest Sample ID. |          |          |             |  |  |  |
|                                           |         | Sa                  | ample Lo |          | BH119       |  |  |  |
|                                           |         |                     |          | e Type:  | SOIL        |  |  |  |
|                                           |         |                     | Top Dep  | oth (m): | 2.5         |  |  |  |
|                                           |         |                     | Date Sa  | ampled:  | 24-Nov-2022 |  |  |  |
|                                           |         |                     | Asbest   | os Lab:  | COVENTRY    |  |  |  |
| Determinand                               | Accred. | SOP                 | Units    | LOD      |             |  |  |  |
| Carbazole                                 | N       | 2790                |          |          | < 0.050     |  |  |  |
| Di-N-Butyl Phthalate                      | N       | 2790                | mg/kg    | 0.050    | < 0.050     |  |  |  |
| Fluoranthene                              | N       | 2790                | mg/kg    | 0.050    | 2.3         |  |  |  |
| Pyrene                                    | N       | 2790                | mg/kg    | 0.050    | 1.9         |  |  |  |
| Butylbenzyl Phthalate                     | N       | 2790                | mg/kg    | 0.050    | < 0.050     |  |  |  |
| Benzo[a]anthracene                        | N       | 2790                | mg/kg    | 0.050    | 1.2         |  |  |  |
| Chrysene                                  | N       | 2790                |          |          | 1.1         |  |  |  |
| Bis(2-Ethylhexyl)Phthalate                | N       | 2790                | mg/kg    | 0.050    | < 0.050     |  |  |  |
| Di-N-Octyl Phthalate                      | N       | 2790                | mg/kg    | 0.050    | < 0.050     |  |  |  |
| Benzo[b]fluoranthene                      | N       | 2790                |          |          | 1.4         |  |  |  |
| Benzo[k]fluoranthene                      | N       | 2790                | mg/kg    |          | 0.54        |  |  |  |
| Benzo[a]pyrene                            | N       | 2790                | mg/kg    |          | 1.2         |  |  |  |
| Indeno(1,2,3-c,d)Pyrene                   | N       | 2790                |          |          | 0.55        |  |  |  |
| Dibenz(a,h)Anthracene                     | N       | 2790                |          |          | < 0.050     |  |  |  |
| Benzo[g,h,i]perylene                      | N       |                     | mg/kg    |          | 0.71        |  |  |  |
| 4-Nitrophenol                             | N       |                     | mg/kg    |          | < 0.050     |  |  |  |
| Naphthalene                               | N       | 2800                |          |          | 0.16        |  |  |  |
| Acenaphthylene                            | N       | 2800                | mg/kg    |          | 0.072       |  |  |  |
| Acenaphthene                              | N       | 2800                |          |          | 0.11        |  |  |  |
| Fluorene                                  | N       | 2800                |          |          | 0.10        |  |  |  |
| Phenanthrene                              | N       | 2800                |          |          | 0.79        |  |  |  |
| Anthracene                                | N       |                     | mg/kg    |          | 0.19        |  |  |  |
| Fluoranthene                              | N       |                     |          |          | 1.2         |  |  |  |
| Pyrene                                    | N       | 2800                |          |          | 0.95        |  |  |  |
| Benzo[a]anthracene                        | N       |                     | mg/kg    |          | 0.58        |  |  |  |
| Chrysene                                  | N       | 2800                |          |          | 0.56        |  |  |  |
| Benzo[b]fluoranthene                      | N       | 2800                |          |          | 0.78        |  |  |  |
| Benzo[k]fluoranthene                      | N       | 2800                |          |          | 0.78        |  |  |  |
|                                           | N       |                     | mg/kg    |          | 0.83        |  |  |  |
| Benzo[a]pyrene<br>Indeno(1,2,3-c,d)Pyrene | N N     | 2800                |          | 0.010    | 0.83        |  |  |  |
| Dibenz(a,h)Anthracene                     | N N     | 2800                | _        |          | 0.083       |  |  |  |
|                                           | N N     |                     |          |          |             |  |  |  |
| Benzo[g,h,i]perylene                      |         | 2800                | )        |          | 0.34        |  |  |  |
| Total Of 16 PAH's                         | N       | 2800                | mg/kg    | 0.20     | 7.6         |  |  |  |
| Resorcinol                                | U       | 2920                | ,        |          | < 0.020     |  |  |  |
| Phenol                                    | U       | 2920                | 5        |          | < 0.020     |  |  |  |
| Cresols                                   | U       |                     | mg/kg    |          | 0.066       |  |  |  |
| Xylenols                                  | U       |                     | mg/kg    |          | < 0.020     |  |  |  |
| 1-Naphthol                                | N       |                     | mg/kg    |          | < 0.020     |  |  |  |
| Trimethylphenols                          | U       | 2920                | mg/kg    | 0.020    | < 0.020     |  |  |  |

| Client: Causeway Geotech Ltd |         | Che    | ob No.:  | 22-45743 |             |
|------------------------------|---------|--------|----------|----------|-------------|
| Quotation No.: Q22-28455     | (       | Chemte | st Sam   | ple ID.: | 1554176     |
|                              |         | Sa     | ample Lo | ocation: | BH119       |
|                              |         |        | Sampl    | е Туре:  | SOIL        |
|                              |         |        | Top Dep  | oth (m): | 2.5         |
|                              |         |        | Date Sa  | ampled:  | 24-Nov-2022 |
|                              |         |        | Asbest   | os Lab:  | COVENTRY    |
| Determinand                  | Accred. |        |          |          |             |
| Total Phenols                | U       | 2920   | mg/kg    | 0.10     | < 0.10      |

# **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                        | рН                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)         | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                                  | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                                   | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                     | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                          | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA<br>Method 8270)                                                                                                                                                                                                                 | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |

### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis This analysis has been subcontracted to an unaccredited laboratory Т I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-46669-1

Initial Date of Issue: 09-Jan-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Dean McCloskey
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross

Stephen Franey
Stephen McCracken

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 06-Dec-2022

Order No.: Date Instructed: 22-Dec-2022

No. of Samples: 2

Turnaround (Wkdays): 8 Results Due: 09-Jan-2023

Date Approved: 09-Jan-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

| Client: Causeway Geotech Ltd        |         |                | mtest Jo |          | 22-46669         | 22-46669    |
|-------------------------------------|---------|----------------|----------|----------|------------------|-------------|
| Quotation No.: Q22-28455            |         | Chemte         | st Sam   | ple ID.: | 1558444          | 1558447     |
|                                     |         | Sa             | ample Lo | ocation: | BH125            | BH127       |
|                                     |         |                |          | е Туре:  | SOIL             | SOIL        |
|                                     |         | Top Depth (m): |          |          | 4.00             | 1.00        |
|                                     |         |                | Date Sa  | ampled:  | 01-Dec-2022      | 01-Dec-2022 |
|                                     |         |                | Asbest   | os Lab:  | COVENTRY         | COVENTRY    |
| Determinand                         | Accred. | SOP            | Units    | LOD      |                  |             |
| ACM Type                            | U       | 2192           |          | N/A      | -                | -           |
| Asbestos Identification             | U       | 2192           |          | N/A      | No Asbestos      | No Asbestos |
| Assested Identification             |         | 2102           |          | IN//A    | Detected         | Detected    |
| Moisture                            | N       | 2030           | %        | 0.020    | 23               | 21          |
| Natural Moisture Content            | N       | 2030           | %        | 0.020    | 29               | 27          |
| Soil Colour                         | N       | 2040           |          | N/A      | Brown            | Brown       |
| Other Material                      | N       | 2040           |          | N/A      | Stones and Roots | Stones      |
| Soil Texture                        | N       | 2040           |          | N/A      | Sand             | Sand        |
| рН                                  | U       | 2010           |          | 4.0      | 7.5              | 7.7         |
| Boron (Hot Water Soluble)           | U       | 2120           | mg/kg    | 0.40     | 1.5              | 1.3         |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120           | g/l      | 0.010    | 0.68             | 0.69        |
| Total Sulphur                       | U       | 2175           | %        | 0.010    | 0.63             | 0.49        |
| Sulphur (Elemental)                 | U       | 2180           |          | 1.0      | 750              | 2100        |
| Cyanide (Free)                      | U       | 2300           | mg/kg    | 0.50     | [B] < 0.50       | [B] < 0.50  |
| Cyanide (Total)                     | U       | 2300           | mg/kg    | 0.50     | [B] 1.4          | [B] 0.70    |
| Thiocyanate                         | U       | 2300           | mg/kg    | 5.0      | [B] < 5.0        | [B] < 5.0   |
| Aluminium (Total)                   | N       | 2430           | mg/kg    | 100      | 7800             | 8100        |
| Iron (Total)                        | N       | 2430           | mg/kg    | 100      | 13000            | 16000       |
| Arsenic                             | U       | 2455           | mg/kg    | 0.5      | 15               | 11          |
| Barium                              | U       | 2455           | mg/kg    | 0        | 220              | 210         |
| Beryllium                           | U       | 2455           | mg/kg    | 0.5      | < 0.5            | < 0.5       |
| Cadmium                             | U       | 2455           | mg/kg    | 0.10     | 1.3              | < 0.10      |
| Chromium                            | U       | 2455           | mg/kg    | 0.5      | 18               | 14          |
| Manganese                           | U       | 2455           | mg/kg    | 1.0      | 540              | 820         |
| Copper                              | U       | 2455           | mg/kg    | 0.50     | 67               | 31          |
| Mercury                             | U       | 2455           | mg/kg    | 0.05     | 0.33             | 0.34        |
| Nickel                              | U       | 2455           | mg/kg    | 0.50     | 24               | 27          |
| Lead                                | U       | 2455           | mg/kg    | 0.50     | 200              | 210         |
| Selenium                            | U       | 2455           | mg/kg    | 0.25     | < 0.25           | < 0.25      |
| Vanadium                            | U       | 2455           | mg/kg    | 0.5      | 18               | 21          |
| Zinc                                | U       | 2455           | mg/kg    | 0.50     | 2300             | 200         |
| Chromium (Hexavalent)               | N       | 2490           | mg/kg    | 0.50     | < 0.50           | < 0.50      |
| Organic Matter                      | U       | 2625           | %        | 0.40     | 10               | 7.5         |
| Total Organic Carbon                | Ū       | 2625           | %        | 0.20     | 6.0              | 4.4         |
| Aliphatic TPH >C5-C6                | N       | 2680           | mg/kg    |          | [B] < 0.010      | [B] < 0.010 |
| Aliphatic TPH >C6-C8                | N       | 2680           | mg/kg    | 0.010    | [B] < 0.010      | [B] < 0.010 |
| Aliphatic TPH >C8-C10               | N       | 2680           | mg/kg    | 0.10     | [B] < 0.10       | [B] < 0.10  |
| Aliphatic TPH >C10-C12              | N       | 2680           | mg/kg    |          | [B] < 0.10       | [B] < 0.10  |

| Client: Causeway Geotech Ltd |         |              | mtest Jo |         | 22-46669    | 22-46669    |
|------------------------------|---------|--------------|----------|---------|-------------|-------------|
| Quotation No.: Q22-28455     |         |              | st Sam   |         | 1558444     | 1558447     |
|                              |         | Sa           | ample Lo |         | BH125       | BH127       |
|                              |         | Sample Type: |          |         |             | SOIL        |
|                              |         |              | Top Dep  | , ,     | 4.00        | 1.00        |
|                              |         |              | Date Sa  | ampled: | 01-Dec-2022 | 01-Dec-2022 |
|                              |         |              | Asbest   | os Lab: | COVENTRY    | COVENTRY    |
| Determinand                  | Accred. | SOP          | Units    | LOD     |             |             |
| Aliphatic TPH >C12-C16       | N       | 2680         | mg/kg    | 0.10    | [B] < 0.10  | [B] < 0.10  |
| Aliphatic TPH >C16-C21       | N       | 2680         | mg/kg    | 0.10    | [B] < 0.10  | [B] 2.0     |
| Aliphatic TPH >C21-C35       | N       | 2680         | mg/kg    | 0.10    | [B] < 0.10  | [B] 84      |
| Aliphatic TPH >C35-C44       | N       | 2680         | mg/kg    | 0.10    | [B] < 0.10  | [B] < 0.10  |
| Total Aliphatic Hydrocarbons | N       | 2680         | mg/kg    | 1.0     | [B] < 1.0   | [B] 86      |
| Aromatic TPH >C5-C7          | N       | 2680         | mg/kg    | 0.010   | [B] < 0.010 | [B] < 0.010 |
| Aromatic TPH >C7-C8          | N       | 2680         |          | 0.010   | [B] < 0.010 | [B] < 0.010 |
| Aromatic TPH >C8-C10         | N       | 2680         | mg/kg    | 0.10    | [B] < 0.10  | [B] < 0.10  |
| Aromatic TPH >C10-C12        | N       | 2680         | mg/kg    | 0.10    | [B] < 0.10  | [B] < 0.10  |
| Aromatic TPH >C12-C16        | N       | 2680         | mg/kg    | 0.10    | [B] < 0.10  | [B] < 0.10  |
| Aromatic TPH >C16-C21        | N       | 2680         | mg/kg    | 0.10    | [B] < 0.10  | [B] 18      |
| Aromatic TPH >C21-C35        | N       | 2680         | mg/kg    | 0.10    | [B] < 0.10  | [B] 430     |
| Aromatic TPH >C35-C44        | N       | 2680         | mg/kg    | 0.10    | [B] < 0.10  | [B] < 0.10  |
| Total Aromatic Hydrocarbons  | N       | 2680         |          | 1.0     | [B] < 1.0   | [B] 450     |
| Total Petroleum Hydrocarbons | N       | 2680         | mg/kg    | 2.0     | [B] < 2.0   | [B] 540     |
| Dichlorodifluoromethane      | N       | 2760         |          | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Chloromethane                | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Vinyl Chloride               | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Bromomethane                 | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Chloroethane                 | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Trichlorofluoromethane       | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| 1,1-Dichloroethene           | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Trans 1,2-Dichloroethene     | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| 1,1-Dichloroethane           | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| cis 1,2-Dichloroethene       | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Bromochloromethane           | N       | 2760         | μg/kg    | 0.50    | [B] < 0.50  | [B] < 0.50  |
| Trichloromethane             | N       | 2760         | μg/kg    | 0.20    | [B] 0.68    | [B] 0.56    |
| 1,1,1-Trichloroethane        | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Tetrachloromethane           | N       | 2760         |          | 0.20    | [B] < 0.20  | [B] < 0.20  |
| 1,1-Dichloropropene          | N       | 2760         | μg/kg    | 0.20    |             |             |
|                              | N       |              | μg/kg    |         | [B] < 0.20  | [B] < 0.20  |
| Benzene                      |         | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] 0.42    |
| 1,2-Dichloroethane           | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Trichloroethene              | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| 1,2-Dichloropropane          | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Dibromomethane               | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Bromodichloromethane         | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| cis-1,3-Dichloropropene      | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |
| Toluene                      | N       | 2760         | μg/kg    | 0.20    | [B] 1.0     | [B] 0.74    |
| Trans-1,3-Dichloropropene    | N       | 2760         | μg/kg    | 0.20    | [B] < 0.20  | [B] < 0.20  |

| Client: Causeway Geotech Ltd |                                                                                                         |               | mtest Jo | 22-46669 | 22-46669    |             |
|------------------------------|---------------------------------------------------------------------------------------------------------|---------------|----------|----------|-------------|-------------|
| Quotation No.: Q22-28455     | ion No.: Q22-28455  Chemtest Sample ID.:  Sample Location:  Sample Type:  Top Depth (m):  Date Sampled: |               |          |          | 1558444     | 1558447     |
|                              |                                                                                                         |               |          | BH125    | BH127       |             |
|                              |                                                                                                         |               |          | SOIL     | SOIL        |             |
|                              |                                                                                                         |               |          | 4.00     | 1.00        |             |
|                              |                                                                                                         |               |          | ampled:  | 01-Dec-2022 | 01-Dec-2022 |
|                              |                                                                                                         | Asbestos Lab: |          |          | COVENTRY    | COVENTRY    |
| Determinand                  | Accred.                                                                                                 | SOP           | Units    | LOD      |             |             |
| 1,1,2-Trichloroethane        | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Tetrachloroethene            | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 1,3-Dichloropropane          | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Dibromochloromethane         | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] 1.0     | [B] < 0.20  |
| 1,2-Dibromoethane            | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Chlorobenzene                | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 1,1,1,2-Tetrachloroethane    | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Ethylbenzene                 | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] 0.55    | [B] < 0.20  |
| m & p-Xylene                 | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] 2.1     | [B] < 0.20  |
| o-Xylene                     | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Styrene                      | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Tribromomethane              | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Isopropylbenzene             | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Bromobenzene                 | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 1,2,3-Trichloropropane       | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| N-Propylbenzene              | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 2-Chlorotoluene              | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 1,3,5-Trimethylbenzene       | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 4-Chlorotoluene              | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Tert-Butylbenzene            | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] 0.55    | [B] < 0.20  |
| 1,2,4-Trimethylbenzene       | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Sec-Butylbenzene             | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 1,3-Dichlorobenzene          | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 4-Isopropyltoluene           | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] 0.55    | [B] < 0.20  |
| 1,4-Dichlorobenzene          | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| N-Butylbenzene               | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 1,2-Dichlorobenzene          | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 1,2-Dibromo-3-Chloropropane  | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 1,2,4-Trichlorobenzene       | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Hexachlorobutadiene          | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| 1,2,3-Trichlorobenzene       | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| Methyl Tert-Butyl Ether      | N                                                                                                       | 2760          | μg/kg    | 0.20     | [B] < 0.20  | [B] < 0.20  |
| N-Nitrosodimethylamine       | N                                                                                                       | 2790          | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Phenol                       | N                                                                                                       | 2790          | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2-Chlorophenol               | N                                                                                                       | 2790          |          | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Bis-(2-Chloroethyl)Ether     | N                                                                                                       | 2790          | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 1,3-Dichlorobenzene          | N                                                                                                       | 2790          | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 1,4-Dichlorobenzene          | N                                                                                                       | 2790          | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 1,2-Dichlorobenzene          | N                                                                                                       | 2790          |          |          | [B] < 0.050 | [B] < 0.050 |

| Client: Causeway Geotech Ltd |                                              |               | mtest J | 22-46669 | 22-46669    |             |
|------------------------------|----------------------------------------------|---------------|---------|----------|-------------|-------------|
| Quotation No.: Q22-28455     | (                                            |               | st Sam  | _        | 1558444     | 1558447     |
|                              | Sample Location: Sample Type: Top Depth (m): |               |         | BH125    | BH127       |             |
|                              |                                              |               |         | SOIL     | SOIL        |             |
|                              |                                              |               |         | 4.00     | 1.00        |             |
|                              | Date Sampled:                                |               |         |          | 01-Dec-2022 | 01-Dec-2022 |
|                              |                                              | Asbestos Lab: |         |          | COVENTRY    | COVENTRY    |
| Determinand                  | Accred.                                      | SOP           | Units   | LOD      |             |             |
| 2-Methylphenol               | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Bis(2-Chloroisopropyl)Ether  | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Hexachloroethane             | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| N-Nitrosodi-n-propylamine    | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 4-Methylphenol               | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Nitrobenzene                 | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Isophorone                   | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2-Nitrophenol                | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2,4-Dimethylphenol           | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Bis(2-Chloroethoxy)Methane   | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2,4-Dichlorophenol           | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 1,2,4-Trichlorobenzene       | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Naphthalene                  | N                                            | 2790          | mg/kg   | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 4-Chloroaniline              | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Hexachlorobutadiene          | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 4-Chloro-3-Methylphenol      | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 2-Methylnaphthalene          | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Hexachlorocyclopentadiene    | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 2,4,6-Trichlorophenol        | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 2,4,5-Trichlorophenol        | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 2-Chloronaphthalene          | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 2-Nitroaniline               | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Acenaphthylene               | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Dimethylphthalate            | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 2,6-Dinitrotoluene           | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Acenaphthene                 | N                                            | 2790          | mg/kg   |          | [B] 0.10    | [B] < 0.050 |
| 3-Nitroaniline               | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Dibenzofuran                 | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 4-Chlorophenylphenylether    | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 2,4-Dinitrotoluene           | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Fluorene                     | N                                            | 2790          | mg/kg   |          | [B] 0.10    | [B] < 0.050 |
| Diethyl Phthalate            | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 4-Nitroaniline               | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 2-Methyl-4,6-Dinitrophenol   | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Azobenzene                   | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| 4-Bromophenylphenyl Ether    | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Hexachlorobenzene            | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Pentachlorophenol            | N                                            | 2790          | mg/kg   |          | [B] < 0.050 | [B] < 0.050 |
| Phenanthrene                 | N                                            | 2790          | mg/kg   |          | [B] 0.49    | [B] 0.61    |

| Client: Causeway Geotech Ltd |                                              |      | mtest Jo | 22-46669 | 22-46669    |             |
|------------------------------|----------------------------------------------|------|----------|----------|-------------|-------------|
| Quotation No.: Q22-28455     | Chemtest Sample ID.:                         |      |          |          | 1558444     | 1558447     |
|                              | Sample Location: Sample Type: Top Depth (m): |      |          | BH125    | BH127       |             |
|                              |                                              |      |          | SOIL     | SOIL        |             |
|                              |                                              |      |          | 4.00     | 1.00        |             |
|                              | Date Sampled:<br>Asbestos Lab:               |      |          |          | 01-Dec-2022 | 01-Dec-2022 |
|                              |                                              |      |          |          | COVENTRY    | COVENTRY    |
| Determinand                  | Accred.                                      | SOP  | Units    | LOD      |             |             |
| Anthracene                   | Ν                                            | 2790 | mg/kg    | 0.050    | [B] 0.14    | [B] 0.34    |
| Carbazole                    | Ν                                            | 2790 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Di-N-Butyl Phthalate         | N                                            | 2790 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Fluoranthene                 | N                                            | 2790 | mg/kg    | 0.050    | [B] 0.94    | [B] 1.9     |
| Pyrene                       | N                                            | 2790 | mg/kg    | 0.050    | [B] 0.90    | [B] 1.7     |
| Butylbenzyl Phthalate        | N                                            | 2790 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Benzo[a]anthracene           | N                                            | 2790 | mg/kg    | 0.050    | [B] 0.56    | [B] 1.1     |
| Chrysene                     | N                                            | 2790 | mg/kg    | 0.050    | [B] 0.56    | [B] 1.0     |
| Bis(2-Ethylhexyl)Phthalate   | N                                            | 2790 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Di-N-Octyl Phthalate         | N                                            | 2790 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Benzo[b]fluoranthene         | N                                            | 2790 | mg/kg    | 0.050    | [B] 0.66    | [B] 1.2     |
| Benzo[k]fluoranthene         | N                                            | 2790 | mg/kg    | 0.050    | [B] 0.22    | [B] 0.42    |
| Benzo[a]pyrene               | N                                            | 2790 | mg/kg    | 0.050    | [B] 0.57    | [B] 1.1     |
| Indeno(1,2,3-c,d)Pyrene      | N                                            | 2790 | mg/kg    | 0.050    | [B] 0.23    | [B] 0.45    |
| Dibenz(a,h)Anthracene        | N                                            | 2790 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Benzo[g,h,i]perylene         | N                                            | 2790 | mg/kg    | 0.050    | [B] 0.40    | [B] 0.59    |
| 4-Nitrophenol                | N                                            | 2790 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Naphthalene                  | N                                            | 2800 | mg/kg    | 0.010    | 0.28        | 1.0         |
| Acenaphthylene               | N                                            | 2800 | mg/kg    | 0.010    | < 0.010     | < 0.010     |
| Acenaphthene                 | N                                            | 2800 | mg/kg    | 0.010    | 0.26        | < 0.010     |
| Fluorene                     | N                                            | 2800 | mg/kg    | 0.010    | 0.28        | < 0.010     |
| Phenanthrene                 | N                                            | 2800 | mg/kg    | 0.010    | 1.7         | 2.0         |
| Anthracene                   | N                                            | 2800 | mg/kg    | 0.010    | 0.48        | 0.80        |
| Fluoranthene                 | N                                            | 2800 | mg/kg    | 0.010    | 1.9         | 4.5         |
| Pyrene                       | N                                            | 2800 | mg/kg    | 0.010    | 1.7         | 5.0         |
| Benzo[a]anthracene           | N                                            | 2800 | mg/kg    | 0.010    | 0.88        | 2.4         |
| Chrysene                     | N                                            | 2800 | mg/kg    | 0.010    | 0.79        | 1.6         |
| Benzo[b]fluoranthene         | N                                            | 2800 | mg/kg    | 0.010    | 0.89        | 1.4         |
| Benzo[k]fluoranthene         | N                                            | 2800 | mg/kg    | 0.010    | 0.41        | 0.39        |
| Benzo[a]pyrene               | N                                            | 2800 | mg/kg    | 0.010    | 0.73        | 2.6         |
| Indeno(1,2,3-c,d)Pyrene      | N                                            | 2800 | mg/kg    | 0.010    | 0.48        | < 0.010     |
| Dibenz(a,h)Anthracene        | N                                            | 2800 | mg/kg    | 0.010    | < 0.010     | < 0.010     |
| Benzo[g,h,i]perylene         | N                                            | 2800 | mg/kg    | 0.010    | 0.44        | < 0.010     |
| Total Of 16 PAH's            | N                                            | 2800 | mg/kg    | 0.20     | 11          | 22          |
| Resorcinol                   | U                                            | 2920 | mg/kg    | 0.020    | < 0.020     | < 0.020     |
| Phenol                       | U                                            | 2920 | mg/kg    | 0.020    | < 0.020     | < 0.020     |
| Cresols                      | U                                            | 2920 | mg/kg    | 0.020    | < 0.020     | < 0.020     |
| V: 1 1-                      | U                                            | 2920 | mg/kg    | 0.020    | < 0.020     | < 0.020     |
| Xylenols                     |                                              |      |          |          |             |             |

| Client: Causeway Geotech Ltd |                  | Che    | mtest Jo | 22-46669    | 22-46669    |          |
|------------------------------|------------------|--------|----------|-------------|-------------|----------|
| Quotation No.: Q22-28455     | (                | Chemte | st Sam   | ple ID.:    | 1558444     | 1558447  |
|                              | Sample Location: |        |          |             | BH125       | BH127    |
|                              | Sample Type:     |        |          |             | SOIL        | SOIL     |
|                              |                  |        | Top Dep  | 4.00        | 1.00        |          |
|                              |                  |        | Date Sa  | 01-Dec-2022 | 01-Dec-2022 |          |
|                              |                  |        | Asbest   | os Lab:     | COVENTRY    | COVENTRY |
| Determinand                  | Accred.          | SOP    | Units    | LOD         |             |          |
| Trimethylphenols             | U                | 2920   | mg/kg    | 0.020       | < 0.020     | < 0.020  |
| Total Phenois                | U                | 2920   | mg/kg    | 0.10        | < 0.10      | < 0.10   |

#### **Deviations**

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

| Sample: | Sample Ref: | Sample ID: | Sample<br>Location: | Sampled<br>Date: | Deviation Code(s): | Containers<br>Received: |
|---------|-------------|------------|---------------------|------------------|--------------------|-------------------------|
| 1558444 |             |            | BH125               | 01-Dec-2022      | В                  | Amber Glass<br>250ml    |
| 1558444 |             |            | BH125               | 01-Dec-2022      | В                  | Amber Glass<br>60ml     |
| 1558444 |             |            | BH125               | 01-Dec-2022      | В                  | Plastic Tub<br>500g     |
| 1558447 |             |            | BH127               | 01-Dec-2022      | В                  | Amber Glass<br>250ml    |
| 1558447 |             |            | BH127               | 01-Dec-2022      | В                  | Amber Glass<br>60ml     |
| 1558447 |             |            | BH127               | 01-Dec-2022      | В                  | Plastic Tub<br>500g     |

### **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                        | рН                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)         | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                                  | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                                   | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                     | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                          | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA<br>Method 8270)                                                                                                                                                                                                                 | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |

#### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-46675-1

Initial Date of Issue: 08-Jan-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Ciaran Doherty
Colm Hurley
Darren O'Mahony
Dean McCloskey
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Megan Walsh
Neil Haggan

S

**Project** 21-1041A 3FM Planning Design GI

Paul Dunlop Rachel White

Quotation No.: Q22-28455 Date Received: 06-Dec-2022

Order No.: Date Instructed: 07-Dec-2022

No. of Samples: 1

Turnaround (Wkdays): 7 Results Due: 15-Dec-2022

Date Approved: 08-Jan-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager



#### **Chemtest**

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

| Client: Causeway Geotech Ltd        |         |                      | mtest Jo |             | 22-46675<br>1558607     |  |
|-------------------------------------|---------|----------------------|----------|-------------|-------------------------|--|
| Quotation No.: Q22-28455            | (       | Chemtest Sample ID.: |          |             |                         |  |
|                                     |         | BH101                |          |             |                         |  |
|                                     |         |                      | Sampl    | е Туре:     | SOIL                    |  |
|                                     |         |                      | Top Dep  | oth (m):    | 3.0                     |  |
|                                     |         |                      | Date Sa  | ampled:     | 25-Nov-2022             |  |
|                                     |         |                      | Asbest   | os Lab:     | COVENTRY                |  |
| Determinand                         | Accred. | SOP                  | Units    | LOD         |                         |  |
| ACM Type                            | U       | 2192                 |          | N/A         | -                       |  |
| Asbestos Identification             | U       | 2192                 |          | N/A         | No Asbestos<br>Detected |  |
| Moisture                            | N       | 2030                 | %        | 0.020       | 9.7                     |  |
| Natural Moisture Content            | N       | 2030                 | %        | 0.020       | 11                      |  |
| Soil Colour                         | N       | 2040                 |          | N/A         | Brown                   |  |
| Other Material                      | N       | 2040                 |          | N/A         | Stones                  |  |
| Soil Texture                        | N       | 2040                 |          | N/A         | Clay                    |  |
| pH                                  | U       | 2010                 |          | 4.0         | 8.0                     |  |
| Boron (Hot Water Soluble)           | Ü       | 2120                 | mg/kg    | 0.40        | 0.48                    |  |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120                 | g/l      | 0.010       | 0.21                    |  |
| Total Sulphur                       | U       | 2175                 | %        | 0.010       | 0.31                    |  |
| Sulphur (Elemental)                 | Ū       | _                    | mg/kg    | 1.0         | 450                     |  |
| Cyanide (Free)                      | U       | 2300                 |          | 0.50        | < 0.50                  |  |
| Cyanide (Total)                     | U       |                      | mg/kg    | 0.50        | < 0.50                  |  |
| Thiocyanate                         | U       | 2300                 | )        | 5.0         | < 5.0                   |  |
| Aluminium (Total)                   | N       | 2430                 |          | 100         | 6200                    |  |
| Iron (Total)                        | N       | 2430                 |          | 100         | 17000                   |  |
| Arsenic                             | U       | 2455                 |          | 0.5         | 15                      |  |
| Barium                              | U       | 2455                 | 0        | 0.5         | 38                      |  |
| Beryllium                           | U       | 2455                 |          | 0.5         | < 0.5                   |  |
| Cadmium                             | U       |                      | mg/kg    | 0.10        | 1.1                     |  |
| Chromium                            | U       | 2455                 | Ü        | 0.10        | 15                      |  |
| Manganese                           | U       | 2455                 |          | 1.0         | 690                     |  |
| Copper                              | U       | 2455                 |          | 0.50        | 28                      |  |
| Mercury                             | U       | 2455                 |          | 0.05        | 0.32                    |  |
| Nickel                              | U       | 2455                 |          | 0.50        | 23                      |  |
| Lead                                | U       | -                    |          |             | 52                      |  |
| Selenium                            | U       | 2455<br>2455         |          | 0.50        | 1.3                     |  |
|                                     | U       | _                    | 0        | 0.25        | 1.3                     |  |
| Vanadium<br>Zinc                    | U       | 2455<br>2455         | )<br>י   | 0.5<br>0.50 | 75                      |  |
|                                     | N       |                      |          |             | _                       |  |
| Chromium (Hexavalent)               | U       | 2490                 | 0        | 0.50        | < 0.50                  |  |
| Organic Matter                      |         | 2625                 | %        | 0.40        | 2.8                     |  |
| Total Organic Carbon                | U       | 2625                 |          | 0.20        | 1.7                     |  |
| Aliphatic TPH > C5-C6               | N       | 2680                 |          |             | < 0.010                 |  |
| Aliphatic TPH >C6-C8                | N       |                      | mg/kg    |             | < 0.010                 |  |
| Aliphatic TPH >C8-C10               | N       | 2680                 | 0        | 0.10        | < 0.10                  |  |
| Aliphatic TPH >C10-C12              | N       | 2680                 | ט        |             | < 0.10                  |  |
| Aliphatic TPH >C12-C16              | N       | 2680                 | mg/kg    | 0.10        | < 0.10                  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:                     |         |         |             |  |  |
|------------------------------|---------|---------------------------------------|---------|---------|-------------|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: Sample Location: |         |         |             |  |  |
|                              |         | BH101                                 |         |         |             |  |  |
|                              |         | Sample Type:                          |         |         |             |  |  |
|                              |         |                                       | Top Dep | , ,     | 3.0         |  |  |
|                              |         |                                       | Date Sa | ampled: | 25-Nov-2022 |  |  |
|                              |         |                                       | Asbest  | os Lab: | COVENTRY    |  |  |
| Determinand                  | Accred. | SOP                                   | Units   | LOD     |             |  |  |
| Aliphatic TPH >C16-C21       | N       |                                       | mg/kg   |         | < 0.10      |  |  |
| Aliphatic TPH >C21-C35       | N       |                                       | mg/kg   |         | < 0.10      |  |  |
| Aliphatic TPH >C35-C44       | N       | 2680                                  | mg/kg   | 0.10    | < 0.10      |  |  |
| Total Aliphatic Hydrocarbons | N       | 2680                                  | mg/kg   | 1.0     | < 1.0       |  |  |
| Aromatic TPH >C5-C7          | N       | 2680                                  | mg/kg   | 0.010   | < 0.010     |  |  |
| Aromatic TPH >C7-C8          | N       | 2680                                  | mg/kg   | 0.010   | < 0.010     |  |  |
| Aromatic TPH >C8-C10         | N       | 2680                                  | mg/kg   | 0.10    | < 0.10      |  |  |
| Aromatic TPH >C10-C12        | N       | 2680                                  | mg/kg   | 0.10    | < 0.10      |  |  |
| Aromatic TPH >C12-C16        | N       | 2680                                  | mg/kg   | 0.10    | < 0.10      |  |  |
| Aromatic TPH >C16-C21        | N       | 2680                                  | mg/kg   | 0.10    | < 0.10      |  |  |
| Aromatic TPH >C21-C35        | N       | 2680                                  |         | 0.10    | < 0.10      |  |  |
| Aromatic TPH >C35-C44        | N       | 2680                                  |         | 0.10    | < 0.10      |  |  |
| Total Aromatic Hydrocarbons  | N       | 2680                                  |         | 1.0     | < 1.0       |  |  |
| Total Petroleum Hydrocarbons | N       |                                       | mg/kg   | 2.0     | < 2.0       |  |  |
| Dichlorodifluoromethane      | N       |                                       | μg/kg   | 0.20    | < 0.20      |  |  |
| Chloromethane                | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| Vinyl Chloride               | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| Bromomethane                 | N       | 2760                                  | μg/kg   | 0.20    | < 0.20      |  |  |
| Chloroethane                 | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| Trichlorofluoromethane       | N       | 2760                                  | μg/kg   | 0.20    | < 0.20      |  |  |
| 1,1-Dichloroethene           | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| Trans 1,2-Dichloroethene     | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| 1,1-Dichloroethane           | N       | 2760                                  | μg/kg   | 0.20    | < 0.20      |  |  |
| cis 1,2-Dichloroethene       | N       | 2760                                  |         | 0.20    | 0.95        |  |  |
| Bromochloromethane           | N       | 2760                                  |         | 0.50    | < 0.50      |  |  |
| Trichloromethane             | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| 1,1,1-Trichloroethane        | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| Tetrachloromethane           | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| 1,1-Dichloropropene          | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| Benzene                      | N       | 2760                                  | μg/kg   | 0.20    | 2.9         |  |  |
| 1,2-Dichloroethane           | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| Trichloroethene              | N       | 2760                                  | μg/kg   | 0.20    | 21          |  |  |
| 1,2-Dichloropropane          | N       | 2760                                  | μg/kg   | 0.20    | < 0.20      |  |  |
| Dibromomethane               | N       | 2760                                  |         | 0.20    | < 0.20      |  |  |
| Bromodichloromethane         | N       | 2760                                  | μg/kg   | 0.20    | < 0.20      |  |  |
| cis-1,3-Dichloropropene      | N N     | 2760                                  |         | 0.20    | < 0.20      |  |  |
| Toluene                      | N N     | 2760                                  |         | 0.20    | 0.70        |  |  |
| Trans-1,3-Dichloropropene    | N N     |                                       | 0       |         | < 0.20      |  |  |
|                              | N N     | 2760                                  |         | 0.20    |             |  |  |
| 1,1,2-Trichloroethane        | N       | 2/60                                  | μg/kg   | 0.20    | < 0.20      |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |         |         |             |  |  |
|------------------------------|---------|----------------------|---------|---------|-------------|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |         |         |             |  |  |
|                              |         | Sample Location:     |         |         |             |  |  |
|                              |         |                      |         | e Type: | SOIL        |  |  |
|                              |         |                      | Top Dep |         | 3.0         |  |  |
|                              |         |                      | Date Sa |         | 25-Nov-2022 |  |  |
|                              |         |                      | Asbest  | os Lab: | COVENTRY    |  |  |
| Determinand                  | Accred. | SOP                  | Units   | LOD     |             |  |  |
| Tetrachloroethene            | N       | 2760                 | )       | 0.20    | < 0.20      |  |  |
| 1,3-Dichloropropane          | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| Dibromochloromethane         | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| 1,2-Dibromoethane            | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| Chlorobenzene                | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| 1,1,1,2-Tetrachloroethane    | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| Ethylbenzene                 | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| m & p-Xylene                 | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| o-Xylene                     | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| Styrene                      | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| Tribromomethane              | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| Isopropylbenzene             | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| Bromobenzene                 | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| 1,2,3-Trichloropropane       | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| N-Propylbenzene              | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| 2-Chlorotoluene              | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| 1,3,5-Trimethylbenzene       | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| 4-Chlorotoluene              | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| Tert-Butylbenzene            | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| 1,2,4-Trimethylbenzene       | N       |                      | μg/kg   | 0.20    | < 0.20      |  |  |
| Sec-Butylbenzene             | N       |                      | μg/kg   |         | < 0.20      |  |  |
| 1,3-Dichlorobenzene          | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| 4-Isopropyltoluene           | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| 1,4-Dichlorobenzene          | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| N-Butylbenzene               | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| 1,2-Dichlorobenzene          | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |
| Hexachlorobutadiene          | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| 1,2,3-Trichlorobenzene       | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| Methyl Tert-Butyl Ether      | N       | 2760                 |         | 0.20    | < 0.20      |  |  |
| N-Nitrosodimethylamine       | N       | 2790                 |         |         | < 0.20      |  |  |
| Phenol                       | N       | 2790                 |         |         | < 0.050     |  |  |
| 2-Chlorophenol               | N       | 2790                 |         |         | < 0.050     |  |  |
| Bis-(2-Chloroethyl)Ether     | N N     | 2790                 |         |         | < 0.050     |  |  |
| 1,3-Dichlorobenzene          | N       |                      | mg/kg   |         | < 0.050     |  |  |
| 1,4-Dichlorobenzene          | N N     |                      | mg/kg   |         |             |  |  |
| •                            |         |                      |         |         | < 0.050     |  |  |
| 1,2-Dichlorobenzene          | N       |                      | mg/kg   |         | < 0.050     |  |  |
| 2-Methylphenol               | N       | 2790                 | mg/kg   | 0.050   | < 0.050     |  |  |

| Client: Causeway Geotech Ltd                 |         | Chemtest Job No.:                     |         |         |             |  |  |
|----------------------------------------------|---------|---------------------------------------|---------|---------|-------------|--|--|
| Quotation No.: Q22-28455                     | (       | Chemtest Sample ID.: Sample Location: |         |         |             |  |  |
|                                              |         | BH101                                 |         |         |             |  |  |
|                                              |         |                                       |         | e Type: | SOIL        |  |  |
|                                              |         |                                       | Top De  |         | 3.0         |  |  |
|                                              |         |                                       | Date Sa | ampled: | 25-Nov-2022 |  |  |
|                                              |         |                                       | Asbest  | os Lab: | COVENTRY    |  |  |
| Determinand                                  | Accred. | SOP                                   | Units   | LOD     |             |  |  |
| Bis(2-Chloroisopropyl)Ether                  | N       | 2790                                  | mg/kg   | 0.050   | < 0.050     |  |  |
| Hexachloroethane                             | N       | 2790                                  | mg/kg   | 0.050   | < 0.050     |  |  |
| N-Nitrosodi-n-propylamine                    | N       | 2790                                  | mg/kg   | 0.050   | < 0.050     |  |  |
| 4-Methylphenol                               | N       | 2790                                  | mg/kg   | 0.050   | < 0.050     |  |  |
| Nitrobenzene                                 | N       | 2790                                  | mg/kg   | 0.050   | < 0.050     |  |  |
| Isophorone                                   | N       | 2790                                  | mg/kg   | 0.050   | < 0.050     |  |  |
| 2-Nitrophenol                                | N       | 2790                                  |         |         | < 0.050     |  |  |
| 2,4-Dimethylphenol                           | N       | 2790                                  |         |         | < 0.050     |  |  |
| Bis(2-Chloroethoxy)Methane                   | N       | 2790                                  | mg/kg   | 0.050   | < 0.050     |  |  |
| 2,4-Dichlorophenol                           | N       | 2790                                  |         |         | < 0.050     |  |  |
| 1,2,4-Trichlorobenzene                       | N       | 2790                                  |         |         | < 0.050     |  |  |
| Naphthalene                                  | N       | 2790                                  |         |         | < 0.050     |  |  |
| 4-Chloroaniline                              | N       | 2790                                  |         |         | < 0.050     |  |  |
| Hexachlorobutadiene                          | N       | 2790                                  |         |         | < 0.050     |  |  |
| 4-Chloro-3-Methylphenol                      | N       | 2790                                  |         |         | < 0.050     |  |  |
| 2-Methylnaphthalene                          | N       | 2790                                  |         |         | < 0.050     |  |  |
| Hexachlorocyclopentadiene                    | N       | 2790                                  |         |         | < 0.050     |  |  |
| 2,4,6-Trichlorophenol                        | N       | 2790                                  | mg/kg   |         | < 0.050     |  |  |
| 2,4,5-Trichlorophenol                        | N       | 2790                                  |         |         | < 0.050     |  |  |
| 2-Chloronaphthalene                          | N       | 2790                                  |         |         | < 0.050     |  |  |
| 2-Nitroaniline                               | N       | 2790                                  |         |         | < 0.050     |  |  |
| Acenaphthylene                               | N       | 2790                                  |         |         | < 0.050     |  |  |
| Dimethylphthalate                            | N       | 2790                                  |         |         | < 0.050     |  |  |
| 2,6-Dinitrotoluene                           | N       | 2790                                  |         |         | < 0.050     |  |  |
| Acenaphthene                                 | N       | 2790                                  | 5       |         | < 0.050     |  |  |
| 3-Nitroaniline                               | N       | 2790                                  | mg/kg   |         | < 0.050     |  |  |
| Dibenzofuran                                 | N       | 2790                                  |         |         | < 0.050     |  |  |
| 4-Chlorophenylphenylether                    | N       | 2790                                  | mg/kg   |         | < 0.050     |  |  |
| 2,4-Dinitrotoluene                           | N       | 2790                                  |         |         | < 0.050     |  |  |
| Fluorene                                     | N       | 2790                                  | Ü       |         | < 0.050     |  |  |
| Diethyl Phthalate                            | N       | 2790                                  |         |         | < 0.050     |  |  |
| ·                                            | N       | 2790                                  |         |         |             |  |  |
| 4-Nitroaniline<br>2-Methyl-4,6-Dinitrophenol | N       | 2790                                  |         |         | < 0.050     |  |  |
|                                              | N N     |                                       | mg/kg   |         | < 0.050     |  |  |
| Azobenzene                                   | N<br>N  | 2790                                  |         |         | < 0.050     |  |  |
| 4-Bromophenylphenyl Ether                    |         | 2790                                  | 5       |         | < 0.050     |  |  |
| Hexachlorobenzene                            | N       | 2790                                  | )       |         | < 0.050     |  |  |
| Pentachlorophenol                            | N       | 2790                                  | ט       |         | < 0.050     |  |  |
| Phenanthrene                                 | N       |                                       | b       |         | 0.31        |  |  |
| Anthracene                                   | N       | 2790                                  | mg/kg   | 0.050   | 0.18        |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:                     |         |         |             |  |  |
|------------------------------|---------|---------------------------------------|---------|---------|-------------|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: Sample Location: |         |         |             |  |  |
|                              |         | BH101<br>SOIL                         |         |         |             |  |  |
|                              |         | Sample Type:                          |         |         |             |  |  |
|                              |         |                                       | Top Dep |         | 3.0         |  |  |
|                              |         |                                       | Date Sa |         | 25-Nov-2022 |  |  |
|                              |         |                                       |         | os Lab: | COVENTRY    |  |  |
| Determinand                  | Accred. | SOP                                   |         | LOD     |             |  |  |
| Carbazole                    | N       | 2790                                  | 0       |         | < 0.050     |  |  |
| Di-N-Butyl Phthalate         | N       | 2790                                  |         |         | < 0.050     |  |  |
| Fluoranthene                 | N       | 2790                                  | 0       |         | 0.62        |  |  |
| Pyrene                       | N       | 2790                                  | ט       |         | 0.47        |  |  |
| Butylbenzyl Phthalate        | N       | 2790                                  | 5       |         | < 0.050     |  |  |
| Benzo[a]anthracene           | N       | 2790                                  | mg/kg   | 0.050   | 0.24        |  |  |
| Chrysene                     | N       | 2790                                  | mg/kg   | 0.050   | 0.26        |  |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790                                  | mg/kg   |         | < 0.050     |  |  |
| Di-N-Octyl Phthalate         | N       | 2790                                  | )       |         | < 0.050     |  |  |
| Benzo[b]fluoranthene         | N       | 2790                                  | mg/kg   | 0.050   | 0.28        |  |  |
| Benzo[k]fluoranthene         | N       | 2790                                  | mg/kg   | 0.050   | 0.11        |  |  |
| Benzo[a]pyrene               | N       | 2790                                  | mg/kg   | 0.050   | 0.22        |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790                                  |         |         | 0.089       |  |  |
| Dibenz(a,h)Anthracene        | N       | 2790                                  | mg/kg   |         | < 0.050     |  |  |
| Benzo[g,h,i]perylene         | N       |                                       | mg/kg   |         | 0.11        |  |  |
| 4-Nitrophenol                | N       | 2790                                  |         |         | < 0.050     |  |  |
| Naphthalene                  | N       | 2800                                  | mg/kg   |         | 0.16        |  |  |
| Acenaphthylene               | N       | 2800                                  |         |         | 0.074       |  |  |
| Acenaphthene                 | N       | 2800                                  | mg/kg   |         | 0.14        |  |  |
| Fluorene                     | N       | 2800                                  | mg/kg   | 0.010   | 0.14        |  |  |
| Phenanthrene                 | N       |                                       | mg/kg   |         | 0.56        |  |  |
| Anthracene                   | N       |                                       | mg/kg   |         | 0.29        |  |  |
| Fluoranthene                 | N       | 2800                                  | mg/kg   | 0.010   | 0.79        |  |  |
| Pyrene                       | N       |                                       | mg/kg   |         | 0.57        |  |  |
| Benzo[a]anthracene           | N       |                                       | mg/kg   |         | 0.28        |  |  |
| Chrysene                     | N       |                                       | mg/kg   |         | 0.20        |  |  |
| Benzo[b]fluoranthene         | N       | 2800                                  | mg/kg   | 0.010   | 0.22        |  |  |
| Benzo[k]fluoranthene         | N       | 2800                                  |         |         | 0.092       |  |  |
| Benzo[a]pyrene               | N       |                                       | mg/kg   |         | 0.41        |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       |                                       | mg/kg   |         | 0.23        |  |  |
| Dibenz(a,h)Anthracene        | N       | 2800                                  |         |         | < 0.010     |  |  |
| Benzo[g,h,i]perylene         | N       | 2800                                  |         |         | 0.14        |  |  |
| Total Of 16 PAH's            | N       | 2800                                  |         |         | 4.3         |  |  |
| Resorcinol                   | U       | 2920                                  |         |         | < 0.020     |  |  |
| Phenol                       | Ü       | 2920                                  |         |         | < 0.020     |  |  |
| Cresols                      | Ü       |                                       | mg/kg   |         | < 0.020     |  |  |
| Xylenols                     | Ü       |                                       | mg/kg   |         | < 0.020     |  |  |
| 1-Naphthol                   | N       |                                       | mg/kg   |         | < 0.020     |  |  |
|                              |         |                                       | y       |         |             |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.: |          |          |             |  |
|------------------------------|---------|-------------------|----------|----------|-------------|--|
| Quotation No.: Q22-28455     | (       | Chemte            | st Sam   | ple ID.: | 1558607     |  |
|                              |         | Sa                | ample Lo | ocation: | BH101       |  |
|                              |         |                   | Sampl    | е Туре:  | SOIL        |  |
|                              |         | Top Depth (m):    |          |          |             |  |
|                              |         |                   | Date Sa  | ampled:  | 25-Nov-2022 |  |
|                              |         |                   | Asbest   | os Lab:  | COVENTRY    |  |
| Determinand                  | Accred. | SOP               | Units    | LOD      |             |  |
| Total Phenols                | U       | 2920              | mg/kg    | 0.10     | < 0.10      |  |

### **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                        | рН                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)         | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                                  | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                                   | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                     | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                          | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA<br>Method 8270)                                                                                                                                                                                                                 | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |

#### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis This analysis has been subcontracted to an unaccredited laboratory Т I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-47580-1

Initial Date of Issue: 09-Jan-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Dean McCloskey
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross

Sean Ross Stephen Franey Stephen McCracken

Ctophon Woordoken

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 12-Dec-2022

Order No.: Date Instructed: 22-Dec-2022

No. of Samples: 1

Turnaround (Wkdays): 8 Results Due: 09-Jan-2023

Date Approved: 09-Jan-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

| Client: Causeway Geotech Ltd        |         | Chemtest Job No.:    |         |         |                         |  |
|-------------------------------------|---------|----------------------|---------|---------|-------------------------|--|
| Quotation No.: Q22-28455            |         | Chemtest Sample ID.: |         |         |                         |  |
|                                     |         | Sample Location:     |         |         |                         |  |
|                                     |         |                      |         | e Type: | SOIL                    |  |
|                                     |         |                      | Top Dep |         | 5.5                     |  |
|                                     |         |                      | Date Sa | ampled: | 07-Dec-2022             |  |
|                                     |         |                      | Asbest  | os Lab: | DURHAM                  |  |
| Determinand                         | Accred. | SOP                  | Units   | LOD     |                         |  |
| ACM Type                            | U       | 2192                 |         | N/A     | -                       |  |
| Asbestos Identification             | U       | 2192                 |         | N/A     | No Asbestos<br>Detected |  |
| Moisture                            | N       | 2030                 | %       | 0.020   | 19                      |  |
| Natural Moisture Content            | N       | 2030                 | %       | 0.020   | 24                      |  |
| Soil Colour                         | N       | 2040                 |         | N/A     | Grey                    |  |
| Other Material                      | N       | 2040                 |         | N/A     | Stones                  |  |
| Soil Texture                        | N       | 2040                 |         | N/A     | Sand                    |  |
| pH                                  | U       | 2010                 |         | 4.0     | 8.0                     |  |
| Boron (Hot Water Soluble)           | U       | 2120                 | mg/kg   | 0.40    | 1.5                     |  |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120                 | g/l     | 0.010   | 0.14                    |  |
| Total Sulphur                       | U       | 2175                 | %       | 0.010   | 0.052                   |  |
| Sulphur (Elemental)                 | U       | 2180                 | mg/kg   | 1.0     | 39                      |  |
| Cyanide (Free)                      | U       |                      | mg/kg   | 0.50    | [B] < 0.50              |  |
| Cyanide (Total)                     | U       |                      | mg/kg   | 0.50    | [B] < 0.50              |  |
| Thiocyanate                         | Ü       | 2300                 | 0       | 5.0     | [B] < 5.0               |  |
| Aluminium (Total)                   | N       |                      | mg/kg   | 100     | 2400                    |  |
| Iron (Total)                        | N       | 2430                 |         | 100     | 4100                    |  |
| Arsenic                             | U       |                      | mg/kg   | 0.5     | 2.3                     |  |
| Barium                              | U       |                      | mg/kg   | 0       | 12                      |  |
| Beryllium                           | Ü       |                      | mg/kg   | 0.5     | < 0.5                   |  |
| Cadmium                             | Ü       |                      | mg/kg   | 0.10    | < 0.10                  |  |
| Chromium                            | Ü       |                      | mg/kg   | 0.5     | 4.4                     |  |
| Manganese                           | Ü       |                      | mg/kg   | 1.0     | 140                     |  |
| Copper                              | Ü       |                      | mg/kg   | 0.50    | 4.3                     |  |
| Mercury                             | Ü       |                      | mg/kg   | 0.05    | < 0.05                  |  |
| Nickel                              | Ü       |                      | mg/kg   | 0.50    | 3.2                     |  |
| Lead                                | Ü       |                      | mg/kg   |         | 300                     |  |
| Selenium                            | U       |                      | mg/kg   | 0.25    | < 0.25                  |  |
| Vanadium                            | U       | 2455                 |         | 0.5     | 5.9                     |  |
| Zinc                                | U       | 2455                 | 0       | 0.50    | 20                      |  |
| Chromium (Hexavalent)               | N       | 2490                 |         | 0.50    | < 0.50                  |  |
| Organic Matter                      | U       | 2625                 | %       | 0.40    | 0.78                    |  |
| Total Organic Carbon                | U       | 2625                 |         | 0.20    | 0.45                    |  |
| Aliphatic TPH >C5-C6                | N       | 2680                 |         |         | [B] < 0.010             |  |
| Aliphatic TPH >C6-C8                | N       |                      | mg/kg   |         | [B] < 0.010             |  |
| Aliphatic TPH >C8-C10               | N       |                      | mg/kg   |         | [B] < 0.10              |  |
| Aliphatic TPH >C10-C12              | N       |                      | mg/kg   |         | [B] < 0.10              |  |
| Aliphatic TPH >C12-C16              | N       |                      | mg/kg   |         | [B] < 0.10              |  |

| Client: Causeway Geotech Ltd                              |             |                      | ntest Jo |                      | 22-47580                               |  |
|-----------------------------------------------------------|-------------|----------------------|----------|----------------------|----------------------------------------|--|
| Quotation No.: Q22-28455                                  |             | Chemte               | st Sam   | ple ID.:             | 1562826                                |  |
|                                                           |             | Sample Location:     |          |                      |                                        |  |
|                                                           |             |                      |          | е Туре:              | SOIL                                   |  |
|                                                           |             |                      | Top Dep  |                      | 5.5                                    |  |
|                                                           |             |                      | Date Sa  | ampled:              | 07-Dec-2022                            |  |
|                                                           |             |                      | Asbest   | os Lab:              | DURHAM                                 |  |
| Determinand                                               | Accred.     | SOP                  | Units    | LOD                  |                                        |  |
| Aliphatic TPH >C16-C21                                    | N           | 2680                 | mg/kg    | 0.10                 | [B] < 0.10                             |  |
| Aliphatic TPH >C21-C35                                    | N           | 2680                 | mg/kg    | 0.10                 | [B] < 0.10                             |  |
| Aliphatic TPH >C35-C44                                    | N           | 2680                 | mg/kg    | 0.10                 | [B] < 0.10                             |  |
| Total Aliphatic Hydrocarbons                              | N           | 2680                 | mg/kg    | 1.0                  | [B] < 1.0                              |  |
| Aromatic TPH >C5-C7                                       | N           | 2680                 | mg/kg    | 0.010                | [B] < 0.010                            |  |
| Aromatic TPH >C7-C8                                       | N           | 2680                 | mg/kg    | 0.010                | [B] < 0.010                            |  |
| Aromatic TPH >C8-C10                                      | N           | 2680                 | mg/kg    | 0.10                 | [B] < 0.10                             |  |
| Aromatic TPH >C10-C12                                     | N           | 2680                 | mg/kg    | 0.10                 | [B] < 0.10                             |  |
| Aromatic TPH >C12-C16                                     | N           | 2680                 | mg/kg    | 0.10                 | [B] < 0.10                             |  |
| Aromatic TPH >C16-C21                                     | N           | 2680                 |          | 0.10                 | [B] < 0.10                             |  |
| Aromatic TPH >C21-C35                                     | N           | 2680                 | mg/kg    | 0.10                 | [B] < 0.10                             |  |
| Aromatic TPH >C35-C44                                     | N           | 2680                 |          | 0.10                 | [B] < 0.10                             |  |
| Total Aromatic Hydrocarbons                               | N           | 2680                 | mg/kg    | 1.0                  | [B] < 1.0                              |  |
| Total Petroleum Hydrocarbons                              | N           | 2680                 |          | 2.0                  | [B] < 2.0                              |  |
| Dichlorodifluoromethane                                   | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| Chloromethane                                             | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| Vinyl Chloride                                            | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| Bromomethane                                              | N           | 2760                 | μg/kg    | 0.20                 | [B] < 0.20                             |  |
| Chloroethane                                              | N           | 2760                 | μg/kg    | 0.20                 | [B] < 0.20                             |  |
| Trichlorofluoromethane                                    | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| 1,1-Dichloroethene                                        | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| Trans 1,2-Dichloroethene                                  | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| 1,1-Dichloroethane                                        | N           | 2760                 | μg/kg    | 0.20                 | [B] < 0.20                             |  |
| cis 1,2-Dichloroethene                                    | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| Bromochloromethane                                        | N           | 2760                 | μg/kg    | 0.50                 | [B] < 0.50                             |  |
| Trichloromethane                                          | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| 1,1,1-Trichloroethane                                     | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| Tetrachloromethane                                        | N           | 2760                 | μg/kg    | 0.20                 | [B] < 0.20                             |  |
| 1,1-Dichloropropene                                       | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| Benzene                                                   | N           | 2760                 | μg/kg    | 0.20                 | [B] < 0.20                             |  |
| 1,2-Dichloroethane                                        | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| Trichloroethene                                           | N           | 2760                 | μg/kg    | 0.20                 | [B] < 0.20                             |  |
| 1,2-Dichloropropane                                       | N           | 2760                 | μg/kg    | 0.20                 | [B] < 0.20                             |  |
| Dibromomethane                                            | N           | 2760                 |          | 0.20                 | [B] < 0.20                             |  |
| Bromodichloromethane                                      | N           | 2760                 | μg/kg    | 0.20                 | [B] < 0.20                             |  |
|                                                           |             |                      |          |                      |                                        |  |
| cis-1.3-Dichloropropene                                   | N           | 2760                 | ug/ka    | 0.20                 | IBI < 0.20                             |  |
| cis-1,3-Dichloropropene Toluene                           | N<br>N      | 2760<br>2760         |          | 0.20                 | [B] < 0.20                             |  |
| cis-1,3-Dichloropropene Toluene Trans-1,3-Dichloropropene | N<br>N<br>N | 2760<br>2760<br>2760 | μg/kg    | 0.20<br>0.20<br>0.20 | [B] < 0.20<br>[B] < 0.20<br>[B] < 0.20 |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:                     |         |         |             |  |  |
|------------------------------|---------|---------------------------------------|---------|---------|-------------|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: Sample Location: |         |         |             |  |  |
|                              |         | BH124                                 |         |         |             |  |  |
|                              |         |                                       |         | e Type: | SOIL        |  |  |
|                              |         |                                       | Top Dep |         | 5.5         |  |  |
|                              |         |                                       | Date Sa | ampled: | 07-Dec-2022 |  |  |
|                              |         |                                       | Asbest  | os Lab: | DURHAM      |  |  |
| Determinand                  | Accred. | SOP                                   | Units   | LOD     |             |  |  |
| Tetrachloroethene            | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 1,3-Dichloropropane          | N       | 2760                                  | )       | 0.20    | [B] < 0.20  |  |  |
| Dibromochloromethane         | N       | 2760                                  | μg/kg   | 0.20    | [B] 1.6     |  |  |
| 1,2-Dibromoethane            | N       | 2760                                  | μg/kg   | 0.20    | [B] < 0.20  |  |  |
| Chlorobenzene                | N       | 2760                                  | μg/kg   | 0.20    | [B] 1.1     |  |  |
| 1,1,1,2-Tetrachloroethane    | N       | 2760                                  | μg/kg   | 0.20    | [B] < 0.20  |  |  |
| Ethylbenzene                 | N       | 2760                                  | μg/kg   | 0.20    | [B] 0.26    |  |  |
| m & p-Xylene                 | N       | 2760                                  |         | 0.20    | [B] 0.79    |  |  |
| o-Xylene                     | N       | 2760                                  | μg/kg   | 0.20    | [B] 0.60    |  |  |
| Styrene                      | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| Tribromomethane              | N       | 2760                                  | μg/kg   | 0.20    | [B] < 0.20  |  |  |
| Isopropylbenzene             | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| Bromobenzene                 | N       | 2760                                  | μg/kg   | 0.20    | [B] < 0.20  |  |  |
| 1,2,3-Trichloropropane       | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| N-Propylbenzene              | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 2-Chlorotoluene              | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 1,3,5-Trimethylbenzene       | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 4-Chlorotoluene              | N       | 2760                                  | μg/kg   | 0.20    | [B] < 0.20  |  |  |
| Tert-Butylbenzene            | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 1,2,4-Trimethylbenzene       | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| Sec-Butylbenzene             | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 1,3-Dichlorobenzene          | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 4-Isopropyltoluene           | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 1,4-Dichlorobenzene          | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| N-Butylbenzene               | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 1,2-Dichlorobenzene          | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| Hexachlorobutadiene          | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| 1,2,3-Trichlorobenzene       | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| Methyl Tert-Butyl Ether      | N       | 2760                                  |         | 0.20    | [B] < 0.20  |  |  |
| N-Nitrosodimethylamine       | N       | 2790                                  |         |         | [B] < 0.050 |  |  |
| Phenol                       | N       | 2790                                  | mg/kg   |         | [B] < 0.050 |  |  |
| 2-Chlorophenol               | N       | 2790                                  |         |         | [B] < 0.050 |  |  |
| Bis-(2-Chloroethyl)Ether     | N       | 2790                                  |         |         | [B] < 0.050 |  |  |
| 1,3-Dichlorobenzene          | N       | 2790                                  |         |         | [B] < 0.050 |  |  |
| 1,4-Dichlorobenzene          | N       | 2790                                  |         |         |             |  |  |
|                              |         |                                       |         |         | [B] < 0.050 |  |  |
| 1,2-Dichlorobenzene          | N       | 2790                                  | 0       |         | [B] < 0.050 |  |  |
| 2-Methylphenol               | N       | 2/90                                  | mg/kg   | 0.050   | [B] < 0.050 |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:                            |         |         |             |  |  |  |
|------------------------------|---------|----------------------------------------------|---------|---------|-------------|--|--|--|
| Quotation No.: Q22-28455     | (       | Sample Location: Sample Type: Top Depth (m): |         |         |             |  |  |  |
|                              |         |                                              |         |         |             |  |  |  |
|                              |         |                                              |         |         |             |  |  |  |
|                              |         |                                              |         |         |             |  |  |  |
|                              |         |                                              | Date Sa |         | 07-Dec-2022 |  |  |  |
|                              |         |                                              | Asbest  | os Lab: | DURHAM      |  |  |  |
| Determinand                  | Accred. | SOP                                          | Units   | LOD     |             |  |  |  |
| Bis(2-Chloroisopropyl)Ether  | N       | 2790                                         | )       | 0.050   | [B] < 0.050 |  |  |  |
| Hexachloroethane             | N       | 2790                                         |         |         | [B] < 0.050 |  |  |  |
| N-Nitrosodi-n-propylamine    | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| 4-Methylphenol               | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| Nitrobenzene                 | N       | 2790                                         | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |
| Isophorone                   | N       | 2790                                         | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |
| 2-Nitrophenol                | N       | 2790                                         | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |
| 2,4-Dimethylphenol           | N       | 2790                                         | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |
| Bis(2-Chloroethoxy)Methane   | N       | 2790                                         | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |
| 2,4-Dichlorophenol           | N       | 2790                                         | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2790                                         | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |
| Naphthalene                  | N       | 2790                                         | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |
| 4-Chloroaniline              | N       | 2790                                         | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |
| Hexachlorobutadiene          | N       | 2790                                         |         |         | [B] < 0.050 |  |  |  |
| 4-Chloro-3-Methylphenol      | N       | 2790                                         |         |         | [B] < 0.050 |  |  |  |
| 2-Methylnaphthalene          | N       | 2790                                         |         |         | [B] < 0.050 |  |  |  |
| Hexachlorocyclopentadiene    | N       | 2790                                         |         |         | [B] < 0.050 |  |  |  |
| 2,4,6-Trichlorophenol        | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| 2,4,5-Trichlorophenol        | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| 2-Chloronaphthalene          | N       | 2790                                         |         |         | [B] < 0.050 |  |  |  |
| 2-Nitroaniline               | N       | 2790                                         |         |         | [B] < 0.050 |  |  |  |
| Acenaphthylene               | N       | 2790                                         |         |         | [B] < 0.050 |  |  |  |
| Dimethylphthalate            | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| 2,6-Dinitrotoluene           | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| Acenaphthene                 | N       | 2790                                         |         |         | [B] < 0.050 |  |  |  |
| 3-Nitroaniline               | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| Dibenzofuran                 | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| 4-Chlorophenylphenylether    | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| 2,4-Dinitrotoluene           | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| Fluorene                     | N       | 2790                                         | Ü       |         | [B] < 0.050 |  |  |  |
| Diethyl Phthalate            | N       | 2790                                         |         | 0.050   | [B] < 0.050 |  |  |  |
| 4-Nitroaniline               | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| 2-Methyl-4,6-Dinitrophenol   | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| Azobenzene                   | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| 4-Bromophenylphenyl Ether    | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| Hexachlorobenzene            | N       | 2790                                         |         |         | [B] < 0.050 |  |  |  |
| Pentachlorophenol            | N       | 2790                                         | mg/kg   |         | [B] < 0.050 |  |  |  |
| ·                            | N       | 2790                                         |         |         |             |  |  |  |
| Phenanthrene                 |         | _                                            | b       |         | [B] < 0.050 |  |  |  |
| Anthracene                   | N       | 2790                                         | mg/kg   | 0.050   | [B] < 0.050 |  |  |  |

| Client: Causeway Geotech Ltd |         |                                 | mtest Jo |         | 22-47580    |  |  |
|------------------------------|---------|---------------------------------|----------|---------|-------------|--|--|
| Quotation No.: Q22-28455     | (       |                                 | st Sam   |         | 1562826     |  |  |
|                              |         | Sa                              | ample Lo |         | BH124       |  |  |
|                              |         |                                 |          | e Type: | SOIL<br>5.5 |  |  |
|                              |         | Top Depth (m):<br>Date Sampled: |          |         |             |  |  |
|                              |         |                                 |          |         |             |  |  |
|                              |         |                                 |          | os Lab: | DURHAM      |  |  |
| Determinand                  | Accred. | SOP                             | Units    |         |             |  |  |
| Carbazole                    | N       | 2790                            | 0        | 0.050   | [B] < 0.050 |  |  |
| Di-N-Butyl Phthalate         | N       | 2790                            | )        |         | [B] < 0.050 |  |  |
| Fluoranthene                 | N       | 2790                            | 0        |         | [B] < 0.050 |  |  |
| Pyrene                       | N       | 2790                            | mg/kg    |         | [B] < 0.050 |  |  |
| Butylbenzyl Phthalate        | N       | 2790                            | 0 0      |         | [B] < 0.050 |  |  |
| Benzo[a]anthracene           | N       | 2790                            | mg/kg    | 0.050   | [B] < 0.050 |  |  |
| Chrysene                     | N       | 2790                            | 0        |         | [B] < 0.050 |  |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790                            |          |         | [B] < 0.050 |  |  |
| Di-N-Octyl Phthalate         | N       | 2790                            | ט        |         | [B] < 0.050 |  |  |
| Benzo[b]fluoranthene         | N       | 2790                            | mg/kg    | 0.050   | [B] < 0.050 |  |  |
| Benzo[k]fluoranthene         | N       | 2790                            | )<br>י   |         | [B] < 0.050 |  |  |
| Benzo[a]pyrene               | N       | 2790                            | mg/kg    | 0.050   | [B] < 0.050 |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790                            | mg/kg    | 0.050   | [B] < 0.050 |  |  |
| Dibenz(a,h)Anthracene        | N       | 2790                            | mg/kg    | 0.050   | [B] < 0.050 |  |  |
| Benzo[g,h,i]perylene         | N       | 2790                            | mg/kg    | 0.050   | [B] < 0.050 |  |  |
| 4-Nitrophenol                | N       | 2790                            | mg/kg    | 0.050   | [B] < 0.050 |  |  |
| Naphthalene                  | N       | 2800                            | mg/kg    | 0.010   | < 0.010     |  |  |
| Acenaphthylene               | N       | 2800                            | mg/kg    | 0.010   | < 0.010     |  |  |
| Acenaphthene                 | N       | 2800                            | mg/kg    | 0.010   | < 0.010     |  |  |
| Fluorene                     | N       | 2800                            | mg/kg    | 0.010   | < 0.010     |  |  |
| Phenanthrene                 | N       |                                 | mg/kg    |         | < 0.010     |  |  |
| Anthracene                   | N       | 2800                            | mg/kg    | 0.010   | < 0.010     |  |  |
| Fluoranthene                 | N       | 2800                            | mg/kg    | 0.010   | < 0.010     |  |  |
| Pyrene                       | N       | 2800                            |          |         | < 0.010     |  |  |
| Benzo[a]anthracene           | N       | 2800                            | mg/kg    | 0.010   | < 0.010     |  |  |
| Chrysene                     | N       |                                 | mg/kg    |         | < 0.010     |  |  |
| Benzo[b]fluoranthene         | N       | 2800                            | mg/kg    | 0.010   | < 0.010     |  |  |
| Benzo[k]fluoranthene         | N       | 2800                            |          |         | < 0.010     |  |  |
| Benzo[a]pyrene               | N       | 2800                            | mg/kg    |         | < 0.010     |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2800                            |          |         | < 0.010     |  |  |
| Dibenz(a,h)Anthracene        | N       | 2800                            |          |         | < 0.010     |  |  |
| Benzo[g,h,i]perylene         | N       | 2800                            |          |         | < 0.010     |  |  |
| Total Of 16 PAH's            | N       | 2800                            |          |         | < 0.20      |  |  |
| Resorcinol                   | U       | 2920                            |          |         | < 0.020     |  |  |
| Phenol                       | U       | 2920                            |          |         | < 0.020     |  |  |
| Cresols                      | Ü       |                                 | mg/kg    |         | < 0.020     |  |  |
| Xylenols                     | U       |                                 | mg/kg    |         | < 0.020     |  |  |
| 1-Naphthol                   | N       |                                 | mg/kg    |         | < 0.020     |  |  |
| Trimethylphenols             | U       |                                 | mg/kg    |         | < 0.020     |  |  |

| Client: Causeway Geotech Ltd |         | 22-47580 |          |          |             |
|------------------------------|---------|----------|----------|----------|-------------|
| Quotation No.: Q22-28455     | (       | Chemte   | st Sam   | ple ID.: | 1562826     |
|                              |         | Sa       | ample Lo | ocation: | BH124       |
|                              |         |          | Sampl    | е Туре:  | SOIL        |
|                              |         |          | Top Dep  | oth (m): | 5.5         |
|                              |         |          | Date Sa  | ampled:  | 07-Dec-2022 |
|                              |         |          | Asbest   | os Lab:  | DURHAM      |
| Determinand                  | Accred. |          |          |          |             |
| Total Phenols                | U       | 2920     | mg/kg    | 0.10     | < 0.10      |

#### **Deviations**

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

| Sample: | Sample Ref: | Sample ID: | Sample<br>Location: | Sampled<br>Date: | Deviation Code(s): | Containers<br>Received: |
|---------|-------------|------------|---------------------|------------------|--------------------|-------------------------|
| 1562826 |             |            | BH124               | 07-Dec-2022      | В                  | Amber Glass<br>250ml    |
| 1562826 |             |            | BH124               | 07-Dec-2022      | В                  | Amber Glass<br>60ml     |
| 1562826 |             |            | BH124               | 07-Dec-2022      | В                  | Plastic Tub<br>500g     |

### **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                        | рН                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)         | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                                  | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                                   | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                     | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                          | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA<br>Method 8270)                                                                                                                                                                                                                 | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |

#### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



# eurofins Chemtest

Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 22-48476-1

Initial Date of Issue: 13-Jan-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Dean McCloskey
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan

Paul Dunlop Sean Ross Stephen Franey Stephen McCracken

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 20-Dec-2022

Order No.: Date Instructed: 22-Dec-2022

No. of Samples: 3

Turnaround (Wkdays): 8 Results Due: 09-Jan-2023

Date Approved: 13-Jan-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

| Client: Causeway Geotech Ltd             |         | Chemtest Job No.: |              |              |              |             |  |
|------------------------------------------|---------|-------------------|--------------|--------------|--------------|-------------|--|
| Quotation No.: Q22-28455                 |         | (                 | Chemte       | st Sam       | ple ID.:     | 1566614     |  |
|                                          |         |                   | Sa           | ample Lo     |              | BH122       |  |
|                                          |         | Sample Type:      |              |              |              |             |  |
|                                          |         |                   |              | Top De       | ` ,          | 2.0         |  |
|                                          |         |                   | _            | Date Sa      |              | 14-Dec-2022 |  |
| Determinand                              | Accred. | SOP               | Type         | Units        |              |             |  |
| pH                                       | U       | 1010              | 10:1         |              | N/A          | 8.1         |  |
| Phosphate as P                           | U       | 1220              | 10:1         | mg/l         | 0.050        | < 0.050     |  |
| Sulphur                                  | N       | 1220              | 10:1         | mg/l         | 1.0          | 33          |  |
| Cyanide (Total)                          | U       | 1300              | 10:1         | mg/l         | 0.050        | < 0.050     |  |
| Cyanide (Free)                           | U       | 1300              | 10:1         | mg/l         | 0.050        | < 0.050     |  |
| Sulphide                                 | U       | 1325              | 10:1         | mg/l         | 0.050        | < 0.050     |  |
| Calcium                                  | U       | 1455              | 10:1         | mg/l         | 2.00         | 54          |  |
| Aluminium (Dissolved)                    | N       | 1455              | 10:1         | μg/l         | 5.0          | 29          |  |
| Arsenic (Dissolved)                      | U       | 1455              | 10:1         | μg/l         | 0.20         | 6.6         |  |
| Boron (Dissolved)                        | U       | 1455              | 10:1         | μg/l         | 10.0         | 160         |  |
| Barium (Dissolved)                       | U       | 1455              | 10:1         | μg/l         | 5.00         | 43          |  |
| Beryllium (Dissolved)                    | U       | 1455              | 10:1         | μg/l         | 1.00         | < 1.0       |  |
| Cadmium (Dissolved)                      | U       | 1455              | 10:1         | μg/l         | 0.11         | < 0.11      |  |
| Chromium (Dissolved)                     | U       | 1455              | 10:1         | μg/l         | 0.50         | < 0.50      |  |
| Copper (Dissolved)                       |         | 1455              | 10:1         | μg/l         | 0.50         | 1.8         |  |
| Mercury (Dissolved)                      | U       | 1455              | 10:1         | μg/l         | 0.05         | < 0.05      |  |
| Manganese (Dissolved) Nickel (Dissolved) | U       | 1455              | 10:1         | μg/l         | 0.50         | 130         |  |
| Lead (Dissolved)                         | U       | 1455<br>1455      | 10:1<br>10:1 | μg/l         | 0.50<br>0.50 | 3.9<br>4.7  |  |
| Selenium (Dissolved)                     | U       | 1455              | 10:1         | μg/l         | 0.50         | 0.83        |  |
| Vanadium (Dissolved)                     | U       | 1455              | 10:1         | μg/l<br>μg/l | 0.50         | 2.0         |  |
| Zinc (Dissolved)                         | U       | 1455              | 10:1         | μg/l         | 2.5          | < 2.5       |  |
| Iron (Dissolved)                         | N       | 1455              | 10:1         | μg/l         | 5.0          | 11          |  |
| Low-Level Chromium (Hexavalent)          | N       | 1495              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Aliphatic TPH >C5-C6                     | N       | 1675              | 10:1         | μg/l         | 0.010        | < 0.010     |  |
| Aliphatic TPH >C6-C8                     | N       | 1675              | 10:1         | μg/l         | 0.010        | < 0.010     |  |
| Aliphatic TPH >C8-C10                    | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Aliphatic TPH >C10-C12                   | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Aliphatic TPH >C12-C16                   | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Aliphatic TPH >C16-C21                   | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Aliphatic TPH >C21-C35                   | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Aliphatic TPH >C35-C44                   | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Total Aliphatic Hydrocarbons             | N       | 1675              | 10:1         | µg/l         | 1.0          | < 1.0       |  |
| Aromatic TPH >C5-C7                      | N       | 1675              | 10:1         | μg/l         | 0.010        | < 0.010     |  |
| Aromatic TPH >C7-C8                      | N       | 1675              | 10:1         | µg/l         | 0.010        | < 0.010     |  |
| Aromatic TPH >C8-C10                     | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Aromatic TPH >C10-C12                    | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Aromatic TPH >C12-C16                    | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Aromatic TPH >C16-C21                    | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |
| Aromatic TPH >C21-C35                    | N       | 1675              | 10:1         | μg/l         | 0.10         | < 0.10      |  |

| Client: Causeway Geotech Ltd              |         |              | Che          | mtest Jo     | ob No.: | 22-48476       |
|-------------------------------------------|---------|--------------|--------------|--------------|---------|----------------|
| Quotation No.: Q22-28455                  |         |              |              | st Sam       |         | 1566614        |
|                                           |         |              | Sa           | ample Lo     |         | BH122          |
|                                           |         |              | e Type:      | SOIL         |         |                |
|                                           |         |              |              | Top Dep      |         | 2.0            |
|                                           |         |              | _            | Date Sa      |         | 14-Dec-2022    |
| Determinand                               | Accred. | SOP          | Туре         | Units        |         |                |
| Aromatic TPH >C35-C44                     | N       | 1675         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Total Aromatic Hydrocarbons               | N N     | 1675         | 10:1         | μg/l         | 1.0     | < 1.0          |
| Total Petroleum Hydrocarbons              | N       | 1675         | 10:1         | μg/l         | 2.0     | < 2.0          |
| Dichlorodifluoromethane                   | N N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Chloromethane                             | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Vinyl Chloride                            | N<br>N  | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Bromomethane                              |         | 1760         | 10:1         | μg/l         | 2.0     | < 2.0          |
| Chloroethane                              | N<br>N  | 1760         | 10:1         | μg/l         | 0.20    | < 0.20         |
| Trichlorofluoromethane 1,1-Dichloroethene | N N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Dichloromethane                           | N<br>N  | 1760<br>1760 | 10:1<br>10:1 | μg/l         | 50      | < 0.10<br>< 50 |
| 1,1-Dichloroethane                        | N N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| cis 1,2-Dichloroethene                    | N N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Bromochloromethane                        | N N     | 1760         | 10:1         | μg/l<br>μg/l | 0.10    | < 0.10         |
| Trichloromethane                          | T N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| 1,1,1-Trichloroethane                     | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Tetrachloromethane                        | T N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| 1,1-Dichloropropene                       | T N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Benzene                                   |         | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| 1,2-Dichloroethane                        | N       | 1760         | 10:1         | μg/l         | 0.20    | < 0.20         |
| Trichloroethene                           | N N     | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| 1,2-Dichloropropane                       | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Dibromomethane                            | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Bromodichloromethane                      | N       | 1760         | 10:1         | μg/l         | 0.50    | < 0.50         |
| cis-1,3-Dichloropropene                   | N       | 1760         | 10:1         | μg/l         | 1.0     | < 1.0          |
| Toluene                                   | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Trans-1,3-Dichloropropene                 | N       | 1760         | 10:1         | μg/l         | 1.0     | < 1.0          |
| 1,1,2-Trichloroethane                     | N       | 1760         | 10:1         | μg/l         | 1.0     | < 1.0          |
| Tetrachloroethene                         | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| 1,3-Dichloropropane                       | N       | 1760         | 10:1         | μg/l         | 0.20    | < 0.20         |
| Dibromochloromethane                      | N       | 1760         | 10:1         | μg/l         | 1.0     | < 1.0          |
| 1,2-Dibromoethane                         | N       | 1760         | 10:1         | μg/l         | 0.50    | < 0.50         |
| Chlorobenzene                             | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| 1,1,1,2-Tetrachloroethane                 | N       | 1760         | 10:1         | μg/l         | 0.20    | < 0.20         |
| Ethylbenzene                              | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| m & p-Xylene                              | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| o-Xylene                                  | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Styrene                                   | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |
| Tribromomethane                           | N       | 1760         | 10:1         | μg/l         | 1.0     | < 1.0          |
| Isopropylbenzene                          | N       | 1760         | 10:1         | μg/l         | 0.10    | < 0.10         |

| Client: Causeway Geotech Ltd            |         | Chemtest Job No.: |              |              |       |                  |  |
|-----------------------------------------|---------|-------------------|--------------|--------------|-------|------------------|--|
| Quotation No.: Q22-28455                |         | (                 |              | est Sam      |       | 1566614          |  |
|                                         |         |                   | Sa           | ample Lo     |       | BH122<br>SOIL    |  |
|                                         |         | Sample Type:      |              |              |       |                  |  |
|                                         |         |                   |              | Top De       | ` '   | 2.0              |  |
| -                                       |         |                   | _            | Date Sa      |       | 14-Dec-2022      |  |
| Determinand                             | Accred. | SOP               | Туре         |              |       |                  |  |
| Bromobenzene                            | N       | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| 1,2,3-Trichloropropane                  | N       | 1760              | 10:1         | μg/l         | 5.0   | < 5.0            |  |
| N-Propylbenzene                         | N       | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| 2-Chlorotoluene                         | N<br>N  | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| 1,3,5-Trimethylbenzene                  |         | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| 4-Chlorotoluene                         | N N     | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| Tert-Butylbenzene                       | N<br>N  | 1760<br>1760      | 10:1<br>10:1 | μg/l         | 0.10  | < 0.10<br>< 0.10 |  |
| 1,2,4-Trimethylbenzene Sec-Butylbenzene | N N     | 1760              | 10:1         | μg/l<br>μg/l | 0.10  | < 0.10           |  |
| 1,3-Dichlorobenzene                     | N N     | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| 4-Isopropyltoluene                      | N       | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| 1,4-Dichlorobenzene                     | N       | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| N-Butylbenzene                          | N       | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| 1,2-Dichlorobenzene                     | N       | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| 1,2-Dibromo-3-Chloropropane             | N       | 1760              | 10:1         | μg/l         | 5.0   | < 5.0            |  |
| 1,2,4-Trichlorobenzene                  | N       | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| Hexachlorobutadiene                     | N       | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| 1,2,3-Trichlorobenzene                  | N       | 1760              | 10:1         | μg/l         | 0.20  | < 0.20           |  |
| Naphthalene                             | N       | 1760              | 10:1         | μg/l         | 0.10  | < 0.10           |  |
| Phenol                                  | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 2-Chlorophenol                          | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| Bis-(2-Chloroethyl)Ether                | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 1,3-Dichlorobenzene                     | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 1,4-Dichlorobenzene                     | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 1,2-Dichlorobenzene                     | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 2-Methylphenol (o-Cresol)               | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| Bis(2-Chloroisopropyl)Ether             | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| Hexachloroethane                        | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| N-Nitrosodi-n-propylamine               | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 4-Methylphenol                          | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| Nitrobenzene                            | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| Isophorone                              | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 2-Nitrophenol                           | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 2,4-Dimethylphenol                      | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| Bis(2-Chloroethoxy)Methane              | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 2,4-Dichlorophenol                      | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 1,2,4-Trichlorobenzene                  | N N     | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| Naphthalene                             | N N     | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| 4-Chloroaniline                         | N N     | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |
| Hexachlorobutadiene                     | N       | 1790              | 10:1         | μg/l         | 0.050 | < 0.050          |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.: |      |          |         |             |  |  |
|------------------------------|---------|-------------------|------|----------|---------|-------------|--|--|
| Quotation No.: Q22-28455     |         |                   |      | st Sam   |         | 1566614     |  |  |
|                              |         |                   | Sa   | ample Lo |         | BH122       |  |  |
|                              |         |                   |      |          | e Type: | SOIL        |  |  |
|                              |         |                   |      | Top De   | ` '     | 2.0         |  |  |
|                              |         |                   |      | Date Sa  |         | 14-Dec-2022 |  |  |
| Determinand                  | Accred. | SOP               | Туре | Units    |         |             |  |  |
| 4-Chloro-3-Methylphenol      | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 2-Methylnaphthalene          | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Hexachlorocyclopentadiene    | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 2,4,6-Trichlorophenol        | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 2,4,5-Trichlorophenol        | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 2-Chloronaphthalene          | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 2-Nitroaniline               | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Acenaphthylene               | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Dimethylphthalate            | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 2,6-Dinitrotoluene           | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Acenaphthene                 | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 3-Nitroaniline               | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Dibenzofuran                 | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 4-Chlorophenylphenylether    | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 2,4-Dinitrotoluene           | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Fluorene                     | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Diethyl Phthalate            | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 4-Nitroaniline               | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 2-Methyl-4,6-Dinitrophenol   | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Azobenzene                   | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| 4-Bromophenylphenyl Ether    | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Hexachlorobenzene            | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Pentachlorophenol            | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Phenanthrene                 | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Anthracene                   | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Carbazole                    | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Di-N-Butyl Phthalate         | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Fluoranthene                 | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Pyrene                       | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Butylbenzyl Phthalate        | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Benzo[a]anthracene           | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Chrysene                     | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Di-N-Octyl Phthalate         | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Benzo[b]fluoranthene         | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Benzo[k]fluoranthene         | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Benzo[a]pyrene               | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 1790              | 10:1 | μg/l     | 0.050   | < 0.050     |  |  |
| Dibenz(a,h)Anthracene        | N       | 1790              | 10:1 | µg/l     | 0.050   | < 0.050     |  |  |
| Benzo[g,h,i]perylene         | N       | 1790              | 10:1 | µg/l     | 0.050   | < 0.050     |  |  |

| Client: Causeway Geotech Ltd |         |      |      | mtest Jo |         | 22-48476    |
|------------------------------|---------|------|------|----------|---------|-------------|
| Quotation No.: Q22-28455     |         |      |      | st Sam   | _       | 1566614     |
|                              |         |      | Sa   | ample Lo |         | BH122       |
|                              |         |      |      |          | e Type: | SOIL        |
|                              |         |      |      | Top De   |         | 2.0         |
|                              |         |      |      | Date Sa  |         | 14-Dec-2022 |
| Determinand                  | Accred. | SOP  | Type | Units    | LOD     |             |
| Naphthalene                  | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Acenaphthylene               | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Acenaphthene                 | N       | 1800 | 10:1 | μg/l     | 0.010   | 1.5         |
| Fluorene                     | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Phenanthrene                 | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Anthracene                   | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Fluoranthene                 | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Pyrene                       | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Benzo[a]anthracene           | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Chrysene                     | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Benzo[b]fluoranthene         | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Benzo[k]fluoranthene         | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Benzo[a]pyrene               | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Indeno(1,2,3-c,d)Pyrene      | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Dibenz(a,h)Anthracene        | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Benzo[g,h,i]perylene         | N       | 1800 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Total Of 16 PAH's            | N       | 1800 | 10:1 | μg/l     | 0.20    | 1.5         |
| PCB 81                       | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 77                       | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 105                      | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 114                      | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 118                      | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 123                      | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 126                      | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 156                      | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 157                      | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 167                      | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 169                      | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| PCB 189                      | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Total PCBs (12 Congeners)    | N       | 1815 | 10:1 | μg/l     | 0.010   | < 0.010     |
| Phenol                       | N       | 1900 | 10:1 | μg/l     | 0.20    | < 0.20      |
| 2-Chlorophenol               | N       | 1900 | 10:1 | μg/l     | 0.20    | < 0.20      |
| 2-Methylphenol (o-Cresol)    | N       | 1900 | 10:1 | μg/l     | 0.20    | < 0.20      |
| 3-Methylphenol               | N       | 1900 | 10:1 | μg/l     | 0.20    | < 0.20      |
| 4-Methylphenol               | N       | 1900 | 10:1 | μg/l     | 0.20    | < 0.20      |
| 2-Nitrophenol                | N       | 1900 | 10:1 | μg/l     | 0.20    | < 0.20      |
| 2,4-Dimethylphenol           | N       | 1900 | 10:1 | μg/l     | 0.20    | < 0.20      |
| 2,4-Dichlorophenol           | N       | 1900 | 10:1 | μg/l     | 0.20    | < 0.20      |
| 2,6-Dichlorophenol           | N       | 1900 | 10:1 | μg/l     | 0.20    | < 0.20      |
| 4-Chloro-3-Methylphenol      | N       | 1900 | 10:1 | μg/l     | 0.20    | < 0.20      |

| Client: Causeway Geotech Ltd  |         | Chemtest Job No.: 22-48476 |      |          |          |             |  |  |
|-------------------------------|---------|----------------------------|------|----------|----------|-------------|--|--|
| Quotation No.: Q22-28455      |         | Chemtest Sample ID.        |      |          |          |             |  |  |
|                               |         |                            | Sa   | ample Lo | cation:  | BH122       |  |  |
|                               |         |                            |      | Sample   | е Туре:  | SOIL        |  |  |
|                               |         |                            |      | Top Dep  | oth (m): | 2.0         |  |  |
|                               |         |                            |      | Date Sa  | ampled:  | 14-Dec-2022 |  |  |
| Determinand                   | Accred. | SOP                        | Туре | Units    | LOD      |             |  |  |
| 2,3,4-Trichlorophenol         | N       | 1900                       | 10:1 | μg/l     | 0.20     | < 0.20      |  |  |
| 2,3,5-Trichlorophenol         | N       | 1900                       | 10:1 | μg/l     | 0.20     | < 0.20      |  |  |
| 2,3,6-Trichlorophenol         | N       | 1900                       | 10:1 | μg/l     | 0.20     | < 0.20      |  |  |
| 2,4,6-Trichlorophenol         | N       | 1900                       | 10:1 | μg/l     | 0.20     | < 0.20      |  |  |
| 2,4,5-Trichlorophenol         | N       | 1900                       | 10:1 | μg/l     | 0.20     | < 0.20      |  |  |
| 4-Nitrophenol                 | N       | 1900                       | 10:1 | μg/l     | 0.20     | < 0.20      |  |  |
| 2,3,4,5-Tetrachlorophenol     | N       | 1900                       | 10:1 | μg/l     | 0.20     | < 0.20      |  |  |
| 2,3,4,6-Tetrachlorophenol     | N       | 1900                       | 10:1 | μg/l     | 0.20     | < 0.20      |  |  |
| 2,3,5,6-Tetrachlorophenol     | N       | 1900                       | 10:1 | μg/l     | 0.20     | < 0.20      |  |  |
| 3,4,5-Trichlorophenol         | N       |                            |      |          |          |             |  |  |
| 2-Methyl-4,6-Dinitrophenol    | N       | <del> </del>               |      |          |          |             |  |  |
| Pentachlorophenol             | N       | N 1900 10:1 μg/l 0.20      |      |          |          |             |  |  |
| 2-Sec-Butyl-4,6-Dinitrophenol | N       | 1900                       | 10:1 | μg/l     | 0.20     | < 0.20      |  |  |
| Total Phenols                 | N       | 1900                       | 10:1 | μg/l     | 5.00     | < 5.0       |  |  |

| Client: Causeway Geotech Ltd               |         |              | mtest Jo       |         |                         |  |  |
|--------------------------------------------|---------|--------------|----------------|---------|-------------------------|--|--|
| Quotation No.: Q22-28455                   |         |              | st Sam         |         | 1566621                 |  |  |
|                                            |         | Sa           | ample Lo       |         | BH122                   |  |  |
|                                            |         | Sample Type: |                |         |                         |  |  |
|                                            |         |              | Top Dep        |         | 5.5                     |  |  |
|                                            |         |              | Date Sa        | ampled: | 14-Dec-2022             |  |  |
|                                            |         |              | Asbest         | os Lab: | DURHAM                  |  |  |
| Determinand                                | Accred. | SOP          | Units          | LOD     |                         |  |  |
| ACM Type                                   | U       | 2192         |                | N/A     | -                       |  |  |
| Asbestos Identification                    | U       | 2192         |                | N/A     | No Asbestos<br>Detected |  |  |
| Moisture                                   | N       | 2030         | %              | 0.020   | 11                      |  |  |
| Natural Moisture Content                   | N       | 2030         | %              | 0.020   | 12                      |  |  |
| Soil Colour                                | N       | 2040         |                | N/A     | Grey                    |  |  |
| Other Material                             | N       | 2040         |                | N/A     | Stones                  |  |  |
| Soil Texture                               | N       | 2040         |                | N/A     | Sand                    |  |  |
| рН                                         | М       | 2010         |                | 4.0     | 8.3                     |  |  |
| Boron (Hot Water Soluble)                  | М       | 2120         | mg/kg          | 0.40    | 0.58                    |  |  |
| Sulphate (2:1 Water Soluble) as SO4        | М       | 2120         | g/l            | 0.010   | 0.10                    |  |  |
| Total Sulphur                              | М       | 2175         | %              | 0.010   | 0.089                   |  |  |
| Sulphur (Elemental)                        | М       | 2180         |                | 1.0     | 38                      |  |  |
| Cyanide (Free)                             | М       | 2300         | mg/kg          | 0.50    | < 0.50                  |  |  |
| Cyanide (Total)                            | М       | 2300         |                | 0.50    | < 0.50                  |  |  |
| Thiocyanate                                | М       | 2300         | mg/kg          | 5.0     | < 5.0                   |  |  |
| Aluminium (Total)                          | N       | 2430         |                | 100     | 3000                    |  |  |
| Iron (Total)                               | N       | 2430         | mg/kg          | 100     | 5400                    |  |  |
| Arsenic                                    | M       | 2455         |                | 0.5     | 2.7                     |  |  |
| Barium                                     | M       | 2455         | 0              | 0       | 32                      |  |  |
| Beryllium                                  | U       | 2455         |                | 0.5     | < 0.5                   |  |  |
| Cadmium                                    | M       | 2455         | 0              | 0.10    | < 0.10                  |  |  |
| Chromium                                   | M       | 2455         |                | 0.5     | 5.4                     |  |  |
| Manganese                                  | M       | 2455         | 0              | 1.0     | 140                     |  |  |
| Copper                                     | M       | 2455         | mg/kg          | 0.50    | 11                      |  |  |
| Mercury                                    | M       | 2455         |                | 0.05    | < 0.05                  |  |  |
| Nickel                                     | M       | 2455         |                | 0.50    | 5.1                     |  |  |
| Lead                                       | M       | 2455         |                | 0.50    | 6.2                     |  |  |
| Selenium                                   | M       | 2455         |                | 0.25    | < 0.25                  |  |  |
| Vanadium                                   | U       | 2455         | mg/kg          | 0.25    | 5.9                     |  |  |
| Zinc                                       | M       | 2455         |                | 0.50    | 44                      |  |  |
| Chromium (Hexavalent)                      | N       | 2490         | mg/kg          | 0.50    | < 0.50                  |  |  |
| Organic Matter                             | M       | 2625         | %              | 0.40    | 1.2                     |  |  |
| Total Organic Carbon                       | M       | 2625         | %              | 0.40    | 0.72                    |  |  |
| Aliphatic TPH >C5-C6                       | N       | 2680         |                |         | < 0.010                 |  |  |
| Aliphatic TPH >C5-C6 Aliphatic TPH >C6-C8  | N       | 2680         | mg/kg<br>mg/kg |         | < 0.010                 |  |  |
| Aliphatic TPH >C6-C6 Aliphatic TPH >C8-C10 | N       | 2680         |                | 0.010   | < 0.010                 |  |  |
|                                            | N<br>N  |              | mg/kg          |         |                         |  |  |
| Aliphatic TPH > C10-C12                    |         | 2680         |                | 0.10    | < 0.10                  |  |  |
| Aliphatic TPH >C12-C16                     | N       | 2680         | mg/kg          | 0.10    | < 0.10                  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |       |       |         |  |
|------------------------------|---------|----------------------|-------|-------|---------|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |       |       |         |  |
|                              |         | Sample Location:     |       |       |         |  |
|                              |         | SOIL                 |       |       |         |  |
|                              |         | 5.5<br>14-Dec-2022   |       |       |         |  |
|                              |         |                      |       |       |         |  |
|                              |         | Asbestos Lab:        |       |       |         |  |
| Determinand                  | Accred. | SOP                  | Units | LOD   |         |  |
| Aliphatic TPH >C16-C21       | N       | 2680                 | mg/kg | 0.10  | < 0.10  |  |
| Aliphatic TPH >C21-C35       | N       | 2680                 | mg/kg | 0.10  | < 0.10  |  |
| Aliphatic TPH >C35-C44       | N       | 2680                 | mg/kg | 0.10  | < 0.10  |  |
| Total Aliphatic Hydrocarbons | N       | 2680                 | mg/kg | 1.0   | < 1.0   |  |
| Aromatic TPH >C5-C7          | N       | 2680                 | mg/kg | 0.010 | < 0.010 |  |
| Aromatic TPH >C7-C8          | N       | 2680                 | mg/kg | 0.010 | < 0.010 |  |
| Aromatic TPH >C8-C10         | N       | 2680                 | mg/kg | 0.10  | < 0.10  |  |
| Aromatic TPH >C10-C12        | N       | 2680                 | mg/kg | 0.10  | < 0.10  |  |
| Aromatic TPH >C12-C16        | N       | 2680                 | mg/kg | 0.10  | < 0.10  |  |
| Aromatic TPH >C16-C21        | N       | 2680                 | mg/kg | 0.10  | < 0.10  |  |
| Aromatic TPH >C21-C35        | N       | 2680                 |       | 0.10  | < 0.10  |  |
| Aromatic TPH >C35-C44        | N       | 2680                 |       | 0.10  | < 0.10  |  |
| Total Aromatic Hydrocarbons  | N       | 2680                 |       | 1.0   | < 1.0   |  |
| Total Petroleum Hydrocarbons | N       |                      | mg/kg | 2.0   | < 2.0   |  |
| Dichlorodifluoromethane      | N       |                      | μg/kg | 0.20  | < 0.20  |  |
| Chloromethane                | N       | 2760                 |       | 0.20  | < 0.20  |  |
| Vinyl Chloride               | N       | 2760                 |       | 0.20  | < 0.20  |  |
| Bromomethane                 | N       | 2760                 | μg/kg | 0.20  | < 0.20  |  |
| Chloroethane                 | N       | 2760                 |       | 0.20  | < 0.20  |  |
| Trichlorofluoromethane       | N       | 2760                 | μg/kg | 0.20  | < 0.20  |  |
| 1,1-Dichloroethene           | N       | 2760                 |       | 0.20  | < 0.20  |  |
| Trans 1,2-Dichloroethene     | N       | 2760                 |       | 0.20  | < 0.20  |  |
| 1,1-Dichloroethane           | N       | 2760                 | μg/kg | 0.20  | < 0.20  |  |
| cis 1,2-Dichloroethene       | N       | 2760                 |       | 0.20  | < 0.20  |  |
| Bromochloromethane           | N       | 2760                 |       | 0.50  | < 0.50  |  |
| Trichloromethane             | N       | 2760                 |       | 0.20  | < 0.20  |  |
| 1,1,1-Trichloroethane        | N       | 2760                 |       | 0.20  | < 0.20  |  |
| Tetrachloromethane           | N       | 2760                 |       | 0.20  | < 0.20  |  |
| 1,1-Dichloropropene          | N       | 2760                 |       | 0.20  | < 0.20  |  |
| Benzene                      | N       | 2760                 | μg/kg | 0.20  | < 0.20  |  |
| 1,2-Dichloroethane           | N       | 2760                 |       | 0.20  | < 0.20  |  |
| Trichloroethene              | N       | 2760                 | μg/kg | 0.20  | < 0.20  |  |
| 1,2-Dichloropropane          | N       | 2760                 | μg/kg | 0.20  | < 0.20  |  |
| Dibromomethane               | N       | 2760                 |       | 0.20  | < 0.20  |  |
| Bromodichloromethane         | N       | 2760                 | μg/kg | 0.20  | < 0.20  |  |
| cis-1,3-Dichloropropene      | N       | 2760                 |       | 0.20  | < 0.20  |  |
| Toluene                      | N N     | 2760                 |       | 0.20  | 0.55    |  |
| Trans-1,3-Dichloropropene    | N N     | 2760                 |       | 0.20  | < 0.20  |  |
|                              | N N     |                      |       |       |         |  |
| 1,1,2-Trichloroethane        | N       | 2/60                 | μg/kg | 0.20  | < 0.20  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:              |        |       |         |  |
|------------------------------|---------|--------------------------------|--------|-------|---------|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.:           |        |       |         |  |
|                              |         | Sample Location:               |        |       |         |  |
|                              |         | Sample Type:                   |        |       |         |  |
|                              |         | Top Depth (m):                 |        |       |         |  |
|                              |         | Date Sampled:<br>Asbestos Lab: |        |       |         |  |
|                              |         |                                |        |       |         |  |
| Determinand                  | Accred. | SOP                            | Units  | LOD   |         |  |
| Tetrachloroethene            | N       | 2760                           | )<br>- | 0.20  | < 0.20  |  |
| 1,3-Dichloropropane          | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| Dibromochloromethane         | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| 1,2-Dibromoethane            | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| Chlorobenzene                | N       | 2760                           | μg/kg  | 0.20  | 2.6     |  |
| 1,1,1,2-Tetrachloroethane    | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| Ethylbenzene                 | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| m & p-Xylene                 | N       | 2760                           |        | 0.20  | < 0.20  |  |
| o-Xylene                     | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| Styrene                      | N       | 2760                           |        | 0.20  | < 0.20  |  |
| Tribromomethane              | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| Isopropylbenzene             | N       | 2760                           |        | 0.20  | < 0.20  |  |
| Bromobenzene                 | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| 1,2,3-Trichloropropane       | N       | 2760                           |        | 0.20  | < 0.20  |  |
| N-Propylbenzene              | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| 2-Chlorotoluene              | N       | 2760                           |        | 0.20  | < 0.20  |  |
| 1,3,5-Trimethylbenzene       | N       | 2760                           |        | 0.20  | < 0.20  |  |
| 4-Chlorotoluene              | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| Tert-Butylbenzene            | N       | 2760                           |        | 0.20  | < 0.20  |  |
| 1,2,4-Trimethylbenzene       | N       |                                | μg/kg  | 0.20  | < 0.20  |  |
| Sec-Butylbenzene             | N       |                                | μg/kg  |       | < 0.20  |  |
| 1,3-Dichlorobenzene          | N       | 2760                           |        | 0.20  | < 0.20  |  |
| 4-Isopropyltoluene           | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| 1,4-Dichlorobenzene          | N       | 2760                           |        | 0.20  | < 0.20  |  |
| N-Butylbenzene               | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| 1,2-Dichlorobenzene          | N       | 2760                           |        | 0.20  | < 0.20  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| 1,2,4-Trichlorobenzene       | N       | 2760                           | μg/kg  | 0.20  | < 0.20  |  |
| Hexachlorobutadiene          | N       | 2760                           |        | 0.20  | < 0.20  |  |
| 1,2,3-Trichlorobenzene       | N       | 2760                           |        | 0.20  | < 0.20  |  |
| Methyl Tert-Butyl Ether      | N       | 2760                           |        | 0.20  | < 0.20  |  |
| N-Nitrosodimethylamine       | N       | 2790                           |        |       |         |  |
| Phenol                       | N N     | 2790                           |        |       | < 0.050 |  |
| 2-Chlorophenol               | N N     |                                |        |       | < 0.050 |  |
|                              | N<br>N  | 2790<br>2790                   |        |       | < 0.050 |  |
| Bis-(2-Chloroethyl)Ether     |         |                                | 5      |       | < 0.050 |  |
| 1,3-Dichlorobenzene          | N       |                                | mg/kg  |       | < 0.050 |  |
| 1,4-Dichlorobenzene          | N       |                                | mg/kg  |       | < 0.050 |  |
| 1,2-Dichlorobenzene          | N       |                                | mg/kg  |       | < 0.050 |  |
| 2-Methylphenol               | N       | 2790                           | mg/kg  | 0.050 | < 0.050 |  |

| Client: Causeway Geotech Ltd   |         | 22-48476<br>1566621   |                |       |                    |  |
|--------------------------------|---------|-----------------------|----------------|-------|--------------------|--|
| Quotation No.: Q22-28455       | (       | Chemtest Sample ID.:  |                |       |                    |  |
|                                |         | BH122                 |                |       |                    |  |
|                                |         | SOIL                  |                |       |                    |  |
|                                |         | 5.5                   |                |       |                    |  |
|                                |         | 14-Dec-2022<br>DURHAM |                |       |                    |  |
|                                |         |                       |                |       |                    |  |
| Determinand                    | Accred. | SOP                   | Units          | LOD   |                    |  |
| Bis(2-Chloroisopropyl)Ether    | N       | 2790                  | mg/kg          | 0.050 | < 0.050            |  |
| Hexachloroethane               | N       | 2790                  | )              |       | < 0.050            |  |
| N-Nitrosodi-n-propylamine      | N       | 2790                  | mg/kg          | 0.050 | < 0.050            |  |
| 4-Methylphenol                 | N       | 2790                  | mg/kg          | 0.050 | < 0.050            |  |
| Nitrobenzene                   | N       | 2790                  | mg/kg          | 0.050 | < 0.050            |  |
| Isophorone                     | N       | 2790                  | mg/kg          | 0.050 | < 0.050            |  |
| 2-Nitrophenol                  | N       | 2790                  |                | 0.050 | < 0.050            |  |
| 2,4-Dimethylphenol             | N       | 2790                  |                | 0.050 | < 0.050            |  |
| Bis(2-Chloroethoxy)Methane     | N       | 2790                  | mg/kg          | 0.050 | < 0.050            |  |
| 2,4-Dichlorophenol             | N       | 2790                  | mg/kg          | 0.050 | < 0.050            |  |
| 1,2,4-Trichlorobenzene         | N       | 2790                  |                |       | < 0.050            |  |
| Naphthalene                    | N       | 2790                  |                | 0.050 | < 0.050            |  |
| 4-Chloroaniline                | N       | 2790                  |                | 0.050 | < 0.050            |  |
| Hexachlorobutadiene            | N       | 2790                  |                | 0.050 | < 0.050            |  |
| 4-Chloro-3-Methylphenol        | N       | 2790                  |                | 0.050 | < 0.050            |  |
| 2-Methylnaphthalene            | N       | 2790                  |                | 0.050 | < 0.050            |  |
| Hexachlorocyclopentadiene      | N       | 2790                  |                |       | < 0.050            |  |
| 2,4,6-Trichlorophenol          | N       | 2790                  | mg/kg          |       | < 0.050            |  |
| 2,4,5-Trichlorophenol          | N       | 2790                  |                | 0.050 | < 0.050            |  |
| 2-Chloronaphthalene            | N       | 2790                  |                | 0.050 | < 0.050            |  |
| 2-Nitroaniline                 | N       | 2790                  |                | 0.050 | < 0.050            |  |
| Acenaphthylene                 | N       | 2790                  |                | 0.050 | < 0.050            |  |
| Dimethylphthalate              | N       | 2790                  |                | 0.050 | < 0.050            |  |
| 2,6-Dinitrotoluene             | N       | 2790                  |                | 0.050 | < 0.050            |  |
| Acenaphthene                   | N       | 2790                  |                | 0.050 | < 0.050            |  |
| 3-Nitroaniline                 | N       | 2790                  | mg/kg          |       | < 0.050            |  |
| Dibenzofuran                   | N       | 2790                  | mg/kg          | 0.050 | < 0.050            |  |
| 4-Chlorophenylphenylether      | N       | 2790                  | mg/kg          | 0.050 | < 0.050            |  |
| 2,4-Dinitrotoluene             | N       | 2790                  |                | 0.050 | < 0.050            |  |
| Fluorene                       | N       | 2790                  |                | 0.050 | < 0.050            |  |
| Diethyl Phthalate              | N       | 2790                  |                | 0.050 | < 0.050            |  |
| 4-Nitroaniline                 | N       | 2790                  |                | 0.050 | < 0.050            |  |
| 2-Methyl-4,6-Dinitrophenol     | N       | 2790                  |                |       | < 0.050            |  |
| Azobenzene                     | N       | 2790                  | mg/kg          |       | < 0.050            |  |
| 4-Bromophenylphenyl Ether      | N       | 2790                  |                |       | < 0.050            |  |
| Hexachlorobenzene              | N       | 2790                  | mg/kg          | 0.050 | < 0.050            |  |
|                                |         |                       |                |       |                    |  |
|                                | N       | 2790                  | ma/ka          | 0.050 | < 0.050            |  |
| Pentachlorophenol Phenanthrene | N<br>N  | 2790<br>2790          | mg/kg<br>mg/kg | 0.050 | < 0.050<br>< 0.050 |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |                     |         |             |  |  |  |
|------------------------------|---------|----------------------|---------------------|---------|-------------|--|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |                     |         |             |  |  |  |
|                              |         | Sample Location      |                     |         |             |  |  |  |
|                              |         |                      |                     | e Type: | SOIL        |  |  |  |
|                              |         |                      | Top De <sub>l</sub> | , ,     | 5.5         |  |  |  |
|                              |         |                      | Date Sa             | ampled: | 14-Dec-2022 |  |  |  |
|                              |         |                      | Asbest              | os Lab: | DURHAM      |  |  |  |
| Determinand                  | Accred. | SOP                  | Units               |         |             |  |  |  |
| Carbazole                    | N       | 2790                 |                     |         | < 0.050     |  |  |  |
| Di-N-Butyl Phthalate         | N       | 2790                 | )                   |         | < 0.050     |  |  |  |
| Fluoranthene                 | N       | 2790                 | mg/kg               | 0.050   | < 0.050     |  |  |  |
| Pyrene                       | N       | 2790                 | mg/kg               | 0.050   | < 0.050     |  |  |  |
| Butylbenzyl Phthalate        | N       | 2790                 | mg/kg               | 0.050   | < 0.050     |  |  |  |
| Benzo[a]anthracene           | N       | 2790                 | mg/kg               | 0.050   | < 0.050     |  |  |  |
| Chrysene                     | N       | 2790                 |                     |         | < 0.050     |  |  |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790                 | mg/kg               | 0.050   | < 0.050     |  |  |  |
| Di-N-Octyl Phthalate         | N       | 2790                 | mg/kg               | 0.050   | < 0.050     |  |  |  |
| Benzo[b]fluoranthene         | N       | 2790                 |                     |         | < 0.050     |  |  |  |
| Benzo[k]fluoranthene         | N       | 2790                 | mg/kg               |         | < 0.050     |  |  |  |
| Benzo[a]pyrene               | N       | 2790                 | mg/kg               |         | < 0.050     |  |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790                 |                     |         | < 0.050     |  |  |  |
| Dibenz(a,h)Anthracene        | N       | 2790                 |                     |         | < 0.050     |  |  |  |
| Benzo[g,h,i]perylene         | N       | 2790                 | mg/kg               |         | < 0.050     |  |  |  |
| 4-Nitrophenol                | N       |                      | mg/kg               |         | < 0.050     |  |  |  |
| Naphthalene                  | N       | 2800                 |                     |         | < 0.010     |  |  |  |
| Acenaphthylene               | N       | 2800                 | mg/kg               |         | < 0.010     |  |  |  |
| Acenaphthene                 | N       | 2800                 |                     |         | < 0.010     |  |  |  |
| Fluorene                     | N       | 2800                 |                     |         | < 0.010     |  |  |  |
| Phenanthrene                 | N       | 2800                 |                     |         | < 0.010     |  |  |  |
| Anthracene                   | N       |                      | mg/kg               |         | < 0.010     |  |  |  |
| Fluoranthene                 | N       |                      |                     |         | < 0.010     |  |  |  |
| Pyrene                       | N       | 2800                 |                     |         | < 0.010     |  |  |  |
| Benzo[a]anthracene           | N       |                      | mg/kg               |         | < 0.010     |  |  |  |
| Chrysene                     | N       | 2800                 |                     |         | < 0.010     |  |  |  |
| Benzo[b]fluoranthene         | N       | 2800                 |                     |         | < 0.010     |  |  |  |
| Benzo[k]fluoranthene         | N       | 2800                 |                     |         | < 0.010     |  |  |  |
| Benzo[a]pyrene               | N       |                      | mg/kg               |         | < 0.010     |  |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2800                 |                     |         | < 0.010     |  |  |  |
| Dibenz(a,h)Anthracene        | N       | 2800                 | )                   |         | < 0.010     |  |  |  |
| Benzo[g,h,i]perylene         | N       | 2800                 |                     |         | < 0.010     |  |  |  |
| Total Of 16 PAH's            | N       | 2800                 | mg/kg               |         | < 0.20      |  |  |  |
| Resorcinol                   | M       | 2920                 |                     |         | < 0.020     |  |  |  |
| Phenol                       | M       | 2920                 |                     | 0.020   | < 0.020     |  |  |  |
| Cresols                      | M       |                      | mg/kg               |         | < 0.020     |  |  |  |
| Xylenols                     | M       |                      | mg/kg               |         | < 0.020     |  |  |  |
| ,                            | N       |                      | mg/kg               |         |             |  |  |  |
| 1-Naphthol                   | M       |                      |                     |         | < 0.020     |  |  |  |
| Trimethylphenols             | IVI     | 2920                 | mg/kg               | 0.020   | < 0.020     |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |          |         |        |  |  |  |
|------------------------------|---------|----------------------|----------|---------|--------|--|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |          |         |        |  |  |  |
|                              |         | Sa                   | ocation: | BH122   |        |  |  |  |
|                              |         | Sample Type:         |          |         |        |  |  |  |
|                              |         | oth (m):             | 5.5      |         |        |  |  |  |
|                              |         | Date Sampled:        |          |         |        |  |  |  |
|                              |         |                      | Asbest   | os Lab: | DURHAM |  |  |  |
| Determinand                  | Accred. |                      |          |         |        |  |  |  |
| Total Phenols                | М       | 2920                 | mg/kg    | 0.10    | < 0.10 |  |  |  |

### **Results - Single Stage WAC**

Project: 22-1041A 3FM Planning Design GI

| Chemtest Job No:             | 22-48476    |         |             |             | Landfill \   | Waste Acceptanc            | o Critoria         |
|------------------------------|-------------|---------|-------------|-------------|--------------|----------------------------|--------------------|
| Chemtest Sample ID:          | 1566615     |         |             |             | Landilli     | Limits                     | e Criteria         |
| Sample Ref:                  | 1300013     |         |             |             |              | Stable, Non-               |                    |
| Sample ID:                   |             |         |             |             |              | reactive                   |                    |
| Sample Location:             | BH122       |         |             |             |              | hazardous                  | Hazardous          |
| <u> </u>                     | 2.5         |         |             |             | Inert Waste  | mazardous<br>waste in non- | Hazardous<br>Waste |
| Top Depth(m):                | 2.5         |         |             |             |              |                            |                    |
| Bottom Depth(m):             | 14 Dog 2022 |         |             |             | Landfill     | hazardous                  | Landfill           |
| Sampling Date:               | 14-Dec-2022 |         | 1 11 14     |             |              | Landfill                   |                    |
| Determinand                  | SOP         | Accred. | Units       |             | _            | _                          |                    |
| Total Organic Carbon         | 2625        | M       | %           | 9.1         | 3            | 5                          | 6                  |
| Loss On Ignition             | 2610        | M       | %           | 8.3         |              |                            | 10                 |
| Total BTEX                   | 2760        | M       | mg/kg       | 0.015       | 6            |                            |                    |
| Total PCBs (7 Congeners)     | 2815        | M       | mg/kg       | < 0.10      | 1            |                            |                    |
| TPH Total WAC                | 2670        | M       | mg/kg       | 150         | 500          |                            |                    |
| Total (Of 17) PAH's          | 2700        | N       | mg/kg       | < 2.0       | 100          |                            |                    |
| рН                           | 2010        | M       |             | 7.8         |              | >6                         |                    |
| Acid Neutralisation Capacity | 2015        | N       | mol/kg      | 0.0090      |              | To evaluate                | To evaluate        |
| Eluate Analysis              |             |         | 10:1 Eluate | 10:1 Eluate | Limit values | for compliance             | leaching test      |
|                              |             |         | mg/l        | mg/kg       | using B      | S EN 12457 at L/S          | S 10 I/kg          |
| Arsenic                      | 1455        | U       | 0.0056      | 0.056       | 0.5          | 2                          | 25                 |
| Barium                       | 1455        | U       | 0.029       | 0.29        | 20           | 100                        | 300                |
| Cadmium                      | 1455        | U       | < 0.00011   | < 0.0011    | 0.04         | 1                          | 5                  |
| Chromium                     | 1455        | U       | < 0.0005    | < 0.0050    | 0.5          | 10                         | 70                 |
| Copper                       | 1455        | U       | 0.0034      | 0.034       | 2            | 50                         | 100                |
| Mercury                      | 1455        | U       | < 0.00005   | < 0.00050   | 0.01         | 0.2                        | 2                  |
| Molybdenum                   | 1455        | U       | 0.023       | 0.23        | 0.5          | 10                         | 30                 |
| Nickel                       | 1455        | U       | 0.0033      | 0.033       | 0.4          | 10                         | 40                 |
| Lead                         | 1455        | U       | 0.0036      | 0.036       | 0.5          | 10                         | 50                 |
| Antimony                     | 1455        | U       | 0.028       | 0.28        | 0.06         | 0.7                        | 5                  |
| Selenium                     | 1455        | U       | 0.0012      | 0.012       | 0.1          | 0.5                        | 7                  |
| Zinc                         | 1455        | U       | < 0.003     | < 0.025     | 4            | 50                         | 200                |
| Chloride                     | 1220        | U       | 16          | 160         | 800          | 15000                      | 25000              |
| Fluoride                     | 1220        | U       | 0.27        | 2.7         | 10           | 150                        | 500                |
| Sulphate                     | 1220        | U       | 76          | 760         | 1000         | 20000                      | 50000              |
| Total Dissolved Solids       | 1020        | N       | 250         | 2500        | 4000         | 60000                      | 100000             |
| Phenol Index                 | 1920        | U       | < 0.030     | < 0.30      | 1            | -                          | -                  |
| Dissolved Organic Carbon     | 1610        | U       | 6.1         | 61          | 500          | 800                        | 1000               |

| Solid Information           |       |
|-----------------------------|-------|
| Dry mass of test portion/kg | 0.090 |
| Moisture (%)                | 20    |

#### **Waste Acceptance Criteria**

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

| SOP  | Title                                                                                   | Parameters included                                                                                                                                                                                                                                          | Method summary                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1010 | pH Value of Waters                                                                      | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 1020 | Electrical Conductivity and<br>Total Dissolved Solids (TDS) in<br>Waters                | Electrical Conductivity and Total Dissolved Solids (TDS) in Waters                                                                                                                                                                                           | Conductivity Meter                                                                                                                               |
| 1220 | Anions, Alkalinity & Ammonium in Waters                                                 | Fluoride; Chloride; Nitrite; Nitrate; Total;<br>Oxidisable Nitrogen (TON); Sulfate; Phosphate;<br>Alkalinity; Ammonium                                                                                                                                       | Automated colorimetric analysis using<br>'Aquakem 600' Discrete Analyser.                                                                        |
| 1300 | Cyanides & Thiocyanate in Waters                                                        | Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                              | Continuous Flow Analysis.                                                                                                                        |
| 1325 | Sulphide in Waters                                                                      | Sulphides                                                                                                                                                                                                                                                    | Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.                                         |
| 1455 | Metals in Waters by ICP-MS                                                              | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc                                                                   | Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).                                 |
| 1495 | Low Level Hexavalent<br>Chromium in Waters                                              | Chromium [VI]                                                                                                                                                                                                                                                | Colorimetric determination of hexavalent chromium expressed as Cr (VI) µg/l in water, using Ion Chromatography and UV-visible spectrophotometry. |
| 1610 | Total/Dissolved Organic Carbon in Waters                                                | Organic Carbon                                                                                                                                                                                                                                               | TOC Analyser using Catalytic Oxidation                                                                                                           |
| 1675 | TPH Aliphatic/Aromatic split in<br>Waters by GC-FID(cf. Texas<br>Method 1006 / TPH CWG) | Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35, >C35-C44                                                                              | Pentane extraction / GCxGC FID detection                                                                                                         |
| 1760 | Volatile Organic Compounds<br>(VOCs) in Waters by<br>Headspace GC-MS                    | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)                                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.     |
| 1790 | Semi-Volatile Organic<br>Compounds (SVOCs) in<br>Waters by GC-MS                        | Semi-volatile organic compounds                                                                                                                                                                                                                              | Solvent extraction / GCMS detection                                                                                                              |
| 1800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Waters by GC-MS              | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene | Pentane extraction / GCMS detection                                                                                                              |
| 1815 | Polychlorinated Biphenyls<br>(PCB) ICES7 Congeners in<br>Waters by GC-MS                | ICES7 PCB congeners                                                                                                                                                                                                                                          | Solvent extraction / GCMS detection                                                                                                              |
| 1900 | Phenols in Waters by GC-MS                                                              | Approximately 24 substituted Phenols, including Chlorophenols                                                                                                                                                                                                | Solvent extraction / GCMS detection                                                                                                              |
| 1920 | Phenols in Waters by HPLC                                                               | Phenolic compounds including: Phenol,<br>Cresols, Xylenols, Trimethylphenols Note:<br>Chlorophenols are excluded.                                                                                                                                            | Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.                                                  |
| 2010 | pH Value of Soils                                                                       | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 2015 | Acid Neutralisation Capacity                                                            | Acid Reserve                                                                                                                                                                                                                                                 | Titration                                                                                                                                        |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)                        | Moisture content                                                                                                                                                                                                                                             | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                             |
| 2040 | Soil Description(Requirement of MCERTS)                                                 | Soil description                                                                                                                                                                                                                                             | As received soil is described based upon BS5930                                                                                                  |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                                  | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                         | Aqueous extraction / ICP-OES                                                                                                                     |

| SOP  | Title                                                                     | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2175 | Total Sulphur in Soils                                                    | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                      | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                  | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                           | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                   | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                              | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                              | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2610 | Loss on Ignition                                                          | loss on ignition (LOI)                                                                                                                                                                                                                                                    | Determination of the proportion by mass that is lost from a soil by ignition at 550°C.                                                                                                 |
| 2625 | Total Organic Carbon in Soils                                             | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2670 | Total Petroleum Hydrocarbons<br>(TPH) in Soils by GC-FID                  | TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40                                                                                                                                                                                            | Dichloromethane extraction / GC-FID                                                                                                                                                    |
| 2680 | TPH A/A Split                                                             | Aliphatics: >C5-C6, >C6-C8, >C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                   | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2700 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-FID | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene              | Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)                                                   |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS       | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS           | Semi-volatile organic compounds(cf. USEPA Method 8270)                                                                                                                                                                                                                    | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS  | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2815 | Polychlorinated Biphenyls<br>(PCB) ICES7Congeners in<br>Soils by GC-MS    | ICES7 PCB congeners                                                                                                                                                                                                                                                       | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |

| SOP  | Title Parameters included                |                                            | Method summary                                                                                           |
|------|------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 2920 | Phenols in Soils by HPLC                 | Phenol, Methylphenols, Dimethylphenols, 1- | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection. |
| 640  | Characterisation of Waste (Leaching C10) |                                            | ComplianceTest for Leaching of Granular Waste Material and Sludge                                        |

#### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis This analysis has been subcontracted to an unaccredited laboratory Т I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 23-00401-1

Initial Date of Issue: 02-Feb-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Dean McCloskey
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Matthew Graham
Neil Haggan
Paul Dunlop

Stephen Franey

Sean Ross

S

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 09-Jan-2023

Order No.: Date Instructed: 25-Jan-2023

No. of Samples: 2

Turnaround (Wkdays): 7 Results Due: 02-Feb-2023

Date Approved: 02-Feb-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager



### **Chemtest**

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

| Client: Causeway Geotech Ltd        | <u>,,, G,</u> | Che                                       | mtest l  | oh No ·    | 23-00401                | 23-00401                |
|-------------------------------------|---------------|-------------------------------------------|----------|------------|-------------------------|-------------------------|
| Quotation No.: Q22-28455            | -             | Chemtest Job No.:<br>Chemtest Sample ID.: |          |            | 1571052                 | 1571055                 |
| Order No.:                          | + '           | Client Sample Ref.:                       |          |            | 157 1052                | 4                       |
| Olugi NU                            |               | CIIE                                      | ample Lo | ocation:   | BH102                   | BH102                   |
|                                     |               | 30                                        |          | e Type:    | SOIL                    | SOIL                    |
|                                     |               |                                           | Top Dep  |            | 0.5                     | 2.0                     |
|                                     |               |                                           | Date Sa  |            |                         |                         |
|                                     |               |                                           | Asbest   | _          | 04-Jan-2023<br>DURHAM   | 04-Jan-2023<br>DURHAM   |
| Data-main and                       | A = = = = = 1 | COD                                       |          |            | DURHAM                  | DURHAM                  |
| Determinand                         | Accred.       | <b>SOP</b> 2192                           | Units    | LOD<br>N/A |                         |                         |
| ACM Type                            | - 0           | 2192                                      |          | IN/A       | No Ashastas             | No Ashastas             |
| Asbestos Identification             | U             | 2192                                      |          | N/A        | No Asbestos<br>Detected | No Asbestos<br>Detected |
| Moisture                            | N             | 2030                                      | %        | 0.020      | 8.6                     | 8.0                     |
| Natural Moisture Content            | N             | 2030                                      | %        | 0.020      | 9.4                     | 8.6                     |
| Soil Colour                         | N             | 2040                                      |          | N/A        | Brown                   | Brown                   |
| Other Material                      | N             | 2040                                      |          | N/A        | Stones                  | Stones                  |
| Soil Texture                        | N             | 2040                                      |          | N/A        | Sand                    | Sand                    |
| рН                                  | U             | 2010                                      |          | 4.0        | 9.4                     | 9.2                     |
| Boron (Hot Water Soluble)           | U             | 2120                                      | mg/kg    | 0.40       | 3.2                     | 3.0                     |
| Sulphate (2:1 Water Soluble) as SO4 | U             | 2120                                      | g/l      | 0.010      | 0.34                    | 0.26                    |
| Total Sulphur                       | U             | 2175                                      | %        | 0.010      | 0.12                    | 0.14                    |
| Sulphur (Elemental)                 | U             | 2180                                      | mg/kg    | 1.0        | 91                      | 68                      |
| Cyanide (Free)                      | U             | 2300                                      | mg/kg    | 0.50       | [B] < 0.50              | [B] < 0.50              |
| Cyanide (Total)                     | U             | 2300                                      | mg/kg    | 0.50       | [B] < 0.50              | [B] < 0.50              |
| Thiocyanate                         | U             | 2300                                      | mg/kg    | 5.0        | [B] < 5.0               | [B] < 5.0               |
| Aluminium (Total)                   | N             | 2430                                      | mg/kg    | 100        | 7600                    | 8600                    |
| Iron (Total)                        | N             | 2430                                      | mg/kg    | 100        | 29000                   | 27000                   |
| Arsenic                             | U             | 2455                                      | mg/kg    | 0.5        | 25                      | 25                      |
| Barium                              | U             | 2455                                      | mg/kg    | 0          | 160                     | 150                     |
| Beryllium                           | U             | 2455                                      | mg/kg    | 0.5        | 0.9                     | 0.9                     |
| Cadmium                             | U             | 2455                                      | mg/kg    | 0.10       | 1.4                     | 1.4                     |
| Chromium                            | U             | 2455                                      |          | 0.5        | 36                      | 31                      |
| Manganese                           | U             | 2455                                      | mg/kg    | 1.0        | 1400                    | 1300                    |
| Copper                              | U             | 2455                                      | mg/kg    | 0.50       | 84                      | 61                      |
| Mercury                             | U             | 2455                                      | mg/kg    | 0.05       | 1.3                     | 0.29                    |
| Nickel                              | U             | 2455                                      |          | 0.50       | 43                      | 38                      |
| Lead                                | Ü             | 2455                                      | mg/kg    | 0.50       | 1400                    | 290                     |
| Selenium                            | Ü             | 2455                                      | mg/kg    | 0.25       | 0.97                    | 0.97                    |
| Vanadium                            | Ü             | 2455                                      | mg/kg    | 0.5        | 41                      | 38                      |
| Zinc                                | Ü             | 2455                                      | mg/kg    | 0.50       | 250                     | 240                     |
| Chromium (Hexavalent)               | N             | 2490                                      | mg/kg    | 0.50       | < 0.50                  | < 0.50                  |
| Organic Matter                      | U             | 2625                                      | %        | 0.40       | 8.5                     | 6.3                     |
| Total Organic Carbon                | Ü             | 2625                                      | %        | 0.20       | 4.9                     | 3.6                     |
| Aliphatic TPH >C5-C6                | N             | 2680                                      | mg/kg    | 0.010      | [B] < 0.010             | [B] < 0.010             |
| Aliphatic TPH >C6-C8                | N             | 2680                                      | mg/kg    | 0.010      | [B] < 0.010             | [B] < 0.010             |
| Aliphatic TPH >C8-C10               | N             | 2680                                      | mg/kg    | 0.10       | [B] < 0.10              | [B] 170                 |
| Aliphatic TPH >C10-C12              | N             | 2680                                      |          | 0.10       | [B] < 0.10              | [B] < 0.10              |
| 7 III PII AU II 11 / O 10 O 12      | I N           | 2000                                      | ilig/kg  | 0.10       | [6] < 0.10              | טו.ט > נכון             |

| Client: Causeway Geotech Ltd          |         | Chemtest Job No.:    |                |         | 23-00401                 | 23-00401    |
|---------------------------------------|---------|----------------------|----------------|---------|--------------------------|-------------|
| Quotation No.: Q22-28455              | (       | Chemtest Sample ID.: |                |         | 1571052                  | 1571055     |
| Order No.:                            |         | Client Sample Ref.:  |                |         | 1                        | 4           |
|                                       |         | Sa                   | ample Lo       |         | BH102                    | BH102       |
|                                       |         |                      |                | e Type: | SOIL                     | SOIL        |
|                                       |         |                      | Top Dep        |         | 0.5                      | 2.0         |
|                                       |         |                      | Date Sa        | ampled: | 04-Jan-2023              | 04-Jan-2023 |
|                                       |         |                      | Asbest         | os Lab: | DURHAM                   | DURHAM      |
| Determinand                           | Accred. | SOP                  | Units          | LOD     |                          |             |
| Aliphatic TPH >C12-C16                | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10               | [B] < 0.10  |
| Aliphatic TPH >C16-C21                | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10               | [B] < 0.10  |
| Aliphatic TPH >C21-C35                | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10               | [B] < 0.10  |
| Aliphatic TPH >C35-C44                | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10               | [B] < 0.10  |
| Total Aliphatic Hydrocarbons          | N       | 2680                 | mg/kg          | 1.0     | [B] < 1.0                | [B] 170     |
| Aromatic TPH >C5-C7                   | N       | 2680                 | mg/kg          | 0.010   | [B] < 0.010              | [B] < 0.010 |
| Aromatic TPH >C7-C8                   | N       | 2680                 | mg/kg          | 0.010   | [B] < 0.010              | [B] < 0.010 |
| Aromatic TPH >C8-C10                  | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10               | [B] < 0.10  |
| Aromatic TPH >C10-C12                 | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10               | [B] < 0.10  |
| Aromatic TPH >C12-C16                 | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10               | [B] < 0.10  |
| Aromatic TPH >C16-C21                 | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10               | [B] < 0.10  |
| Aromatic TPH >C21-C35                 | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10               | [B] < 0.10  |
| Aromatic TPH >C35-C44                 | N       | 2680                 |                | 0.10    | [B] < 0.10               | [B] < 0.10  |
| Total Aromatic Hydrocarbons           | N       | 2680                 | mg/kg          | 1.0     | [B] < 1.0                | [B] < 1.0   |
| Total Petroleum Hydrocarbons          | N       | 2680                 | 0              | 2.0     | [B] < 2.0                | [B] 170     |
| Dichlorodifluoromethane               | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Chloromethane                         | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Vinyl Chloride                        | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Bromomethane                          | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Chloroethane                          | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Trichlorofluoromethane                | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| 1,1-Dichloroethene                    | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Trans 1,2-Dichloroethene              | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| 1,1-Dichloroethane                    | N N     | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| cis 1,2-Dichloroethene                | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Bromochloromethane                    | N       | 2760                 | μg/kg          | 0.50    | [B] < 0.50               | [B] < 0.50  |
| Trichloromethane                      | N       | 2760                 | μg/kg          | 0.20    | [B] 0.37                 | [B] 0.35    |
| 1,1,1-Trichloroethane                 | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Tetrachloromethane                    | N N     | 2760                 | μg/kg<br>μg/kg | 0.20    | [B] < 0.20               | [B] < 0.20  |
| 1,1-Dichloropropene                   | N N     | 2760                 | μg/kg<br>μg/kg | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Benzene                               | N N     | 2760                 |                |         |                          |             |
| 1,2-Dichloroethane                    | N N     | 2760                 | μg/kg          | 0.20    | [B] < 0.20<br>[B] < 0.20 | [B] 0.39    |
| · · · · · · · · · · · · · · · · · · · | N N     |                      | μg/kg          | 0.20    |                          | [B] < 0.20  |
| Trichloroethene                       | N<br>N  | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| 1,2-Dichloropropane                   |         | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Dibromomethane                        | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Bromodichloromethane                  | N N     | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| cis-1,3-Dichloropropene               | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20               | [B] < 0.20  |
| Toluene                               | N       | 2760                 | μg/kg          | 0.20    | [B] 0.79                 | [B] 10      |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |         |         | 23-00401<br>1571052 | 23-00401    |
|------------------------------|---------|----------------------|---------|---------|---------------------|-------------|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |         |         |                     | 1571055     |
| Order No.:                   |         | Client Sample Ref.:  |         |         | 1                   | 4           |
|                              |         | Sample Location:     |         |         | BH102               | BH102       |
|                              |         |                      |         | e Type: | SOIL                | SOIL        |
|                              |         |                      | Top Dep |         | 0.5                 | 2.0         |
|                              |         |                      | Date Sa | _       | 04-Jan-2023         | 04-Jan-2023 |
|                              |         |                      | Asbest  | os Lab: | DURHAM              | DURHAM      |
| Determinand                  | Accred. | SOP                  | Units   | LOD     |                     |             |
| Trans-1,3-Dichloropropene    | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 1,1,2-Trichloroethane        | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| Tetrachloroethene            | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 1,3-Dichloropropane          | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| Dibromochloromethane         | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 1,2-Dibromoethane            | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| Chlorobenzene                | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 1,1,1,2-Tetrachloroethane    | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| Ethylbenzene                 | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] 98      |
| m & p-Xylene                 | N       | 2760                 | μg/kg   | 0.20    | [B] 0.57            | [B] 330     |
| o-Xylene                     | N       | 2760                 | μg/kg   | 0.20    | [B] 0.45            | [B] 210     |
| Styrene                      | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] 24      |
| Tribromomethane              | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| Isopropylbenzene             | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] 29      |
| Bromobenzene                 | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 1,2,3-Trichloropropane       | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| N-Propylbenzene              | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] 53      |
| 2-Chlorotoluene              | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 1,3,5-Trimethylbenzene       | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] 210     |
| 4-Chlorotoluene              | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| Tert-Butylbenzene            | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 1,2,4-Trimethylbenzene       | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] 190     |
| Sec-Butylbenzene             | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] 36      |
| 1,3-Dichlorobenzene          | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 4-Isopropyltoluene           | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] 72      |
| 1,4-Dichlorobenzene          | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| N-Butylbenzene               | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] 82      |
| 1,2-Dichlorobenzene          | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 1,2,4-Trichlorobenzene       | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| Hexachlorobutadiene          | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| 1,2,3-Trichlorobenzene       | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| Methyl Tert-Butyl Ether      | N       | 2760                 | μg/kg   | 0.20    | [B] < 0.20          | [B] < 0.20  |
| N-Nitrosodimethylamine       | N       | 2790                 | mg/kg   |         | [B] < 0.050         | [B] < 0.050 |
| Phenol                       | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050         | [B] < 0.050 |
| 2-Chlorophenol               | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050         | [B] < 0.050 |
| Bis-(2-Chloroethyl)Ether     | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050         | [B] < 0.050 |
| 1,3-Dichlorobenzene          | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050         | [B] < 0.050 |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |          |          |             | 23-00401    |
|------------------------------|---------|----------------------|----------|----------|-------------|-------------|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |          |          | 1571052     | 1571055     |
| Order No.:                   |         | Client Sample Ref.:  |          |          | 1           | 4           |
|                              |         |                      | ample Lo |          | BH102       | BH102       |
|                              |         |                      | Sample   | е Туре:  | SOIL        | SOIL        |
|                              |         |                      | Top Dep  | oth (m): | 0.5         | 2.0         |
|                              |         |                      | Date Sa  | impled:  | 04-Jan-2023 | 04-Jan-2023 |
|                              |         |                      | Asbest   | os Lab:  | DURHAM      | DURHAM      |
| Determinand                  | Accred. | SOP                  | Units    | LOD      |             |             |
| 1,4-Dichlorobenzene          | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 1,2-Dichlorobenzene          | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2-Methylphenol               | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Bis(2-Chloroisopropyl)Ether  | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Hexachloroethane             | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| N-Nitrosodi-n-propylamine    | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 4-Methylphenol               | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Nitrobenzene                 | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Isophorone                   | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2-Nitrophenol                | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2,4-Dimethylphenol           | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Bis(2-Chloroethoxy)Methane   | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2,4-Dichlorophenol           | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 1,2,4-Trichlorobenzene       | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Naphthalene                  | N       | 2790                 | Ü        |          | [B] < 0.050 | [B] 0.29    |
| 4-Chloroaniline              | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Hexachlorobutadiene          | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 4-Chloro-3-Methylphenol      | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2-Methylnaphthalene          | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] 0.17    |
| Hexachlorocyclopentadiene    | N       | 2790                 |          |          | [B] < 0.050 | [B] < 0.050 |
| 2,4,6-Trichlorophenol        | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2,4,5-Trichlorophenol        | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2-Chloronaphthalene          | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2-Nitroaniline               | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Acenaphthylene               | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Dimethylphthalate            | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2,6-Dinitrotoluene           | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Acenaphthene                 | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 3-Nitroaniline               | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Dibenzofuran                 | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] 0.065   |
| 4-Chlorophenylphenylether    | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2,4-Dinitrotoluene           | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] 5.0     |
| Fluorene                     | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Diethyl Phthalate            | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 4-Nitroaniline               | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 2-Methyl-4,6-Dinitrophenol   | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| Azobenzene                   | N       | 2790                 | mg/kg    | 0.050    | [B] < 0.050 | [B] < 0.050 |
| 4-Bromophenylphenyl Ether    | N       | 2790                 | mg/kg    |          | [B] < 0.050 | [B] < 0.050 |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:   |          |         |             | 23-00401    |
|------------------------------|---------|---------------------|----------|---------|-------------|-------------|
| Quotation No.: Q22-28455     | (       |                     | est Sam  |         | 1571052     | 1571055     |
| Order No.:                   |         | Client Sample Ref.: |          |         | 1           | 4           |
|                              |         | Sa                  | ample Lo |         | BH102       | BH102       |
|                              |         |                     |          | e Type: | SOIL        | SOIL        |
|                              |         |                     | Top Dep  |         | 0.5         | 2.0         |
|                              |         |                     | Date Sa  | _       | 04-Jan-2023 | 04-Jan-2023 |
|                              |         |                     |          | os Lab: | DURHAM      | DURHAM      |
| Determinand                  | Accred. | SOP                 |          |         |             |             |
| Hexachlorobenzene            | N       | 2790                | 0 0      | 0.050   | [B] < 0.050 | [B] < 0.050 |
| Pentachlorophenol            | N       | 2790                | 0 0      |         | [B] < 0.050 | [B] < 0.050 |
| Phenanthrene                 | N       | 2790                | 0        |         | [B] 0.41    | [B] 0.30    |
| Anthracene                   | N       | 2790                | mg/kg    |         | [B] 0.098   | [B] 0.054   |
| Carbazole                    | N       | 2790                |          | 0.050   | [B] < 0.050 | [B] < 0.050 |
| Di-N-Butyl Phthalate         | N       | 2790                | mg/kg    | 0.050   | [B] < 0.050 | [B] 0.12    |
| Fluoranthene                 | N       | 2790                | 0        |         | [B] 0.53    | [B] 0.36    |
| Pyrene                       | N       | 2790                | 5        |         | [B] 0.46    | [B] 0.35    |
| Butylbenzyl Phthalate        | N       | 2790                | mg/kg    |         | [B] < 0.050 | [B] < 0.050 |
| Benzo[a]anthracene           | N       | 2790                | mg/kg    | 0.050   | [B] 0.27    | [B] 0.17    |
| Chrysene                     | N       | 2790                |          | 0.050   | [B] 0.28    | [B] 0.21    |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790                |          | 0.050   | [B] 0.11    | [B] 0.21    |
| Di-N-Octyl Phthalate         | N       | 2790                |          | 0.050   | [B] < 0.050 | [B] < 0.050 |
| Benzo[b]fluoranthene         | N       | 2790                |          |         | [B] 0.34    | [B] 0.29    |
| Benzo[k]fluoranthene         | N       | 2790                | 0 0      |         | [B] 0.14    | [B] 0.11    |
| Benzo[a]pyrene               | N       | 2790                |          |         | [B] 0.31    | [B] 0.22    |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790                | mg/kg    |         | [B] 0.14    | [B] 0.11    |
| Dibenz(a,h)Anthracene        | N       | 2790                | mg/kg    |         | [B] < 0.050 | [B] < 0.050 |
| Benzo[g,h,i]perylene         | N       | 2790                |          |         | [B] 0.20    | [B] 0.16    |
| 4-Nitrophenol                | N       | 2790                | mg/kg    |         | [B] < 0.050 | [B] < 0.050 |
| Naphthalene                  | N       | 2800                | 0 0      |         | 0.95        | 1.0         |
| Acenaphthylene               | N       | 2800                |          |         | 0.26        | 0.27        |
| Acenaphthene                 | N       | 2800                | 9. 9     |         | 2.7         | 1.8         |
| Fluorene                     | N       | 2800                |          | 0.010   | 2.6         | 2.0         |
| Phenanthrene                 | N       | 2800                |          |         | 19          | 16          |
| Anthracene                   | N       | 2800                | mg/kg    | 0.010   | 4.0         | 3.5         |
| Fluoranthene                 | N       | 2800                |          |         | 23          | 20          |
| Pyrene                       | N       | 2800                |          |         | 18          | 16          |
| Benzo[a]anthracene           | N       | 2800                | 5        |         | 9.1         | 8.2         |
| Chrysene                     | N       | 2800                | 9. 9     |         | 11          | 9.6         |
| Benzo[b]fluoranthene         | N       | 2800                | 0 0      |         | 12          | 9.8         |
| Benzo[k]fluoranthene         | N       | 2800                | mg/kg    |         | 4.0         | 3.3         |
| Benzo[a]pyrene               | N       | 2800                |          |         | 9.5         | 8.3         |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2800                | 0 0      |         | 5.8         | 4.6         |
| Dibenz(a,h)Anthracene        | N       | 2800                |          |         | 1.2         | 0.94        |
| Benzo[g,h,i]perylene         | N       | 2800                | mg/kg    | 0.010   | 5.4         | 4.5         |
| Total Of 16 PAH's            | N       | 2800                |          |         | 130         | 110         |
| Resorcinol                   | U       | 2920                | mg/kg    | 0.020   | < 0.020     | < 0.020     |

| Client: Causeway Geotech Ltd |                    | Che    | mtest Jo | ob No.:     | 23-00401    | 23-00401 |
|------------------------------|--------------------|--------|----------|-------------|-------------|----------|
| Quotation No.: Q22-28455     | (                  | Chemte | st Sam   | ple ID.:    | 1571052     | 1571055  |
| Order No.:                   |                    | Clie   | nt Samp  | le Ref.:    | 1           | 4        |
|                              |                    | Sa     | ample Lo | ocation:    | BH102       | BH102    |
|                              |                    |        | Sample   | е Туре:     | SOIL        | SOIL     |
|                              |                    |        | Top Dep  | oth (m):    | 0.5         | 2.0      |
|                              |                    |        | Date Sa  | 04-Jan-2023 | 04-Jan-2023 |          |
|                              |                    |        | Asbest   | os Lab:     | DURHAM      | DURHAM   |
| Determinand                  | Accred.            | SOP    | Units    | LOD         |             |          |
| Phenol                       | U                  | 2920   | mg/kg    | 0.020       | < 0.020     | < 0.020  |
| Cresols                      | U                  | 2920   | mg/kg    | 0.020       | < 0.020     | < 0.020  |
| Xylenols                     | U                  | 2920   | mg/kg    | 0.020       | < 0.020     | 0.086    |
| 1-Naphthol                   | N 2920 mg/kg 0.020 |        |          |             | < 0.020     | < 0.020  |
| Trimethylphenols             | U                  | 2920   | mg/kg    | < 0.020     | < 0.020     |          |
| Total Phenols                | U                  | 2920   | mg/kg    | 0.10        | < 0.10      | < 0.10   |

### **Deviations**

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

| Sample: | Sample Ref: | Sample ID: | Sample<br>Location: | Sampled<br>Date: | Deviation Code(s): | Containers<br>Received: |
|---------|-------------|------------|---------------------|------------------|--------------------|-------------------------|
| 1571052 | 1           |            | BH102               | 04-Jan-2023      | В                  | Amber Glass<br>250ml    |
| 1571052 | 1           |            | BH102               | 04-Jan-2023      | В                  | Amber Glass<br>60ml     |
| 1571052 | 1           |            | BH102               | 04-Jan-2023      | В                  | Plastic Tub<br>500g     |
| 1571055 | 4           |            | BH102               | 04-Jan-2023      | В                  | Amber Glass<br>250ml    |
| 1571055 | 4           |            | BH102               | 04-Jan-2023      | В                  | Amber Glass<br>60ml     |
| 1571055 | 4           |            | BH102               | 04-Jan-2023      | В                  | Plastic Tub<br>500g     |

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                        | рН                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)         | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                                  | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                                   | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                     | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                          | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA<br>Method 8270)                                                                                                                                                                                                                 | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |

#### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 23-00855-1

Initial Date of Issue: 02-Feb-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Colm Hurley

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 12-Jan-2023

Order No.: Date Instructed: 25-Jan-2023

No. of Samples: 1

Turnaround (Wkdays): 7 Results Due: 02-Feb-2023

**Date Approved:** 02-Feb-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager

| Client: Causeway Geotech Ltd        |         | Chemtest Job No.: |          |          |                         |  |  |
|-------------------------------------|---------|-------------------|----------|----------|-------------------------|--|--|
| Quotation No.: Q22-28455            | (       | Chemte            | ple ID.: | 1572934  |                         |  |  |
|                                     |         | Sa                | ocation: | BH131    |                         |  |  |
|                                     |         |                   | Sampl    | е Туре:  | SOIL                    |  |  |
|                                     |         |                   | Top Dep  | oth (m): | 1                       |  |  |
|                                     |         |                   | Date Sa  | ampled:  | 09-Jan-2023             |  |  |
|                                     |         |                   | Asbest   | os Lab:  | DURHAM                  |  |  |
| Determinand                         | Accred. | SOP               | Units    | LOD      |                         |  |  |
| ACM Type                            | U       | 2192              |          | N/A      | -                       |  |  |
| Asbestos Identification             | U       | 2192              |          | N/A      | No Asbestos<br>Detected |  |  |
| Moisture                            | N       | 2030              | %        | 0.020    | 4.2                     |  |  |
| Natural Moisture Content            | N       | 2030              | %        | 0.020    | 4.4                     |  |  |
| Soil Colour                         | N       | 2040              |          | N/A      | Brown                   |  |  |
| Other Material                      | N       | 2040              |          | N/A      | Stones                  |  |  |
| Soil Texture                        | N       | 2040              |          | N/A      | Sand                    |  |  |
| рН                                  | U       | 2010              |          | 4.0      | 8.7                     |  |  |
| Boron (Hot Water Soluble)           | U       | 2120              | mg/kg    | 0.40     | < 0.40                  |  |  |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120              | g/l      | 0.010    | 0.23                    |  |  |
| Total Sulphur                       | U       | 2175              | %        | 0.010    | 0.050                   |  |  |
| Sulphur (Elemental)                 | Ü       |                   | mg/kg    | 1.0      | < 1.0                   |  |  |
| Cyanide (Free)                      | Ü       |                   | mg/kg    | 0.50     | [B] < 0.50              |  |  |
| Cyanide (Total)                     | Ü       |                   | mg/kg    | 0.50     | [B] < 0.50              |  |  |
| Thiocyanate                         | U       | 2300              | )        | 5.0      | [B] < 5.0               |  |  |
| Aluminium (Total)                   | N       | 2430              |          | 100      | 8700                    |  |  |
| Iron (Total)                        | N       | 2430              |          | 100      | 20000                   |  |  |
| Arsenic                             | U       | 2455              |          | 0.5      | 22                      |  |  |
| Barium                              | U       | 2455              |          | 0        | 41                      |  |  |
| Beryllium                           | Ü       | 2455              |          | 0.5      | 0.5                     |  |  |
| Cadmium                             | U       |                   | mg/kg    | 0.10     | 1.1                     |  |  |
| Chromium                            | Ü       |                   | mg/kg    | 0.5      | 25                      |  |  |
| Manganese                           | U       | 2455              |          | 1.0      | 970                     |  |  |
| Copper                              | U       | 2455              |          | 0.50     | 22                      |  |  |
| Mercury                             | Ü       | 2455              |          | 0.05     | < 0.05                  |  |  |
| Nickel                              | U       | 2455              |          | 0.50     | 30                      |  |  |
| Lead                                | U       | 2455              |          | 0.50     | 19                      |  |  |
| Selenium                            | Ü       |                   | mg/kg    | 0.25     | 1.2                     |  |  |
| Vanadium                            | U       | 2455              |          | 0.5      | 32                      |  |  |
| Zinc                                | U       | 2455              | mg/kg    | 0.50     | 77                      |  |  |
| Chromium (Hexavalent)               | N       | 2490              | mg/kg    | 0.50     | < 0.50                  |  |  |
| Organic Matter                      | U       | 2625              | %        | 0.40     | 0.69                    |  |  |
| Total Organic Carbon                | U       | 2625              | %        | 0.20     | 0.40                    |  |  |
| Aliphatic TPH >C5-C6                | N       | 2680              |          |          | [B] < 0.010             |  |  |
| Aliphatic TPH >C6-C8                | N       |                   | mg/kg    | 0.010    | [B] < 0.010             |  |  |
| Aliphatic TPH >C8-C10               | N       |                   | mg/kg    | 0.10     | [B] < 0.010             |  |  |
| Aliphatic TPH >C10-C12              | N       | 2680              |          | 0.10     | [B] < 0.10              |  |  |
| Aliphatic TPH >C10-C12              | N       |                   | mg/kg    |          | [B] < 0.10              |  |  |
| Aliphalic IFT >C12-C10              | IN      | 2000              | mg/kg    | 0.10     | [D] < 0.10              |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |                |         |             |  |  |
|------------------------------|---------|----------------------|----------------|---------|-------------|--|--|
| Quotation No.: Q22-28455     |         | Chemtest Sample ID.: |                |         |             |  |  |
|                              |         | Sample Location:     |                |         |             |  |  |
|                              |         |                      |                | e Type: | SOIL        |  |  |
|                              |         |                      | Top Dep        | , ,     | 1           |  |  |
|                              |         |                      | Date Sa        | ampled: | 09-Jan-2023 |  |  |
|                              |         |                      | Asbest         | os Lab: | DURHAM      |  |  |
| Determinand                  | Accred. | SOP                  | Units          | LOD     |             |  |  |
| Aliphatic TPH >C16-C21       | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10  |  |  |
| Aliphatic TPH >C21-C35       | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10  |  |  |
| Aliphatic TPH >C35-C44       | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10  |  |  |
| Total Aliphatic Hydrocarbons | N       | 2680                 | mg/kg          | 1.0     | [B] < 1.0   |  |  |
| Aromatic TPH >C5-C7          | N       | 2680                 | mg/kg          | 0.010   | [B] < 0.010 |  |  |
| Aromatic TPH >C7-C8          | N       | 2680                 | mg/kg          | 0.010   | [B] < 0.010 |  |  |
| Aromatic TPH >C8-C10         | N       | 2680                 |                | 0.10    | [B] < 0.10  |  |  |
| Aromatic TPH >C10-C12        | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10  |  |  |
| Aromatic TPH >C12-C16        | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10  |  |  |
| Aromatic TPH >C16-C21        | N       | 2680                 | mg/kg          | 0.10    | [B] < 0.10  |  |  |
| Aromatic TPH >C21-C35        | N       | 2680                 |                |         | [B] < 0.10  |  |  |
| Aromatic TPH >C35-C44        | N       | 2680                 |                | 0.10    | [B] < 0.10  |  |  |
| Total Aromatic Hydrocarbons  | N       | 2680                 |                | 1.0     | [B] < 1.0   |  |  |
| Total Petroleum Hydrocarbons | N       | 2680                 |                | 2.0     | [B] < 2.0   |  |  |
| Dichlorodifluoromethane      | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| Chloromethane                | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| Vinyl Chloride               | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| Bromomethane                 | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| Chloroethane                 | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| Trichlorofluoromethane       | N       | 2760                 | 0              | 0.20    | [B] < 0.20  |  |  |
| 1,1-Dichloroethene           | N       | 2760                 |                |         | [B] < 0.20  |  |  |
| Trans 1,2-Dichloroethene     | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| 1,1-Dichloroethane           | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| cis 1,2-Dichloroethene       | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| Bromochloromethane           | N       | 2760                 |                | 0.50    | [B] < 0.50  |  |  |
| Trichloromethane             | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| 1,1,1-Trichloroethane        | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| Tetrachloromethane           | N       | 2760                 |                |         | [B] < 0.20  |  |  |
| 1,1-Dichloropropene          | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| Benzene                      | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| 1,2-Dichloroethane           | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| Trichloroethene              | N N     | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,2-Dichloropropane          | N N     | 2760                 | μg/kg<br>μg/kg | 0.20    | [B] < 0.20  |  |  |
| Dibromomethane               | N N     | 2760                 |                |         | • •         |  |  |
| Bromodichloromethane         | N N     | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
|                              |         |                      | 100            |         | [B] < 0.20  |  |  |
| cis-1,3-Dichloropropene      | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| Toluene                      | N       | 2760                 | 100            | 0.20    | [B] 1.4     |  |  |
| Trans-1,3-Dichloropropene    | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| 1,1,2-Trichloroethane        | N       | 2/60                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |                |         |             |  |  |
|------------------------------|---------|----------------------|----------------|---------|-------------|--|--|
| Quotation No.: Q22-28455     |         | Chemtest Sample ID.: |                |         |             |  |  |
|                              |         | Sample Location:     |                |         |             |  |  |
|                              |         |                      |                | e Type: | SOIL        |  |  |
|                              |         |                      | Top Dep        |         | 1           |  |  |
|                              |         |                      | Date Sa        |         | 09-Jan-2023 |  |  |
|                              |         |                      | Asbest         | os Lab: | DURHAM      |  |  |
| Determinand                  | Accred. | SOP                  | Units          | LOD     |             |  |  |
| Tetrachloroethene            | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,3-Dichloropropane          | N       | 2760                 | )              | 0.20    | [B] < 0.20  |  |  |
| Dibromochloromethane         | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,2-Dibromoethane            | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| Chlorobenzene                | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,1,1,2-Tetrachloroethane    | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| Ethylbenzene                 | N       | 2760                 | μg/kg          | 0.20    | [B] 0.38    |  |  |
| m & p-Xylene                 | N       | 2760                 | μg/kg          | 0.20    | [B] 1.0     |  |  |
| o-Xylene                     | N       | 2760                 | μg/kg          | 0.20    | [B] 0.62    |  |  |
| Styrene                      | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| Tribromomethane              | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| Isopropylbenzene             | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| Bromobenzene                 | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,2,3-Trichloropropane       | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| N-Propylbenzene              | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| 2-Chlorotoluene              | N       | 2760                 |                |         | [B] < 0.20  |  |  |
| 1,3,5-Trimethylbenzene       | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 4-Chlorotoluene              | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| Tert-Butylbenzene            | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,2,4-Trimethylbenzene       | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| Sec-Butylbenzene             | N       | 2760                 |                |         | [B] < 0.20  |  |  |
| 1,3-Dichlorobenzene          | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| 4-Isopropyltoluene           | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,4-Dichlorobenzene          | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| N-Butylbenzene               | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,2-Dichlorobenzene          | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2760                 | μg/kg          |         | [B] < 0.20  |  |  |
| Hexachlorobutadiene          | N       | 2760                 | μg/kg          | 0.20    | [B] < 0.20  |  |  |
| 1,2,3-Trichlorobenzene       | N       | 2760                 | μg/kg<br>μg/kg | 0.20    | [B] < 0.20  |  |  |
| Methyl Tert-Butyl Ether      | N       | 2760                 |                | 0.20    | [B] < 0.20  |  |  |
| N-Nitrosodimethylamine       | N       | 2790                 | mg/kg          |         |             |  |  |
| Phenol                       | N N     | 2790                 |                |         | [B] < 0.050 |  |  |
|                              | N N     |                      | mg/kg          |         | [B] < 0.050 |  |  |
| 2-Chlorophenol               | N N     | 2790                 | mg/kg          |         | [B] < 0.050 |  |  |
| Bis-(2-Chloroethyl)Ether     |         | 2790                 | 5              |         | [B] < 0.050 |  |  |
| 1,3-Dichlorobenzene          | N       | 2790                 | )              |         | [B] < 0.050 |  |  |
| 1,4-Dichlorobenzene          | N       | 2790                 | ט              |         | [B] < 0.050 |  |  |
| 1,2-Dichlorobenzene          | N       | 2790                 | 0              |         | [B] < 0.050 |  |  |
| 2-Methylphenol               | N       | 2790                 | mg/kg          | 0.050   | [B] < 0.050 |  |  |

| Client: Causeway Geotech Ltd                 |         | Chemtest Job No.:    |                     |         |             |  |  |
|----------------------------------------------|---------|----------------------|---------------------|---------|-------------|--|--|
| Quotation No.: Q22-28455                     | (       | Chemtest Sample ID.: |                     |         |             |  |  |
|                                              |         | Sample Location:     |                     |         |             |  |  |
|                                              |         |                      |                     | e Type: | SOIL        |  |  |
|                                              |         |                      | Top De <sub>l</sub> |         | 1           |  |  |
|                                              |         |                      | Date Sa             |         | 09-Jan-202  |  |  |
|                                              |         |                      | Asbest              | os Lab: | DURHAM      |  |  |
| Determinand                                  | Accred. | SOP                  | Units               | LOD     |             |  |  |
| Bis(2-Chloroisopropyl)Ether                  | N       | 2790                 | mg/kg               | 0.050   | [B] < 0.050 |  |  |
| Hexachloroethane                             | N       | 2790                 |                     |         | [B] < 0.050 |  |  |
| N-Nitrosodi-n-propylamine                    | N       | 2790                 | mg/kg               | 0.050   | [B] < 0.050 |  |  |
| 4-Methylphenol                               | N       | 2790                 | mg/kg               | 0.050   | [B] < 0.050 |  |  |
| Nitrobenzene                                 | N       | 2790                 | mg/kg               | 0.050   | [B] < 0.050 |  |  |
| Isophorone                                   | N       | 2790                 | mg/kg               | 0.050   | [B] < 0.050 |  |  |
| 2-Nitrophenol                                | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| 2,4-Dimethylphenol                           | N       | 2790                 | mg/kg               | 0.050   | [B] < 0.050 |  |  |
| Bis(2-Chloroethoxy)Methane                   | N       | 2790                 | mg/kg               | 0.050   | [B] < 0.050 |  |  |
| 2,4-Dichlorophenol                           | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| 1,2,4-Trichlorobenzene                       | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| Naphthalene                                  | N       | 2790                 |                     | 0.050   | [B] < 0.050 |  |  |
| 4-Chloroaniline                              | N       | 2790                 | J                   |         | [B] < 0.050 |  |  |
| Hexachlorobutadiene                          | N       | 2790                 |                     |         | [B] < 0.050 |  |  |
| 4-Chloro-3-Methylphenol                      | N       | 2790                 |                     |         | [B] < 0.050 |  |  |
| 2-Methylnaphthalene                          | N       | 2790                 |                     |         | [B] < 0.050 |  |  |
| Hexachlorocyclopentadiene                    | N       | 2790                 |                     |         | [B] < 0.050 |  |  |
| 2,4,6-Trichlorophenol                        | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| 2,4,5-Trichlorophenol                        | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| 2-Chloronaphthalene                          | N       | 2790                 |                     |         | [B] < 0.050 |  |  |
| 2-Nitroaniline                               | N       | 2790                 |                     |         | [B] < 0.050 |  |  |
| Acenaphthylene                               | N       | 2790                 |                     |         | [B] < 0.050 |  |  |
| Dimethylphthalate                            | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| 2,6-Dinitrotoluene                           | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| Acenaphthene                                 | N       | 2790                 |                     |         | [B] < 0.050 |  |  |
| 3-Nitroaniline                               | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| Dibenzofuran                                 | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| 4-Chlorophenylphenylether                    | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| 2,4-Dinitrotoluene                           | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| Fluorene                                     | N       | 2790                 | Ü                   |         | [B] < 0.050 |  |  |
| Diethyl Phthalate                            | N       | 2790                 |                     | 0.050   | [B] < 0.050 |  |  |
| ·                                            | N       | 2790                 | mg/kg               |         |             |  |  |
| 4-Nitroaniline<br>2-Methyl-4,6-Dinitrophenol | N       | 2790                 |                     | 0.050   | [B] < 0.050 |  |  |
|                                              | N N     |                      |                     |         | [B] < 0.050 |  |  |
| Azobenzene                                   | N N     | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| 4-Bromophenylphenyl Ether                    |         | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| Hexachlorobenzene                            | N       | 2790                 | )                   |         | [B] < 0.050 |  |  |
| Pentachlorophenol                            | N       | 2790                 | mg/kg               |         | [B] < 0.050 |  |  |
| Phenanthrene                                 | N       | 2790                 | b                   |         | [B] < 0.050 |  |  |
| Anthracene                                   | N       | 2790                 | mg/kg               | 0.050   | [B] < 0.050 |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |         |         |             |  |  |
|------------------------------|---------|----------------------|---------|---------|-------------|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |         |         |             |  |  |
|                              |         | Sample Location:     |         |         |             |  |  |
|                              |         |                      |         | e Type: | SOIL        |  |  |
|                              |         |                      | Top Dep | , ,     | 1           |  |  |
|                              |         |                      | Date Sa | ampled: | 09-Jan-2023 |  |  |
|                              |         |                      | Asbest  | os Lab: | DURHAM      |  |  |
| Determinand                  | Accred. | SOP                  | Units   | LOD     |             |  |  |
| Carbazole                    | N       | 2790                 |         |         | [B] < 0.050 |  |  |
| Di-N-Butyl Phthalate         | N       | 2790                 | )       |         | [B] < 0.050 |  |  |
| Fluoranthene                 | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050 |  |  |
| Pyrene                       | N       | 2790                 | mg/kg   |         | [B] < 0.050 |  |  |
| Butylbenzyl Phthalate        | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050 |  |  |
| Benzo[a]anthracene           | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050 |  |  |
| Chrysene                     | N       | 2790                 | mg/kg   |         | [B] < 0.050 |  |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050 |  |  |
| Di-N-Octyl Phthalate         | N       | 2790                 | mg/kg   | 0.050   | [B] < 0.050 |  |  |
| Benzo[b]fluoranthene         | N       | 2790                 | mg/kg   |         | [B] < 0.050 |  |  |
| Benzo[k]fluoranthene         | N       | 2790                 | mg/kg   |         | [B] < 0.050 |  |  |
| Benzo[a]pyrene               | N       | 2790                 | mg/kg   |         | [B] < 0.050 |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790                 |         |         | [B] < 0.050 |  |  |
| Dibenz(a,h)Anthracene        | N       | 2790                 |         |         | [B] < 0.050 |  |  |
| Benzo[g,h,i]perylene         | N       | 2790                 | mg/kg   |         | [B] < 0.050 |  |  |
| 4-Nitrophenol                | N       |                      |         |         | [B] < 0.050 |  |  |
| Naphthalene                  | N       | 2800                 |         |         | 0.12        |  |  |
| Acenaphthylene               | N       | 2800                 | mg/kg   |         | < 0.010     |  |  |
| Acenaphthene                 | N       | 2800                 |         |         | < 0.010     |  |  |
| Fluorene                     | N       | 2800                 |         |         | < 0.010     |  |  |
| Phenanthrene                 | N       | 2800                 |         |         | < 0.010     |  |  |
| Anthracene                   | N       |                      | mg/kg   |         | < 0.010     |  |  |
| Fluoranthene                 | N       | 2800                 |         |         | < 0.010     |  |  |
| Pyrene                       | N       | 2800                 |         |         | < 0.010     |  |  |
| Benzo[a]anthracene           | N       | 2800                 |         |         | < 0.010     |  |  |
| Chrysene                     | N       | 2800                 |         |         | < 0.010     |  |  |
| Benzo[b]fluoranthene         | N       | 2800                 |         |         | < 0.010     |  |  |
| Benzo[k]fluoranthene         | N       | 2800                 | mg/kg   |         | < 0.010     |  |  |
| Benzo[a]pyrene               | N N     | 2800                 |         |         | < 0.010     |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N N     | 2800                 |         |         | < 0.010     |  |  |
| Dibenz(a,h)Anthracene        | N N     | 2800                 | J       |         | < 0.010     |  |  |
| Benzo[g,h,i]perylene         | N N     | 2800                 | ,       |         |             |  |  |
| Total Of 16 PAH's            | N N     | 2800                 |         |         | < 0.010     |  |  |
|                              | U       |                      | mg/kg   |         | < 0.20      |  |  |
| Resorcinol                   | U       | 2920                 | ,       |         | < 0.020     |  |  |
| Phenol                       |         | 2920                 | 5       |         | < 0.020     |  |  |
| Cresols                      | U       |                      | mg/kg   |         | < 0.020     |  |  |
| Xylenols                     | U       |                      | ט       |         | < 0.020     |  |  |
| 1-Naphthol                   | N       |                      | mg/kg   |         | < 0.020     |  |  |
| Trimethylphenols             | U       | 2920                 | mg/kg   | 0.020   | < 0.020     |  |  |

| Client: Causeway Geotech Ltd |         | Che                  | mtest Jo | ob No.: | 23-00855    |  |
|------------------------------|---------|----------------------|----------|---------|-------------|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |          |         |             |  |
|                              |         | Sa                   | ocation: | BH131   |             |  |
|                              |         |                      | е Туре:  | SOIL    |             |  |
|                              |         | Top Depth (m):       |          |         |             |  |
|                              |         |                      | Date Sa  | ampled: | 09-Jan-2023 |  |
|                              |         |                      | Asbest   | os Lab: | DURHAM      |  |
| Determinand                  | Accred. | SOP                  | Units    | LOD     |             |  |
| Total Phenols                | U       | 2920                 | mg/kg    | 0.10    | < 0.10      |  |

### **Deviations**

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

| Sample: | Sample Ref: | Sample ID: | Sample<br>Location: | Sampled<br>Date: | Deviation Code(s): | Containers<br>Received: |
|---------|-------------|------------|---------------------|------------------|--------------------|-------------------------|
| 1572934 |             |            | BH131               | 09-Jan-2023      | В                  | Amber Glass<br>250ml    |
| 1572934 |             |            | BH131               | 09-Jan-2023      | В                  | Amber Glass<br>60ml     |
| 1572934 |             |            | BH131               | 09-Jan-2023      | В                  | Plastic Tub<br>500g     |

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                        | рН                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)         | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                                  | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                                   | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                     | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                          | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA<br>Method 8270)                                                                                                                                                                                                                 | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |

#### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis This analysis has been subcontracted to an unaccredited laboratory Т I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 23-01251-1

Initial Date of Issue: 06-Feb-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Colm Hurley

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 17-Jan-2023

Order No.: Date Instructed: 25-Jan-2023

No. of Samples: 2

Turnaround (Wkdays): 7 Results Due: 02-Feb-2023

Date Approved: 06-Feb-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager

| Client: Causeway Geotech Ltd               | Chemtest Job No.: |                     |              |              |             | 23-01251    |  |
|--------------------------------------------|-------------------|---------------------|--------------|--------------|-------------|-------------|--|
| Quotation No.: Q22-28455                   |                   | Chemtest Sample ID. |              |              |             |             |  |
|                                            |                   |                     | ple ID.:     | 10           |             |             |  |
|                                            |                   |                     | ocation:     | BH131        |             |             |  |
|                                            |                   |                     |              |              | e Type:     | SOIL        |  |
|                                            |                   |                     |              | Top Dep      | ` ,         | 6.5         |  |
|                                            |                   |                     |              | Date Sa      |             | 13-Jan-2023 |  |
| Determinand                                | Accred.           | SOP                 | Type         | Units        | LOD         |             |  |
| pH                                         | U                 | 1010                | 10:1         |              | N/A         | 8.7         |  |
| Phosphate as P                             | U                 | 1220                | 10:1         | mg/l         | 0.050       | < 0.050     |  |
| Sulphur                                    | N                 | 1220                | 10:1         | mg/l         | 1.0         | 10          |  |
| Cyanide (Total)                            | U                 | 1300                | 10:1         | mg/l         | 0.050       | < 0.050     |  |
| Cyanide (Free)                             | U                 | 1300                | 10:1         | mg/l         | 0.050       | < 0.050     |  |
| Sulphide                                   | U                 | 1325                | 10:1         | mg/l         | 0.050       | < 0.050     |  |
| Calcium Aluminium (Dissolved)              | U<br>N            | 1455                | 10:1         | mg/l         | 2.00        | 32          |  |
| Arsenic (Dissolved)                        | U                 | 1455<br>1455        | 10:1<br>10:1 | μg/l         | 5.0<br>0.20 | 340<br>3.3  |  |
| Boron (Dissolved)                          | U                 | 1455                | 10:1         | μg/l         | 10.0        | 110         |  |
| Barium (Dissolved)                         | U                 | 1455                | 10:1         | μg/l<br>μg/l | 5.00        | 10          |  |
| Beryllium (Dissolved)                      | Ü                 | 1455                | 10:1         | μg/l         | 1.00        | < 1.0       |  |
| Cadmium (Dissolved)                        | Ü                 | 1455                | 10:1         | μg/l         | 0.11        | < 0.11      |  |
| Chromium (Dissolved)                       | Ü                 | 1455                | 10:1         | μg/l         | 0.50        | < 0.50      |  |
| Copper (Dissolved)                         | Ü                 | 1455                | 10:1         | μg/l         | 0.50        | 0.77        |  |
| Mercury (Dissolved)                        | Ü                 | 1455                | 10:1         | μg/l         | 0.05        | < 0.05      |  |
| Manganese (Dissolved)                      | Ū                 | 1455                | 10:1         | μg/l         | 0.50        | 2.8         |  |
| Nickel (Dissolved)                         | Ü                 | 1455                | 10:1         | μg/l         | 0.50        | < 0.50      |  |
| Lead (Dissolved)                           | Ū                 | 1455                | 10:1         | μg/l         | 0.50        | < 0.50      |  |
| Selenium (Dissolved)                       | U                 | 1455                | 10:1         | μg/l         | 0.50        | < 0.50      |  |
| Vanadium (Dissolved)                       | U                 | 1455                | 10:1         | μg/l         | 0.50        | 2.1         |  |
| Zinc (Dissolved)                           | U                 | 1455                | 10:1         | μg/l         | 2.5         | < 2.5       |  |
| Iron (Dissolved)                           | N                 | 1455                | 10:1         | μg/l         | 5.0         | < 5.0       |  |
| Low-Level Chromium (Hexavalent)            | N                 | 1495                | 10:1         | μg/l         | 0.10        | < 0.10      |  |
| Aliphatic TPH >C5-C6                       | N                 | 1675                | 10:1         | μg/l         | 0.010       | < 0.010     |  |
| Aliphatic TPH >C6-C8                       | N                 | 1675                | 10:1         | μg/l         | 0.010       | < 0.010     |  |
| Aliphatic TPH >C8-C10                      | N                 | 1675                | 10:1         | μg/l         | 0.10        | < 0.10      |  |
| Aliphatic TPH >C10-C12                     | N                 | 1675                | 10:1         | μg/l         | 0.10        | < 0.10      |  |
| Aliphatic TPH >C12-C16                     | N                 | 1675                | 10:1         | μg/l         | 0.10        | < 0.10      |  |
| Aliphatic TPH >C16-C21                     | N                 | 1675                | 10:1         | μg/l         | 0.10        | < 0.10      |  |
| Aliphatic TPH >C21-C35                     | N                 | 1675                | 10:1         | μg/l         | 0.10        | < 0.10      |  |
| Aliphatic TPH >C35-C44                     | N                 | 1675                | 10:1         | μg/l         | 0.10        | < 0.10      |  |
| Total Aliphatic Hydrocarbons               | N                 | 1675                | 10:1         | μg/l         | 1.0         | < 1.0       |  |
| Aromatic TPH > C5-C7                       | N                 | 1675                | 10:1         | μg/l         | 0.010       | < 0.010     |  |
| Aromatic TPH > C7-C8                       | N                 | 1675                | 10:1         | μg/l         | 0.010       | < 0.010     |  |
| Aromatic TPH >C8-C10 Aromatic TPH >C10-C12 | N                 | 1675                | 10:1         | μg/l         | 0.10        | < 0.10      |  |
|                                            | N<br>N            | 1675                | 10:1         | μg/l         | 0.10        | < 0.10      |  |
| Aromatic TPH > C12-C16                     | N                 | 1675                | 10:1         | μg/l         | 0.10        | < 0.10      |  |
| Aromatic TPH >C16-C21                      | I N               | 1675                | 10:1         | μg/l         | 0.10        | < 0.10      |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.: 23-01251 Chemtest Sample ID.: 1574943 |      |              |         |             |  |  |
|------------------------------|---------|---------------------------------------------------------|------|--------------|---------|-------------|--|--|
| Quotation No.: Q22-28455     |         | Chemtest Sample ID.:  Client Sample ID.:                |      |              |         |             |  |  |
|                              |         |                                                         |      |              |         |             |  |  |
|                              |         | Sample Location:                                        |      |              |         |             |  |  |
|                              |         |                                                         |      |              | e Type: | SOIL        |  |  |
|                              |         | Top Depth (m):                                          |      |              |         |             |  |  |
|                              |         |                                                         |      | Date Sa      | mpled:  | 13-Jan-2023 |  |  |
| Determinand                  | Accred. |                                                         |      |              |         |             |  |  |
| Aromatic TPH >C21-C35        | N       | 1675                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Aromatic TPH >C35-C44        | N       | 1675                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Total Aromatic Hydrocarbons  | N       | 1675                                                    | 10:1 | μg/l         | 1.0     | < 1.0       |  |  |
| Total Petroleum Hydrocarbons | N       | 1675                                                    | 10:1 | μg/l         | 2.0     | < 2.0       |  |  |
| Dichlorodifluoromethane      | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Chloromethane                | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Vinyl Chloride               | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Bromomethane                 | N       | 1760                                                    | 10:1 | μg/l         | 2.0     | < 2.0       |  |  |
| Chloroethane                 | N       | 1760                                                    | 10:1 | μg/l         | 0.20    | < 0.20      |  |  |
| Trichlorofluoromethane       | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| 1,1-Dichloroethene           | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Dichloromethane              | N       | 1760                                                    | 10:1 | µg/l         | 50      | < 50        |  |  |
| 1,1-Dichloroethane           | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| cis 1,2-Dichloroethene       | N       | 1760                                                    | 10:1 | µg/l         | 0.10    | < 0.10      |  |  |
| Bromochloromethane           | N       | 1760                                                    | 10:1 | μg/l         | 0.50    | < 0.50      |  |  |
| Trichloromethane             | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| 1,1,1-Trichloroethane        | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Tetrachloromethane           | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| 1,1-Dichloropropene          | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Benzene                      | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| 1,2-Dichloroethane           | N N     | 1760                                                    | 10:1 | μg/l         | 0.20    | < 0.20      |  |  |
| Trichloroethene              | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| 1,2-Dichloropropane          | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Dibromomethane               | T N     | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Bromodichloromethane         | N N     | 1760                                                    | 10:1 | μg/l         | 0.50    | < 0.50      |  |  |
| cis-1,3-Dichloropropene      | N N     | 1760                                                    | 10:1 | μg/l         | 1.0     | < 1.0       |  |  |
| Toluene                      | l N     | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Trans-1,3-Dichloropropene    | N       | 1760                                                    | 10:1 | μg/l         | 1.0     | < 1.0       |  |  |
| 1,1,2-Trichloroethane        | N       | 1760                                                    | 10:1 | μg/l         | 1.0     | < 1.0       |  |  |
| Tetrachloroethene            | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| 1,3-Dichloropropane          | T N     | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Dibromochloromethane         | N N     | 1760                                                    | 10:1 | μg/l         | 1.0     | < 1.0       |  |  |
| 1,2-Dibromoethane            | N       | 1760                                                    | 10:1 | μg/l         | 0.50    | < 0.50      |  |  |
| Chlorobenzene                | N N     | 1760                                                    | 10:1 | μg/l         | 0.30    | < 0.10      |  |  |
| 1,1,1,2-Tetrachloroethane    | N N     | 1760                                                    | 10:1 | μg/I<br>μg/I | 0.10    | < 0.10      |  |  |
|                              | N N     | 1760                                                    | 10:1 |              | 0.20    | < 0.20      |  |  |
| Ethylbenzene                 | N N     | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| m & p-Xylene<br>o-Xylene     |         |                                                         | _    | μg/l         |         |             |  |  |
|                              | N N     | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |
| Styrene                      | N       | 1760                                                    | 10:1 | μg/l         | 0.10    | < 0.10      |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:<br>Chemtest Sample ID.: |      |       |       |         |  |
|------------------------------|---------|-------------------------------------------|------|-------|-------|---------|--|
| Quotation No.: Q22-28455     |         | 1574943                                   |      |       |       |         |  |
|                              |         | 10                                        |      |       |       |         |  |
|                              |         | BH131                                     |      |       |       |         |  |
|                              |         | SOIL                                      |      |       |       |         |  |
|                              |         | 6.5                                       |      |       |       |         |  |
|                              |         | Date Sampled:                             |      |       |       |         |  |
| Determinand                  | Accred. | SOP                                       | Туре | Units | LOD   |         |  |
| Tribromomethane              | N       | 1760                                      | 10:1 | μg/l  | 1.0   | < 1.0   |  |
| Isopropylbenzene             | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| Bromobenzene                 | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 1,2,3-Trichloropropane       | N       | 1760                                      | 10:1 | μg/l  | 5.0   | < 5.0   |  |
| N-Propylbenzene              | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 2-Chlorotoluene              | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 1,3,5-Trimethylbenzene       | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 4-Chlorotoluene              | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| Tert-Butylbenzene            | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 1,2,4-Trimethylbenzene       | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| Sec-Butylbenzene             | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 1,3-Dichlorobenzene          | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 4-Isopropyltoluene           | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 1,4-Dichlorobenzene          | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| N-Butylbenzene               | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 1,2-Dichlorobenzene          | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 1760                                      | 10:1 | μg/l  | 5.0   | < 5.0   |  |
| 1,2,4-Trichlorobenzene       | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| Hexachlorobutadiene          | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| 1,2,3-Trichlorobenzene       | N       | 1760                                      | 10:1 | μg/l  | 0.20  | < 0.20  |  |
| Naphthalene                  | N       | 1760                                      | 10:1 | μg/l  | 0.10  | < 0.10  |  |
| Phenol                       | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2-Chlorophenol               | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Bis-(2-Chloroethyl)Ether     | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 1,3-Dichlorobenzene          | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 1,4-Dichlorobenzene          | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 1,2-Dichlorobenzene          | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2-Methylphenol (o-Cresol)    | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Bis(2-Chloroisopropyl)Ether  | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Hexachloroethane             | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| N-Nitrosodi-n-propylamine    | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 4-Methylphenol               | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Nitrobenzene                 | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Isophorone                   | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2-Nitrophenol                | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2,4-Dimethylphenol           | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| Bis(2-Chloroethoxy)Methane   | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 2,4-Dichlorophenol           | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |
| 1,2,4-Trichlorobenzene       | N       | 1790                                      | 10:1 | μg/l  | 0.050 | < 0.050 |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:                                                     |      |         |         |             |  |
|------------------------------|---------|-----------------------------------------------------------------------|------|---------|---------|-------------|--|
| Quotation No.: Q22-28455     |         | Chemtest Sample ID.: Client Sample ID.: Sample Location: Sample Type: |      |         |         |             |  |
|                              |         |                                                                       |      |         |         |             |  |
|                              |         |                                                                       |      |         |         |             |  |
|                              |         |                                                                       |      |         |         |             |  |
|                              |         |                                                                       |      | Top De  | , ,     | 6.5         |  |
|                              |         |                                                                       |      | Date Sa | ampled: | 13-Jan-2023 |  |
| Determinand                  | Accred. | Accred. SOP Type Units LOD                                            |      |         |         |             |  |
| Naphthalene                  | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | 3.8         |  |
| 4-Chloroaniline              | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Hexachlorobutadiene          | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 4-Chloro-3-Methylphenol      | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2-Methylnaphthalene          | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | 5.8         |  |
| Hexachlorocyclopentadiene    | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2,4,6-Trichlorophenol        | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2,4,5-Trichlorophenol        | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2-Chloronaphthalene          | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2-Nitroaniline               | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Acenaphthylene               | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Dimethylphthalate            | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2,6-Dinitrotoluene           | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Acenaphthene                 | N       | 1790                                                                  | 10:1 | µg/l    | 0.050   | < 0.050     |  |
| 3-Nitroaniline               | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Dibenzofuran                 | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 4-Chlorophenylphenylether    | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2,4-Dinitrotoluene           | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Fluorene                     | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Diethyl Phthalate            | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 4-Nitroaniline               | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 2-Methyl-4,6-Dinitrophenol   | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Azobenzene                   | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| 4-Bromophenylphenyl Ether    | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Hexachlorobenzene            | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Pentachlorophenol            | N       | 1790                                                                  | 10:1 | µg/l    | 0.050   | < 0.050     |  |
| Phenanthrene                 | N       | 1790                                                                  | 10:1 | µg/l    | 0.050   | < 0.050     |  |
| Anthracene                   | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Carbazole                    | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Di-N-Butyl Phthalate         | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Fluoranthene                 | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Pyrene                       | N       | 1790                                                                  | 10:1 | µg/l    | 0.050   | < 0.050     |  |
| Butylbenzyl Phthalate        | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Benzo[a]anthracene           | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Chrysene                     | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Di-N-Octyl Phthalate         | T N     | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Benzo[b]fluoranthene         | N       | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |
| Benzo[k]fluoranthene         | T N     | 1790                                                                  | 10:1 | μg/l    | 0.050   | < 0.050     |  |

| Client: Causeway Geotech Ltd             |         | 23-01251     |              |              |              |                  |
|------------------------------------------|---------|--------------|--------------|--------------|--------------|------------------|
| Quotation No.: Q22-28455                 |         | 1574943      |              |              |              |                  |
|                                          |         | 10           |              |              |              |                  |
|                                          |         | BH131        |              |              |              |                  |
|                                          |         | SOIL         |              |              |              |                  |
|                                          |         |              |              | Top Dep      | oth (m):     | 6.5              |
|                                          |         |              |              | Date Sa      | ampled:      | 13-Jan-2023      |
| Determinand                              | Accred. |              |              |              |              |                  |
| Benzo[a]pyrene                           | N       | 1790         | 10:1         | μg/l         | 0.050        | < 0.050          |
| Indeno(1,2,3-c,d)Pyrene                  | N       | 1790         | 10:1         | μg/l         | 0.050        | < 0.050          |
| Dibenz(a,h)Anthracene                    | N       | 1790         | 10:1         | μg/l         | 0.050        | < 0.050          |
| Benzo[g,h,i]perylene                     | N       | 1790         | 10:1         | μg/l         | 0.050        | < 0.050          |
| Naphthalene                              | N       | 1800         | 10:1         | μg/l         | 0.010        | 5.9              |
| Acenaphthylene                           | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Acenaphthene                             | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Fluorene                                 | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Phenanthrene                             | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Anthracene                               | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Fluoranthene                             | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Pyrene                                   | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Benzo[a]anthracene                       | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Chrysene                                 | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Benzo[b]fluoranthene                     | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Benzo[k]fluoranthene                     | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Benzo[a]pyrene                           | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Indeno(1,2,3-c,d)Pyrene                  | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Dibenz(a,h)Anthracene                    | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Benzo[g,h,i]perylene                     | N       | 1800         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Total Of 16 PAH's                        | N       | 1800         | 10:1         | μg/l         | 0.20         | 5.9              |
| PCB 81                                   | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 77                                   | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 105                                  | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 114                                  | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 118                                  | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 123                                  | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 126                                  | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 156                                  | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 157                                  | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 167                                  | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 169                                  | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| PCB 189                                  | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Total PCBs (12 Congeners)                | N       | 1815         | 10:1         | μg/l         | 0.010        | < 0.010          |
| Phenol                                   | N       | 1900         | 10:1         | μg/l         | 0.20         | < 0.20           |
|                                          | N       | 1900         | 10:1         | μg/l         | 0.20         | < 0.20           |
| Z-Chiorophenoi                           |         |              | 10.1         | μ9/·         | 0.20         | ~ U.ZU           |
| 2-Chlorophenol 2-Methylphenol (o-Cresol) |         |              | 10.1         |              | 0.20         | < 0.20           |
| 2-Uniorophenol (o-Cresol) 3-Methylphenol | N<br>N  | 1900<br>1900 | 10:1<br>10:1 | μg/l<br>μg/l | 0.20<br>0.20 | < 0.20<br>< 0.20 |

| Client: Causeway Geotech Ltd  |         | Chemtest Job No.:  |      |          |          |             |  |
|-------------------------------|---------|--------------------|------|----------|----------|-------------|--|
| Quotation No.: Q22-28455      | 1574943 |                    |      |          |          |             |  |
|                               |         | Client Sample ID.: |      |          |          |             |  |
|                               |         |                    | Sa   | ample Lo | cation:  | BH131       |  |
|                               |         |                    |      |          | е Туре:  | SOIL        |  |
|                               |         |                    |      | Top Dep  | oth (m): | 6.5         |  |
|                               |         |                    |      | Date Sa  | ampled:  | 13-Jan-2023 |  |
| Determinand                   | Accred. | SOP                | Type | Units    | LOD      |             |  |
| 2-Nitrophenol                 | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,4-Dimethylphenol            | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,4-Dichlorophenol            | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,6-Dichlorophenol            | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 4-Chloro-3-Methylphenol       | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,3,4-Trichlorophenol         | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,3,5-Trichlorophenol         | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,3,6-Trichlorophenol         | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,4,6-Trichlorophenol         | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,4,5-Trichlorophenol         | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 4-Nitrophenol                 | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,3,4,5-Tetrachlorophenol     | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,3,4,6-Tetrachlorophenol     | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2,3,5,6-Tetrachlorophenol     | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 3,4,5-Trichlorophenol         | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2-Methyl-4,6-Dinitrophenol    | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| Pentachlorophenol             | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| 2-Sec-Butyl-4,6-Dinitrophenol | N       | 1900               | 10:1 | μg/l     | 0.20     | < 0.20      |  |
| Total Phenols                 | N       | 1900               | 10:1 | μg/l     | 5.00     | < 5.0       |  |

| Client: Causeway Geotech Ltd        |         | Chemtest Job No.:<br>Chemtest Sample ID.:          |         |         |                         |  |  |  |
|-------------------------------------|---------|----------------------------------------------------|---------|---------|-------------------------|--|--|--|
| Quotation No.: Q22-28455            | (       | 1574937                                            |         |         |                         |  |  |  |
|                                     |         | Client Sample ID.:                                 |         |         |                         |  |  |  |
|                                     |         | Sample Location:<br>Sample Type:<br>Top Depth (m): |         |         |                         |  |  |  |
|                                     |         |                                                    |         |         |                         |  |  |  |
|                                     |         |                                                    |         |         |                         |  |  |  |
|                                     |         |                                                    | Date Sa | ampled: | 13-Jan-2023             |  |  |  |
|                                     |         |                                                    | Asbest  | os Lab: | DURHAM                  |  |  |  |
| Determinand                         | Accred. | SOP                                                | Units   | LOD     |                         |  |  |  |
| ACM Type                            | U       | 2192                                               |         | N/A     | -                       |  |  |  |
| Asbestos Identification             | U       | 2192                                               |         | N/A     | No Asbestos<br>Detected |  |  |  |
| Moisture                            | N       | 2030                                               | %       | 0.020   | 7.5                     |  |  |  |
| Natural Moisture Content            | N       | 2030                                               | %       | 0.020   | 8.1                     |  |  |  |
| Soil Colour                         | N       | 2040                                               |         | N/A     | Brown                   |  |  |  |
| Other Material                      | N       | 2040                                               |         | N/A     | Stones                  |  |  |  |
| Soil Texture                        | N       | 2040                                               |         | N/A     | Sand                    |  |  |  |
| pH                                  | U       | 2010                                               |         | 4.0     | 9.3                     |  |  |  |
| Boron (Hot Water Soluble)           | Ü       | 2120                                               | mg/kg   | 0.40    | 3.5                     |  |  |  |
| Sulphate (2:1 Water Soluble) as SO4 | Ü       | 2120                                               | g/l     | 0.010   | 0.35                    |  |  |  |
| Total Sulphur                       | U       | 2175                                               | %       | 0.010   | 0.12                    |  |  |  |
| Sulphur (Elemental)                 | U       | 2180                                               |         | 1.0     | 38                      |  |  |  |
| Cyanide (Free)                      | Ü       | 2300                                               | 0       | 0.50    | < 0.50                  |  |  |  |
| Cyanide (Total)                     | U       | 2300                                               | )<br>י  | 0.50    | < 0.50                  |  |  |  |
| Thiocyanate                         | U       | 2300                                               |         | 5.0     | < 5.0                   |  |  |  |
| Aluminium (Total)                   | N       | 2430                                               |         | 100     | 10000                   |  |  |  |
| Iron (Total)                        | N       | 2430                                               |         | 100     | 30000                   |  |  |  |
| Arsenic                             | U       | 2455                                               | 0       | 0.5     | 25                      |  |  |  |
|                                     | U       | 2455                                               |         | 0.5     | 150                     |  |  |  |
| Barium                              | _       |                                                    | 0       |         |                         |  |  |  |
| Beryllium                           | U       | 2455                                               | )       | 0.5     | 0.9                     |  |  |  |
| Cadmium                             | U       | 2455                                               | 0       | 0.10    | 1.2                     |  |  |  |
| Chromium                            | U       | 2455                                               |         | 0.5     | 37                      |  |  |  |
| Manganese                           | U       | 2455                                               | )<br>י  | 1.0     | 1100                    |  |  |  |
| Copper                              | U       | 2455                                               | )       | 0.50    | 59                      |  |  |  |
| Mercury                             | U       | 2455                                               |         | 0.05    | 0.32                    |  |  |  |
| Nickel                              | U       | 2455                                               | mg/kg   | 0.50    | 40                      |  |  |  |
| Lead                                | U       | 2455                                               | 0       | 0.50    | 310                     |  |  |  |
| Selenium                            | U       | 2455                                               | 0       | 0.25    | 0.98                    |  |  |  |
| Vanadium                            | U       | 2455                                               |         | 0.5     | 36                      |  |  |  |
| Zinc                                | U       | 2455                                               | mg/kg   | 0.50    | 260                     |  |  |  |
| Chromium (Hexavalent)               | N       | 2490                                               | mg/kg   | 0.50    | < 0.50                  |  |  |  |
| Organic Matter                      | U       | 2625                                               | %       | 0.40    | 4.6                     |  |  |  |
| Total Organic Carbon                | U       | 2625                                               | %       | 0.20    | 2.7                     |  |  |  |
| Aliphatic TPH >C5-C6                | N       | -                                                  | mg/kg   |         | < 0.010                 |  |  |  |
| Aliphatic TPH >C6-C8                | N       | 2680                                               | 0       | 0.010   | < 0.010                 |  |  |  |
| Aliphatic TPH >C8-C10               | N       | 2680                                               | ט       | 0.10    | < 0.10                  |  |  |  |
| Aliphatic TPH >C10-C12              | N       | 2680                                               | mg/kg   | 0.10    | < 0.10                  |  |  |  |

| Client: Causeway Geotech Ltd |         |         | mtest Jo |         | 23-01251    |
|------------------------------|---------|---------|----------|---------|-------------|
| Quotation No.: Q22-28455     | (       | 1574937 |          |         |             |
|                              |         | 3       |          |         |             |
|                              |         | Sa      | ample Lo |         | BH131       |
|                              |         |         |          | e Type: | SOIL        |
|                              |         |         | Top Dep  |         | 3           |
|                              |         |         | Date Sa  | ampled: | 13-Jan-2023 |
|                              |         |         | Asbest   | os Lab: | DURHAM      |
| Determinand                  | Accred. | SOP     | Units    | LOD     |             |
| Aliphatic TPH >C12-C16       | N       |         | mg/kg    | 0.10    | 14          |
| Aliphatic TPH >C16-C21       | N       | 2680    | mg/kg    | 0.10    | 6.6         |
| Aliphatic TPH >C21-C35       | N       | 2680    | )<br>ט   | 0.10    | < 0.10      |
| Aliphatic TPH >C35-C44       | N       | 2680    | mg/kg    | 0.10    | < 0.10      |
| Total Aliphatic Hydrocarbons | N       | 2680    | mg/kg    | 1.0     | 20          |
| Aromatic TPH >C5-C7          | N       | 2680    | mg/kg    | 0.010   | < 0.010     |
| Aromatic TPH >C7-C8          | N       |         | mg/kg    | 0.010   | < 0.010     |
| Aromatic TPH >C8-C10         | N       | 2680    | mg/kg    | 0.10    | < 0.10      |
| Aromatic TPH >C10-C12        | N       | 2680    | mg/kg    | 0.10    | < 0.10      |
| Aromatic TPH >C12-C16        | N       | 2680    | mg/kg    | 0.10    | < 0.10      |
| Aromatic TPH >C16-C21        | N       | 2680    | mg/kg    | 0.10    | 7.5         |
| Aromatic TPH >C21-C35        | N       | 2680    |          | 0.10    | < 0.10      |
| Aromatic TPH >C35-C44        | N       | 2680    |          | 0.10    | < 0.10      |
| Total Aromatic Hydrocarbons  | N       | 2680    | mg/kg    | 1.0     | 7.5         |
| Total Petroleum Hydrocarbons | N       | 2680    | mg/kg    | 2.0     | 28          |
| Dichlorodifluoromethane      | N       | 2760    |          | 0.20    | < 0.20      |
| Chloromethane                | N       | 2760    | μg/kg    | 0.20    | < 0.20      |
| Vinyl Chloride               | N       | 2760    |          | 0.20    | < 0.20      |
| Bromomethane                 | N       | 2760    | μg/kg    | 0.20    | < 0.20      |
| Chloroethane                 | N       | 2760    |          | 0.20    | < 0.20      |
| Trichlorofluoromethane       | N       | 2760    |          | 0.20    | < 0.20      |
| 1,1-Dichloroethene           | N       | 2760    | μg/kg    | 0.20    | < 0.20      |
| Trans 1,2-Dichloroethene     | N       | 2760    |          | 0.20    | < 0.20      |
| 1,1-Dichloroethane           | N       | 2760    |          | 0.20    | < 0.20      |
| cis 1,2-Dichloroethene       | N       | 2760    |          | 0.20    | < 0.20      |
| Bromochloromethane           | N       | 2760    | μg/kg    | 0.50    | < 0.50      |
| Trichloromethane             | N       | 2760    |          | 0.20    | < 0.20      |
| 1,1,1-Trichloroethane        | N       | 2760    |          | 0.20    | < 0.20      |
| Tetrachloromethane           | N       | 2760    | μg/kg    | 0.20    | < 0.20      |
| 1,1-Dichloropropene          | N       | 2760    |          | 0.20    | < 0.20      |
| Benzene                      | N       | 2760    | μg/kg    | 0.20    | < 0.20      |
| 1,2-Dichloroethane           | N       | 2760    | μg/kg    | 0.20    | < 0.20      |
| Trichloroethene              | N       | 2760    |          | 0.20    | < 0.20      |
| 1,2-Dichloropropane          | N       | 2760    | μg/kg    | 0.20    | < 0.20      |
| Dibromomethane               | N       | 2760    |          | 0.20    | < 0.20      |
| Bromodichloromethane         | N       | 2760    |          | 0.20    | < 0.20      |
| DIOMOGRAPIO                  |         |         |          |         |             |
| cis-1,3-Dichloropropene      | N       | 2760    | μg/kg    | 0.20    | < 0.20      |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:<br>Chemtest Sample ID.: |          |         |             |  |  |
|------------------------------|---------|-------------------------------------------|----------|---------|-------------|--|--|
| Quotation No.: Q22-28455     | (       | 1574937                                   |          |         |             |  |  |
|                              |         | 3                                         |          |         |             |  |  |
|                              |         | Sa                                        | ample Lo |         | BH131       |  |  |
|                              |         |                                           |          | e Type: | SOIL        |  |  |
|                              |         |                                           | Top De   |         | 3           |  |  |
|                              |         |                                           | Date Sa  | -       | 13-Jan-2023 |  |  |
|                              |         |                                           |          | os Lab: | DURHAM      |  |  |
| Determinand                  | Accred. | SOP                                       |          |         |             |  |  |
| Trans-1,3-Dichloropropene    | N       | 2760                                      | 5        | 0.20    | < 0.20      |  |  |
| 1,1,2-Trichloroethane        | N       | 2760                                      | 100      | 0.20    | < 0.20      |  |  |
| Tetrachloroethene            | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 1,3-Dichloropropane          | N       | 2760                                      | 5        | 0.20    | < 0.20      |  |  |
| Dibromochloromethane         | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 1,2-Dibromoethane            | N       | 2760                                      | )<br>י   | 0.20    | < 0.20      |  |  |
| Chlorobenzene                | N       | 2760                                      | )        | 0.20    | < 0.20      |  |  |
| 1,1,1,2-Tetrachloroethane    | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| Ethylbenzene                 | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| m & p-Xylene                 | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| o-Xylene                     | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| Styrene                      | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| Tribromomethane              | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| Isopropylbenzene             | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| Bromobenzene                 | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 1,2,3-Trichloropropane       | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| N-Propylbenzene              | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 2-Chlorotoluene              | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 1,3,5-Trimethylbenzene       | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 4-Chlorotoluene              | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| Tert-Butylbenzene            | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 1,2,4-Trimethylbenzene       | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| Sec-Butylbenzene             | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 1,3-Dichlorobenzene          | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 4-Isopropyltoluene           | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 1,4-Dichlorobenzene          | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| N-Butylbenzene               | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 1,2-Dichlorobenzene          | N       | 2760                                      |          | 0.20    | < 0.20      |  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760                                      |          | 0.20    | < 0.20      |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2760                                      |          | 0.20    | < 0.20      |  |  |
| Hexachlorobutadiene          | N       | 2760                                      | μg/kg    | 0.20    | < 0.20      |  |  |
| 1,2,3-Trichlorobenzene       | N       | 2760                                      |          | 0.20    | < 0.20      |  |  |
| Methyl Tert-Butyl Ether      | N       | 2760                                      |          | 0.20    | < 0.20      |  |  |
| N-Nitrosodimethylamine       | N       | 2790                                      | mg/kg    |         | < 0.050     |  |  |
| Phenol                       | N       |                                           | mg/kg    |         | < 0.050     |  |  |
| 2-Chlorophenol               | N       |                                           | mg/kg    |         | < 0.050     |  |  |
| Bis-(2-Chloroethyl)Ether     | N       |                                           | mg/kg    |         | < 0.050     |  |  |
| Bis-(2-Chioroethyl)Ether     | I IN    | 2130                                      |          | 0.000   |             |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:                       |          |          |             |  |  |  |
|------------------------------|---------|-----------------------------------------|----------|----------|-------------|--|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: Client Sample ID.: |          |          |             |  |  |  |
|                              |         | 3                                       |          |          |             |  |  |  |
|                              |         | Sa                                      | ample Lo |          | BH131       |  |  |  |
|                              |         |                                         |          | е Туре:  | SOIL        |  |  |  |
|                              |         |                                         | Top Dep  | oth (m): | 3           |  |  |  |
|                              |         |                                         | Date Sa  | ampled:  | 13-Jan-2023 |  |  |  |
|                              |         |                                         | Asbest   | os Lab:  | DURHAM      |  |  |  |
| Determinand                  | Accred. | SOP                                     | Units    | LOD      |             |  |  |  |
| 1,4-Dichlorobenzene          | N       | 2790                                    | mg/kg    | 0.050    | < 0.050     |  |  |  |
| 1,2-Dichlorobenzene          | N       | 2790                                    | mg/kg    | 0.050    | < 0.050     |  |  |  |
| 2-Methylphenol               | N       | 2790                                    | mg/kg    | 0.050    | < 0.050     |  |  |  |
| Bis(2-Chloroisopropyl)Ether  | N       | 2790                                    | mg/kg    | 0.050    | < 0.050     |  |  |  |
| Hexachloroethane             | N       | 2790                                    | mg/kg    | 0.050    | < 0.050     |  |  |  |
| N-Nitrosodi-n-propylamine    | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 4-Methylphenol               | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Nitrobenzene                 | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Isophorone                   | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 2-Nitrophenol                | N       | 2790                                    | mg/kg    |          | < 0.050     |  |  |  |
| 2,4-Dimethylphenol           | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Bis(2-Chloroethoxy)Methane   | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 2,4-Dichlorophenol           | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Naphthalene                  | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 4-Chloroaniline              | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Hexachlorobutadiene          | N       | 2790                                    | mg/kg    |          | < 0.050     |  |  |  |
| 4-Chloro-3-Methylphenol      | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 2-Methylnaphthalene          | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Hexachlorocyclopentadiene    | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 2,4,6-Trichlorophenol        | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 2,4,5-Trichlorophenol        | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 2-Chloronaphthalene          | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 2-Nitroaniline               | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Acenaphthylene               | N       | 2790                                    | mg/kg    |          | < 0.050     |  |  |  |
| Dimethylphthalate            | N       | 2790                                    | mg/kg    |          | < 0.050     |  |  |  |
| 2,6-Dinitrotoluene           | N       | 2790                                    | mg/kg    |          | < 0.050     |  |  |  |
| Acenaphthene                 | N       | 2790                                    |          |          | 0.087       |  |  |  |
| 3-Nitroaniline               | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Dibenzofuran                 | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 4-Chlorophenylphenylether    | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 2,4-Dinitrotoluene           | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Fluorene                     | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Diethyl Phthalate            | N       | 2790                                    | mg/kg    |          | < 0.050     |  |  |  |
| 4-Nitroaniline               | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| 2-Methyl-4,6-Dinitrophenol   | N       | 2790                                    |          |          | < 0.050     |  |  |  |
| Azobenzene                   | N       |                                         | mg/kg    |          | < 0.050     |  |  |  |
| 4-Bromophenylphenyl Ether    | N       |                                         | mg/kg    |          | < 0.050     |  |  |  |

| Client: Causeway Geotech Ltd              |         | Chemtest Job No.:    |          |          |             |  |  |
|-------------------------------------------|---------|----------------------|----------|----------|-------------|--|--|
| Quotation No.: Q22-28455                  | (       | ple ID.:<br>ple ID.: | 1574937  |          |             |  |  |
|                                           |         | 3                    |          |          |             |  |  |
|                                           |         | Sa                   | ample Lo |          | BH131       |  |  |
|                                           |         |                      | Sample   | е Туре:  | SOIL        |  |  |
|                                           |         |                      | Top Dep  | oth (m): | 3           |  |  |
|                                           |         |                      | Date Sa  | ampled:  | 13-Jan-2023 |  |  |
|                                           |         |                      | Asbest   | os Lab:  | DURHAM      |  |  |
| Determinand                               | Accred. | SOP                  | Units    | LOD      |             |  |  |
| Hexachlorobenzene                         | N       | 2790                 | mg/kg    | 0.050    | < 0.050     |  |  |
| Pentachlorophenol                         | N       | 2790                 | mg/kg    | 0.050    | < 0.050     |  |  |
| Phenanthrene                              | N       | 2790                 | mg/kg    | 0.050    | 0.77        |  |  |
| Anthracene                                | N       | 2790                 | mg/kg    | 0.050    | 0.15        |  |  |
| Carbazole                                 | N       | 2790                 | mg/kg    |          | < 0.050     |  |  |
| Di-N-Butyl Phthalate                      | N       | 2790                 |          |          | < 0.050     |  |  |
| Fluoranthene                              | N       | 2790                 |          |          | 1.3         |  |  |
| Pyrene                                    | N       | 2790                 |          |          | 1.1         |  |  |
| Butylbenzyl Phthalate                     | N       | 2790                 |          |          | < 0.050     |  |  |
| Benzo[a]anthracene                        | N       | 2790                 |          |          | 0.68        |  |  |
| Chrysene                                  | N       | 2790                 |          |          | 0.69        |  |  |
| Bis(2-Ethylhexyl)Phthalate                | N       | 2790                 |          |          | < 0.050     |  |  |
| Di-N-Octyl Phthalate                      | N       | 2790                 |          |          | < 0.050     |  |  |
| Benzo[b]fluoranthene                      | N       | 2790                 |          | 0.050    | 0.77        |  |  |
| Benzo[k]fluoranthene                      | N       | 2790                 |          |          | 0.29        |  |  |
| Benzo[a]pyrene                            | N       | 2790                 |          |          | 0.67        |  |  |
| Indeno(1,2,3-c,d)Pyrene                   | N       | 2790                 |          |          | 0.26        |  |  |
| Dibenz(a,h)Anthracene                     | N       | 2790                 |          |          | < 0.050     |  |  |
| Benzo[g,h,i]perylene                      | N       | 2790                 |          |          | 0.36        |  |  |
| 4-Nitrophenol                             | N       | 2790                 |          |          | < 0.050     |  |  |
| Naphthalene                               | N       |                      | mg/kg    |          | 0.67        |  |  |
| Acenaphthylene                            | N       | 2800                 |          |          | 0.22        |  |  |
| Acenaphthene                              | N       |                      |          |          | 1.7         |  |  |
| Fluorene                                  | N       | 2800                 |          |          | 1.8         |  |  |
| Phenanthrene                              | N       | 2800                 |          |          | 12          |  |  |
| Anthracene                                | N       | 2800                 |          |          | 2.9         |  |  |
| Fluoranthene                              | N       | 2800                 |          |          | 15          |  |  |
| Pyrene                                    | N       | 2800                 |          |          | 12          |  |  |
| Benzo[a]anthracene                        | N       | 2800                 |          |          | 5.9         |  |  |
| Chrysene                                  | N       |                      |          | 0.010    | 7.0         |  |  |
| Benzo[b]fluoranthene                      | N       | 2800                 |          |          | 7.4         |  |  |
| Benzo[k]fluoranthene                      | N       | 2800                 |          |          | 2.5         |  |  |
| Benzo[a]pyrene                            | N       | 2800                 |          |          | 6.0         |  |  |
| Indeno(1,2,3-c,d)Pyrene                   | N       | 2800                 |          |          | 3.3         |  |  |
| Dibenz(a,h)Anthracene                     | N       | 2800                 |          |          | 0.78        |  |  |
|                                           | N N     | 2800                 |          |          | 3.4         |  |  |
| Benzo[g,h,i]perylene<br>Total Of 16 PAH's | N       |                      | mg/kg    | 0.010    | 83          |  |  |
|                                           |         |                      |          |          |             |  |  |

| Client: Causeway Geotech Ltd |         | Che                | mtest Jo | ob No.:  | 23-01251 |  |
|------------------------------|---------|--------------------|----------|----------|----------|--|
| Quotation No.: Q22-28455     | (       | Chemte             | st Sam   | ple ID.: | 1574937  |  |
|                              |         | Cli                | ent Sam  | ple ID.: | 3        |  |
|                              |         | Sa                 | ample Lo | ocation: | BH131    |  |
|                              |         | Sample Type:       |          |          |          |  |
|                              |         | Top Depth (m):     |          |          |          |  |
|                              |         | Date Sampled:      |          |          |          |  |
|                              |         | Asbestos Lab:      |          |          |          |  |
| Determinand                  | Accred. | SOP                | Units    | LOD      |          |  |
| Phenol                       | U       | 2920               | mg/kg    | 0.020    | < 0.020  |  |
| Cresols                      | U       | 2920               | mg/kg    | 0.020    | < 0.020  |  |
| Xylenols                     | U       | 2920               | < 0.020  |          |          |  |
| 1-Naphthol                   | N       | N 2920 mg/kg 0.020 |          |          |          |  |
| Trimethylphenols             | U       | 2920               | mg/kg    | 0.020    | < 0.020  |  |
| Total Phenols                | U       | 2920               | mg/kg    | 0.10     | < 0.10   |  |

### **Test Methods**

| SOP  | Title                                                                                   | Parameters included                                                                                                                                                                                                                                          | Method summary                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1010 | pH Value of Waters                                                                      | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 1220 | Anions, Alkalinity & Ammonium in Waters                                                 | Fluoride; Chloride; Nitrite; Nitrate; Total;<br>Oxidisable Nitrogen (TON); Sulfate; Phosphate;<br>Alkalinity; Ammonium                                                                                                                                       | Automated colorimetric analysis using<br>'Aquakem 600' Discrete Analyser.                                                                        |
| 1300 | Cyanides & Thiocyanate in Waters                                                        | Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                              | Continuous Flow Analysis.                                                                                                                        |
| 1325 | Sulphide in Waters                                                                      | Sulphides                                                                                                                                                                                                                                                    | Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.                                         |
| 1455 | Metals in Waters by ICP-MS                                                              | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc                                                                   | determination by inductively coupled plasma                                                                                                      |
| 1495 | Low Level Hexavalent<br>Chromium in Waters                                              | Chromium [VI]                                                                                                                                                                                                                                                | Colorimetric determination of hexavalent chromium expressed as Cr (VI) µg/l in water, using Ion Chromatography and UV-visible spectrophotometry. |
| 1675 | TPH Aliphatic/Aromatic split in<br>Waters by GC-FID(cf. Texas<br>Method 1006 / TPH CWG) | Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35, >C35-C44                                                                              | Pentane extraction / GCxGC FID detection                                                                                                         |
| 1760 | Volatile Organic Compounds<br>(VOCs) in Waters by<br>Headspace GC-MS                    | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)                                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.     |
| 1790 | Semi-Volatile Organic<br>Compounds (SVOCs) in<br>Waters by GC-MS                        | Semi-volatile organic compounds                                                                                                                                                                                                                              | Solvent extraction / GCMS detection                                                                                                              |
|      | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Waters by GC-MS              | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene | Pentane extraction / GCMS detection                                                                                                              |
| 1815 | Polychlorinated Biphenyls<br>(PCB) ICES7 Congeners in<br>Waters by GC-MS                | ICES7 PCB congeners                                                                                                                                                                                                                                          | Solvent extraction / GCMS detection                                                                                                              |
| 1900 | Phenols in Waters by GC-MS                                                              | Approximately 24 substituted Phenols, including Chlorophenols                                                                                                                                                                                                | Solvent extraction / GCMS detection                                                                                                              |
| 2010 | pH Value of Soils                                                                       | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS)                              | Moisture content                                                                                                                                                                                                                                             | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                             |
| 2040 | Soil Description(Requirement of MCERTS)                                                 | Soil description                                                                                                                                                                                                                                             | As received soil is described based upon BS5930                                                                                                  |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                                  | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                         | Aqueous extraction / ICP-OES                                                                                                                     |
| 2175 | Total Sulphur in Soils                                                                  | Total Sulphur                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                       |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                                    | Sulphur                                                                                                                                                                                                                                                      | Dichloromethane extraction / HPLC with UV detection                                                                                              |
| 2192 | Asbestos                                                                                | Asbestos                                                                                                                                                                                                                                                     | Polarised light microscopy / Gravimetry                                                                                                          |
| 2300 | Cyanides & Thiocyanate in Soils                                                         | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                           | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                             |

### **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA Method 8270)                                                                                                                                                                                                                    | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |
| 640  | Characterisation of Waste (Leaching C10)                                 | Waste material including soil, sludges and granular waste                                                                                                                                                                                                                 | ComplianceTest for Leaching of Granular<br>Waste Material and Sludge                                                                                                                   |

### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 23-02478-1

Initial Date of Issue: 13-Feb-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Colm Hurley

**Project** 22-1041A 3PM Planning Design GI

Quotation No.: Q22-28455 Date Received: 26-Jan-2023

Order No.: Date Instructed: 02-Feb-2023

No. of Samples: 1

Turnaround (Wkdays): 7 Results Due: 10-Feb-2023

Date Approved: 13-Feb-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager

| Client: Causeway Geotech Ltd                 |         | 23-02478             |          |          |                         |  |  |
|----------------------------------------------|---------|----------------------|----------|----------|-------------------------|--|--|
| Quotation No.: Q22-28455                     | (       | Chemtest Sample ID.: |          |          |                         |  |  |
|                                              |         | Sa                   | ample Lo | ocation: | BH105                   |  |  |
|                                              |         | Sample Type:         |          |          |                         |  |  |
|                                              |         |                      | Top Dep  | oth (m): | 1                       |  |  |
|                                              |         |                      | Date Sa  | ampled:  | 20-Jan-2023             |  |  |
|                                              |         |                      | Asbest   | os Lab:  | DURHAM                  |  |  |
| Determinand                                  | Accred. | SOP                  | Units    | LOD      |                         |  |  |
| ACM Type                                     | U       | 2192                 |          | N/A      | -                       |  |  |
| Asbestos Identification                      | U       | 2192                 |          | N/A      | No Asbestos<br>Detected |  |  |
| Moisture                                     | N       | 2030                 | %        | 0.020    | 7.4                     |  |  |
| Natural Moisture Content                     | N       | 2030                 | %        | 0.020    | 8.0                     |  |  |
| Soil Colour                                  | N       | 2040                 |          | N/A      | Brown                   |  |  |
| Other Material                               | N       | 2040                 |          | N/A      | Stones                  |  |  |
| Soil Texture                                 | N       | 2040                 |          | N/A      | Loam                    |  |  |
| рН                                           | U       | 2010                 |          | 4.0      | 9.1                     |  |  |
| Boron (Hot Water Soluble)                    | U       | 2120                 | mg/kg    | 0.40     | 0.41                    |  |  |
| Sulphate (2:1 Water Soluble) as SO4          | U       | 2120                 | g/l      | 0.010    | 0.038                   |  |  |
| Total Sulphur                                | U       | 2175                 | %        | 0.010    | < 0.010                 |  |  |
| Sulphur (Elemental)                          | Ü       |                      | mg/kg    | 1.0      | 18                      |  |  |
| Cyanide (Free)                               | Ü       |                      | mg/kg    | 0.50     | < 0.50                  |  |  |
| Cyanide (Total)                              | Ü       |                      | mg/kg    | 0.50     | < 0.50                  |  |  |
| Thiocyanate                                  | Ü       |                      | mg/kg    | 5.0      | < 5.0                   |  |  |
| Aluminium (Total)                            | N       | 2430                 |          | 100      | 15000                   |  |  |
| Iron (Total)                                 | N       | 2430                 |          | 100      | 26000                   |  |  |
| Arsenic                                      | U       | 2455                 |          | 0.5      | 19                      |  |  |
| Barium                                       | U       | 2455                 | 0        | 0        | 120                     |  |  |
| Beryllium                                    | U       | 2455                 |          | 0.5      | 1.3                     |  |  |
| Cadmium                                      | Ü       |                      | mg/kg    | 0.10     | 0.54                    |  |  |
| Chromium                                     | Ü       |                      | mg/kg    | 0.5      | 58                      |  |  |
| Manganese                                    | U       | 2455                 |          | 1.0      | 1500                    |  |  |
| Copper                                       | U       | 2455                 |          | 0.50     | 43                      |  |  |
| Mercury                                      | U       | 2455                 |          | 0.05     | 0.09                    |  |  |
| Nickel                                       | Ü       | 2455                 |          | 0.50     | 38                      |  |  |
| Lead                                         | U       | 2455                 |          | 0.50     | 190                     |  |  |
| Selenium                                     | U       |                      | mg/kg    | 0.25     | 0.65                    |  |  |
| Vanadium                                     | U       | 2455                 |          | 0.25     | 75                      |  |  |
| Zinc                                         | U       | 2455                 | mg/kg    | 0.50     | 160                     |  |  |
| Chromium (Hexavalent)                        | N       | 2490                 | mg/kg    | 0.50     | < 0.50                  |  |  |
| Organic Matter                               | U       | 2625                 | %        | 0.40     | < 0.40                  |  |  |
| Total Organic Carbon                         | U       | 2625                 | %        | 0.40     | 0.21                    |  |  |
| Aliphatic TPH >C5-C6                         | N       | 2680                 |          |          | < 0.010                 |  |  |
| Aliphatic TPH >C5-C6 Aliphatic TPH >C6-C8    | N       |                      | mg/kg    |          | < 0.010                 |  |  |
| Aliphatic TPH >C6-C6 Aliphatic TPH >C8-C10   | N       |                      | mg/kg    | 0.010    | < 0.010                 |  |  |
| Aliphatic TPH >C8-C10 Aliphatic TPH >C10-C12 | N       |                      |          |          |                         |  |  |
|                                              |         | 2680                 |          | 0.10     | < 0.10                  |  |  |
| Aliphatic TPH >C12-C16                       | N       | 2680                 | mg/kg    | 0.10     | < 0.10                  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:<br>Chemtest Sample ID.: |         |         |             |  |  |  |
|------------------------------|---------|-------------------------------------------|---------|---------|-------------|--|--|--|
| Quotation No.: Q22-28455     | (       | 1580016                                   |         |         |             |  |  |  |
|                              |         | BH105                                     |         |         |             |  |  |  |
|                              |         |                                           |         | e Type: | SOIL        |  |  |  |
|                              |         |                                           | Top Dep | , ,     | 1           |  |  |  |
|                              |         |                                           | Date Sa | ampled: | 20-Jan-2023 |  |  |  |
|                              |         |                                           | Asbest  | os Lab: | DURHAM      |  |  |  |
| Determinand                  | Accred. | SOP                                       | Units   | LOD     |             |  |  |  |
| Aliphatic TPH >C16-C21       | N       |                                           | mg/kg   |         | < 0.10      |  |  |  |
| Aliphatic TPH >C21-C35       | N       |                                           | mg/kg   |         | < 0.10      |  |  |  |
| Aliphatic TPH >C35-C44       | N       | 2680                                      | mg/kg   | 0.10    | < 0.10      |  |  |  |
| Total Aliphatic Hydrocarbons | N       | 2680                                      | mg/kg   | 1.0     | < 1.0       |  |  |  |
| Aromatic TPH >C5-C7          | N       | 2680                                      | mg/kg   | 0.010   | < 0.010     |  |  |  |
| Aromatic TPH >C7-C8          | N       | 2680                                      | mg/kg   | 0.010   | < 0.010     |  |  |  |
| Aromatic TPH >C8-C10         | N       | 2680                                      | mg/kg   | 0.10    | < 0.10      |  |  |  |
| Aromatic TPH >C10-C12        | N       | 2680                                      | mg/kg   | 0.10    | < 0.10      |  |  |  |
| Aromatic TPH >C12-C16        | N       | 2680                                      | mg/kg   | 0.10    | < 0.10      |  |  |  |
| Aromatic TPH >C16-C21        | N       | 2680                                      | mg/kg   | 0.10    | < 0.10      |  |  |  |
| Aromatic TPH >C21-C35        | N       | 2680                                      | mg/kg   | 0.10    | < 0.10      |  |  |  |
| Aromatic TPH >C35-C44        | N       | 2680                                      | mg/kg   | 0.10    | < 0.10      |  |  |  |
| Total Aromatic Hydrocarbons  | N       | 2680                                      |         | 1.0     | < 1.0       |  |  |  |
| Total Petroleum Hydrocarbons | N       |                                           | mg/kg   | 2.0     | < 2.0       |  |  |  |
| Dichlorodifluoromethane      | N       |                                           | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Chloromethane                | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Vinyl Chloride               | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Bromomethane                 | N       | 2760                                      | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Chloroethane                 | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Trichlorofluoromethane       | N       | 2760                                      | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,1-Dichloroethene           | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Trans 1,2-Dichloroethene     | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| 1,1-Dichloroethane           | N       | 2760                                      | μg/kg   | 0.20    | < 0.20      |  |  |  |
| cis 1,2-Dichloroethene       | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Bromochloromethane           | N       | 2760                                      |         | 0.50    | < 0.50      |  |  |  |
| Trichloromethane             | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| 1,1,1-Trichloroethane        | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Tetrachloromethane           | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| 1,1-Dichloropropene          | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Benzene                      | N       | 2760                                      | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,2-Dichloroethane           | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Trichloroethene              | N       | 2760                                      | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,2-Dichloropropane          | N       | 2760                                      | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Dibromomethane               | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Bromodichloromethane         | N       | 2760                                      | μg/kg   | 0.20    | < 0.20      |  |  |  |
| cis-1,3-Dichloropropene      | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Toluene                      | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
| Trans-1,3-Dichloropropene    | N       | 2760                                      |         | 0.20    | < 0.20      |  |  |  |
|                              | N N     |                                           |         | 0.20    | < 0.20      |  |  |  |
| 1,1,2-Trichloroethane        | IN      | 2100                                      | μg/kg   | 0.20    | < 0.20      |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |         |         |             |  |  |  |
|------------------------------|---------|----------------------|---------|---------|-------------|--|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |         |         |             |  |  |  |
|                              |         | Sample Location:     |         |         |             |  |  |  |
|                              |         |                      |         | e Type: | SOIL        |  |  |  |
|                              |         |                      | Top Dep |         | 1           |  |  |  |
|                              |         |                      | Date Sa |         | 20-Jan-2023 |  |  |  |
|                              |         |                      | Asbest  | os Lab: | DURHAM      |  |  |  |
| Determinand                  | Accred. | SOP                  | Units   | LOD     |             |  |  |  |
| Tetrachloroethene            | N       | 2760                 | 0       | 0.20    | < 0.20      |  |  |  |
| 1,3-Dichloropropane          | N       | 2760                 | )       | 0.20    | < 0.20      |  |  |  |
| Dibromochloromethane         | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,2-Dibromoethane            | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Chlorobenzene                | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,1,1,2-Tetrachloroethane    | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Ethylbenzene                 | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| m & p-Xylene                 | N       | 2760                 |         | 0.20    | < 0.20      |  |  |  |
| o-Xylene                     | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Styrene                      | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Tribromomethane              | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Isopropylbenzene             | N       | 2760                 |         | 0.20    | < 0.20      |  |  |  |
| Bromobenzene                 | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,2,3-Trichloropropane       | N       | 2760                 |         | 0.20    | < 0.20      |  |  |  |
| N-Propylbenzene              | N       | 2760                 |         | 0.20    | < 0.20      |  |  |  |
| 2-Chlorotoluene              | N       | 2760                 |         | 0.20    | < 0.20      |  |  |  |
| 1,3,5-Trimethylbenzene       | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 4-Chlorotoluene              | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Tert-Butylbenzene            | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,2,4-Trimethylbenzene       | N       | 2760                 |         | 0.20    | < 0.20      |  |  |  |
| Sec-Butylbenzene             | N       | 2760                 |         | 0.20    | < 0.20      |  |  |  |
| 1,3-Dichlorobenzene          | N       | 2760                 |         | 0.20    | < 0.20      |  |  |  |
| 4-Isopropyltoluene           | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,4-Dichlorobenzene          | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| N-Butylbenzene               | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,2-Dichlorobenzene          | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,2,4-Trichlorobenzene       | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Hexachlorobutadiene          | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| 1,2,3-Trichlorobenzene       | N       | 2760                 | μg/kg   | 0.20    | < 0.20      |  |  |  |
| Methyl Tert-Butyl Ether      | N       | 2760                 |         | 0.20    | < 0.20      |  |  |  |
| N-Nitrosodimethylamine       | N       | 2790                 | mg/kg   |         | < 0.050     |  |  |  |
| Phenol                       | N       | 2790                 | mg/kg   |         | < 0.050     |  |  |  |
| 2-Chlorophenol               | N       | 2790                 |         |         | < 0.050     |  |  |  |
| Bis-(2-Chloroethyl)Ether     | N       | 2790                 |         |         | < 0.050     |  |  |  |
| 1,3-Dichlorobenzene          | N       |                      | mg/kg   |         | < 0.050     |  |  |  |
| 1,4-Dichlorobenzene          | N       |                      |         |         | < 0.050     |  |  |  |
| 1,2-Dichlorobenzene          | N       |                      | mg/kg   |         | < 0.050     |  |  |  |
|                              | N N     |                      |         |         |             |  |  |  |
| 2-Methylphenol               | IN      | 2/90                 | mg/kg   | 0.050   | < 0.050     |  |  |  |

| Client: Causeway Geotech Ltd                   |         | Chemtest Job No.:    |                |          |                            |  |  |  |
|------------------------------------------------|---------|----------------------|----------------|----------|----------------------------|--|--|--|
| Quotation No.: Q22-28455                       | (       | Chemte               | st Sam         | ple ID.: | 1580016                    |  |  |  |
|                                                |         | BH105                |                |          |                            |  |  |  |
|                                                |         |                      |                | e Type:  | SOIL                       |  |  |  |
|                                                |         |                      | Top Dep        | oth (m): | 1                          |  |  |  |
|                                                |         |                      | Date Sa        | ampled:  | 20-Jan-2023                |  |  |  |
|                                                |         |                      | Asbest         | os Lab:  | DURHAM                     |  |  |  |
| Determinand                                    | Accred. | SOP                  | Units          | LOD      |                            |  |  |  |
| Bis(2-Chloroisopropyl)Ether                    | N       | 2790                 | mg/kg          | 0.050    | < 0.050                    |  |  |  |
| Hexachloroethane                               | N       | 2790                 | mg/kg          | 0.050    | < 0.050                    |  |  |  |
| N-Nitrosodi-n-propylamine                      | N       | 2790                 | mg/kg          | 0.050    | < 0.050                    |  |  |  |
| 4-Methylphenol                                 | N       | 2790                 | mg/kg          | 0.050    | < 0.050                    |  |  |  |
| Nitrobenzene                                   | N       | 2790                 | mg/kg          | 0.050    | < 0.050                    |  |  |  |
| Isophorone                                     | N       | 2790                 | mg/kg          | 0.050    | < 0.050                    |  |  |  |
| 2-Nitrophenol                                  | N       | 2790                 |                | 0.050    | < 0.050                    |  |  |  |
| 2,4-Dimethylphenol                             | N       | 2790                 |                | 0.050    | < 0.050                    |  |  |  |
| Bis(2-Chloroethoxy)Methane                     | N       | 2790                 | mg/kg          | 0.050    | < 0.050                    |  |  |  |
| 2,4-Dichlorophenol                             | N       | 2790                 | mg/kg          |          | < 0.050                    |  |  |  |
| 1,2,4-Trichlorobenzene                         | N       | 2790                 |                |          | < 0.050                    |  |  |  |
| Naphthalene                                    | N       | 2790                 |                | 0.050    | 0.11                       |  |  |  |
| 4-Chloroaniline                                | N       | 2790                 |                | 0.050    | < 0.050                    |  |  |  |
| Hexachlorobutadiene                            | N       | 2790                 |                | 0.050    | < 0.050                    |  |  |  |
| 4-Chloro-3-Methylphenol                        | N       | 2790                 | ,              | 0.050    | < 0.050                    |  |  |  |
| 2-Methylnaphthalene                            | N       | 2790                 |                |          | 0.76                       |  |  |  |
| Hexachlorocyclopentadiene                      | N       | 2790                 | mg/kg          |          | < 0.050                    |  |  |  |
| 2,4,6-Trichlorophenol                          | N       | 2790                 | mg/kg          |          | < 0.050                    |  |  |  |
| 2,4,5-Trichlorophenol                          | N       | 2790                 |                |          | < 0.050                    |  |  |  |
| 2-Chloronaphthalene                            | N       | 2790                 |                |          | < 0.050                    |  |  |  |
| 2-Nitroaniline                                 | N       | 2790                 |                | 0.050    | < 0.050                    |  |  |  |
| Acenaphthylene                                 | N       | 2790                 | )              |          | < 0.050                    |  |  |  |
| Dimethylphthalate                              | N       | 2790                 | mg/kg          |          | < 0.050                    |  |  |  |
| 2,6-Dinitrotoluene                             | N       | 2790                 |                | 0.050    | < 0.050                    |  |  |  |
| Acenaphthene                                   | N       | 2790                 | mg/kg          | 0.050    | < 0.050                    |  |  |  |
| 3-Nitroaniline                                 | N       | 2790                 | mg/kg          |          | < 0.050                    |  |  |  |
| Dibenzofuran                                   | N       | 2790                 | mg/kg          | 0.050    | 0.18                       |  |  |  |
| 4-Chlorophenylphenylether                      | N       | 2790                 | mg/kg          | 0.050    | < 0.050                    |  |  |  |
| 2,4-Dinitrotoluene                             | N       | 2790                 |                |          | < 0.050                    |  |  |  |
| Fluorene                                       | N       | 2790                 |                | 0.050    | 0.17                       |  |  |  |
| Diethyl Phthalate                              | N       | 2790                 |                | 0.050    | < 0.050                    |  |  |  |
| 4-Nitroaniline                                 | N       | 2790                 |                | 0.050    | < 0.050                    |  |  |  |
| 2-Methyl-4,6-Dinitrophenol                     | N       | 2790                 | mg/kg          |          | < 0.050                    |  |  |  |
| Azobenzene                                     | N       | 2790                 | mg/kg          |          | < 0.050                    |  |  |  |
|                                                |         | 2790                 | mg/kg          |          | < 0.050                    |  |  |  |
|                                                | INI     |                      | 9/119          | 5.500    | - 0.000                    |  |  |  |
| 4-Bromophenylphenyl Ether                      | N<br>N  | 2790                 |                |          | < 0.050                    |  |  |  |
| 4-Bromophenylphenyl Ether<br>Hexachlorobenzene | N       | 2790                 | mg/kg          | 0.050    | < 0.050                    |  |  |  |
| 4-Bromophenylphenyl Ether                      | _       | 2790<br>2790<br>2790 | mg/kg<br>mg/kg | 0.050    | < 0.050<br>< 0.050<br>0.81 |  |  |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:    |         |          |             |  |  |  |
|------------------------------|---------|----------------------|---------|----------|-------------|--|--|--|
| Quotation No.: Q22-28455     | (       | Chemtest Sample ID.: |         |          |             |  |  |  |
|                              |         | Sample Location:     |         |          |             |  |  |  |
|                              |         | Sample Type:         |         |          |             |  |  |  |
|                              |         |                      | Top Dep | oth (m): | 1           |  |  |  |
|                              |         |                      | Date Sa | ampled:  | 20-Jan-2023 |  |  |  |
|                              |         |                      | Asbest  | os Lab:  | DURHAM      |  |  |  |
| Determinand                  | Accred. | SOP                  | Units   | LOD      |             |  |  |  |
| Carbazole                    | N       | 2790                 | mg/kg   |          | 0.097       |  |  |  |
| Di-N-Butyl Phthalate         | N       | 2790                 | mg/kg   |          | < 0.050     |  |  |  |
| Fluoranthene                 | N       | 2790                 | mg/kg   |          | 0.81        |  |  |  |
| Pyrene                       | N       | 2790                 | mg/kg   | 0.050    | 0.65        |  |  |  |
| Butylbenzyl Phthalate        | N       | 2790                 | mg/kg   |          | < 0.050     |  |  |  |
| Benzo[a]anthracene           | N       | 2790                 | mg/kg   | 0.050    | 0.28        |  |  |  |
| Chrysene                     | N       | 2790                 | mg/kg   | 0.050    | 0.29        |  |  |  |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790                 | mg/kg   |          | < 0.050     |  |  |  |
| Di-N-Octyl Phthalate         | N       | 2790                 | mg/kg   |          | < 0.050     |  |  |  |
| Benzo[b]fluoranthene         | N       | 2790                 | mg/kg   | 0.050    | 0.30        |  |  |  |
| Benzo[k]fluoranthene         | N       | 2790                 | mg/kg   | 0.050    | 0.13        |  |  |  |
| Benzo[a]pyrene               | N       | 2790                 | mg/kg   | 0.050    | 0.26        |  |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790                 | mg/kg   | 0.050    | 0.12        |  |  |  |
| Dibenz(a,h)Anthracene        | N       | 2790                 | mg/kg   |          | < 0.050     |  |  |  |
| Benzo[g,h,i]perylene         | N       | 2790                 | mg/kg   | 0.050    | 0.16        |  |  |  |
| 4-Nitrophenol                | N       | 2790                 | mg/kg   | 0.050    | < 0.050     |  |  |  |
| Naphthalene                  | N       | 2800                 |         |          | < 0.010     |  |  |  |
| Acenaphthylene               | N       | 2800                 | mg/kg   |          | < 0.010     |  |  |  |
| Acenaphthene                 | N       | 2800                 | mg/kg   |          | < 0.010     |  |  |  |
| Fluorene                     | N       | 2800                 |         |          | < 0.010     |  |  |  |
| Phenanthrene                 | N       | 2800                 | mg/kg   |          | 0.26        |  |  |  |
| Anthracene                   | N       | 2800                 |         |          | 0.088       |  |  |  |
| Fluoranthene                 | N       | 2800                 | mg/kg   |          | 0.28        |  |  |  |
| Pyrene                       | N       | 2800                 |         |          | 0.19        |  |  |  |
| Benzo[a]anthracene           | N       | 2800                 | mg/kg   |          | < 0.010     |  |  |  |
| Chrysene                     | N       | 2800                 | mg/kg   |          | < 0.010     |  |  |  |
| Benzo[b]fluoranthene         | N       | 2800                 | mg/kg   |          | < 0.010     |  |  |  |
| Benzo[k]fluoranthene         | N       | 2800                 | mg/kg   |          | < 0.010     |  |  |  |
| Benzo[a]pyrene               | N       | 2800                 |         |          | < 0.010     |  |  |  |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2800                 | mg/kg   |          | < 0.010     |  |  |  |
| Dibenz(a,h)Anthracene        | N       | 2800                 |         | 0.010    | < 0.010     |  |  |  |
| Benzo[g,h,i]perylene         | N       | 2800                 | mg/kg   | 0.010    | < 0.010     |  |  |  |
| Total Of 16 PAH's            | N       | 2800                 |         | 0.20     | 0.82        |  |  |  |
| Resorcinol                   | U       | 2920                 | mg/kg   |          | < 0.020     |  |  |  |
| Phenol                       | U       | 2920                 | mg/kg   |          | < 0.020     |  |  |  |
| Cresols                      | U       | 2920                 | mg/kg   |          | < 0.020     |  |  |  |
| Xylenols                     | U       | 2920                 | mg/kg   |          | < 0.020     |  |  |  |
| 1-Naphthol                   | N       | 2920                 |         |          | < 0.020     |  |  |  |
| Trimethylphenols             | U       |                      | mg/kg   |          | < 0.020     |  |  |  |

| Client: Causeway Geotech Ltd |         | 23-02478         |          |         |             |  |  |  |
|------------------------------|---------|------------------|----------|---------|-------------|--|--|--|
| Quotation No.: Q22-28455     | (       | Chemte           | ple ID.: | 1580016 |             |  |  |  |
|                              |         | Sample Location: |          |         |             |  |  |  |
|                              |         | SOIL             |          |         |             |  |  |  |
|                              |         | Top Depth (m):   |          |         |             |  |  |  |
|                              |         |                  | Date Sa  | ampled: | 20-Jan-2023 |  |  |  |
|                              |         |                  | Asbest   | os Lab: | DURHAM      |  |  |  |
| Determinand                  | Accred. |                  |          |         |             |  |  |  |
| Total Phenols                | U       | 2920             | mg/kg    | 0.10    | < 0.10      |  |  |  |

### **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                        | рН                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)         | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                                  | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                                   | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                     | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                          | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA<br>Method 8270)                                                                                                                                                                                                                 | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |

### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 23-03006-1

Initial Date of Issue: 20-Feb-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Colm Hurley

**Project** 22-1041A 3FM Planning Design GI

Quotation No.: Q22-28455 Date Received: 31-Jan-2023

Order No.: Date Instructed: 02-Feb-2023

No. of Samples: 2

Turnaround (Wkdays): 7 Results Due: 10-Feb-2023

Date Approved: 20-Feb-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager

| Client: Causeway Geotech Ltd               |         |      |        | Job No.:    |             | 23-03006      |
|--------------------------------------------|---------|------|--------|-------------|-------------|---------------|
| Quotation No.: Q22-28455                   |         |      |        | nple ID.:   | 1582097     | 1582098       |
|                                            |         | 5    |        | _ocation:   | BH112       | BH112         |
|                                            |         |      |        | ole Type:   | SOIL        | SOIL          |
|                                            |         |      | Top De | 1.0         | 1.5         |               |
|                                            |         |      | Date S | 27-Jan-2023 | 27-Jan-2023 |               |
|                                            |         |      | Asbes  | stos Lab:   |             | DURHAM        |
| Determinand                                | Accred. | SOP  | Units  | LOD         |             |               |
| ACM Type                                   | U       | 2192 |        | N/A         |             | Fibres/Clumps |
| Asbestos Identification                    | U       | 2192 |        | N/A         |             | Chrysotile    |
| Asbestos by Gravimetry                     | U       | 2192 | %      | 0.001       |             | 0.004         |
| Total Asbestos                             | U       | 2192 | %      | 0.001       |             | 0.004         |
| Moisture                                   | N       | 2030 | %      | 0.020       | 12          | 12            |
| Natural Moisture Content                   | N       | 2030 | %      | 0.020       |             | 14            |
| Soil Colour                                | N       | 2040 |        | N/A         |             | Brown         |
| Other Material                             | N       | 2040 |        | N/A         |             | Stones        |
| Soil Texture                               | N       | 2040 |        | N/A         |             | Loam          |
| рН                                         | U       | 2010 |        | 4.0         |             | 8.3           |
| Boron (Hot Water Soluble)                  | U       |      | mg/kg  | 0.40        |             | 1.3           |
| Sulphate (2:1 Water Soluble) as SO4        | U       | 2120 | g/l    | 0.010       |             | 0.30          |
| Total Sulphur                              | U       | 2175 | %      | 0.010       |             | 0.20          |
| Sulphur (Elemental)                        | U       | 2180 | mg/kg  | 1.0         |             | 76            |
| Cyanide (Free)                             | U       | 2300 | mg/kg  | 0.50        |             | < 0.50        |
| Cyanide (Total)                            | U       | 2300 | mg/kg  | 0.50        |             | 0.80          |
| Thiocyanate                                | U       | 2300 | mg/kg  | 5.0         |             | < 5.0         |
| Aluminium (Total)                          | N       | 2430 | mg/kg  | 100         |             | 7500          |
| Iron (Total)                               | N       | 2430 | mg/kg  | 100         |             | 24000         |
| Arsenic                                    | U       | 2455 | mg/kg  | 0.5         |             | 29            |
| Barium                                     | U       |      | mg/kg  | 0           |             | 240           |
| Beryllium                                  | U       | 2455 | mg/kg  | 0.5         |             | 1.1           |
| Cadmium                                    | Ü       | 2455 | mg/kg  | 0.10        |             | 2.5           |
| Chromium                                   | Ü       | 2455 |        | 0.5         |             | 28            |
| Manganese                                  | Ü       |      | mg/kg  | 1.0         |             | 1200          |
| Copper                                     | Ü       |      | mg/kg  | 0.50        |             | 130           |
| Mercury                                    | U       | 2455 | mg/kg  | 0.05        |             | 0.95          |
| Nickel                                     | U       | 2455 | mg/kg  | 0.50        |             | 52            |
| Lead                                       | U       | 2455 | mg/kg  | 0.50        |             | 530           |
| Selenium                                   | U       | 2455 | mg/kg  | 0.25        |             | 2.0           |
| Vanadium                                   | U       | 2455 | mg/kg  | 0.5         |             | 37            |
| Zinc                                       | U       | 2455 | mg/kg  | 0.50        |             | 370           |
| Chromium (Hexavalent)                      | N       | 2490 | mg/kg  | 0.50        |             | < 0.50        |
| Organic Matter                             | U       | 2625 | %      | 0.40        |             | 4.4           |
| Total Organic Carbon                       | U       | 2625 | %      | 0.40        |             | 2.6           |
| Aliphatic TPH >C5-C6                       | N       |      | mg/kg  | 0.010       |             | < 0.010       |
| Aliphatic TPH >C6-C8                       | N       | 2680 | mg/kg  | 0.010       |             | < 0.010       |
| Aliphatic TPH >C6-C6 Aliphatic TPH >C8-C10 | N       | 2680 | mg/kg  | 0.010       |             | < 0.010       |
|                                            | N N     |      |        |             |             |               |
| Aliphatic TPH >C10-C12                     | IN      | ∠080 | mg/kg  | 0.10        |             | < 0.10        |

| Client: Causeway Geotech Ltd |         |      |                | Job No.:    |             | 23-03006 |
|------------------------------|---------|------|----------------|-------------|-------------|----------|
| Quotation No.: Q22-28455     |         |      |                | nple ID.:   | 1582097     | 1582098  |
|                              |         | 5    |                | _ocation:   | BH112       | BH112    |
|                              |         |      |                | ole Type:   | SOIL        | SOIL     |
|                              |         |      |                | epth (m):   | 1.0         | 1.5      |
|                              |         |      | Date S         | 27-Jan-2023 | 27-Jan-2023 |          |
|                              |         |      | Asbes          | tos Lab:    |             | DURHAM   |
| Determinand                  | Accred. | SOP  | Units          | LOD         |             |          |
| Aliphatic TPH >C12-C16       | N       | 2680 | mg/kg          | 0.10        |             | < 0.10   |
| Aliphatic TPH >C16-C21       | N       | 2680 | mg/kg          | 0.10        |             | < 0.10   |
| Aliphatic TPH >C21-C35       | N       | 2680 | mg/kg          | 0.10        |             | 7.3      |
| Aliphatic TPH >C35-C44       | N       | 2680 | mg/kg          | 0.10        |             | < 0.10   |
| Total Aliphatic Hydrocarbons | N       | 2680 | mg/kg          | 1.0         |             | 7.3      |
| Aromatic TPH >C5-C7          | N       | 2680 | mg/kg          | 0.010       |             | < 0.010  |
| Aromatic TPH >C7-C8          | N       | 2680 | mg/kg          | 0.010       |             | < 0.010  |
| Aromatic TPH >C8-C10         | N       | 2680 | mg/kg          | 0.10        |             | < 0.10   |
| Aromatic TPH >C10-C12        | N       | 2680 | mg/kg          | 0.10        |             | < 0.10   |
| Aromatic TPH >C12-C16        | N       | 2680 | mg/kg          | 0.10        |             | < 0.10   |
| Aromatic TPH >C16-C21        | N       | 2680 |                | 0.10        |             | 9.6      |
| Aromatic TPH >C21-C35        | N       | 2680 | mg/kg          | 0.10        |             | 57       |
| Aromatic TPH >C35-C44        | N       | 2680 | mg/kg          | 0.10        |             | < 0.10   |
| Total Aromatic Hydrocarbons  | N       | 2680 | mg/kg          | 1.0         |             | 67       |
| Total Petroleum Hydrocarbons | N       | 2680 | mg/kg          | 2.0         |             | 74       |
| Dichlorodifluoromethane      | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Chloromethane                | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Vinyl Chloride               | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Bromomethane                 | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Chloroethane                 | N       | 2760 |                | 0.20        |             | < 0.20   |
| Trichlorofluoromethane       | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| 1,1-Dichloroethene           | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Trans 1,2-Dichloroethene     | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| 1,1-Dichloroethane           | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| cis 1,2-Dichloroethene       | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Bromochloromethane           | N       | 2760 | µg/kg          | 0.50        |             | < 0.50   |
| Trichloromethane             | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| 1,1,1-Trichloroethane        | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Tetrachloromethane           | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| 1,1-Dichloropropene          | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Benzene                      | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| 1,2-Dichloroethane           | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Trichloroethene              | N       | 2760 | μg/kg<br>μg/kg | 0.20        |             | < 0.20   |
| 1,2-Dichloropropane          | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Dibromomethane               | N       | 2760 | μg/kg<br>μg/kg | 0.20        |             | < 0.20   |
| Bromodichloromethane         | N       | 2760 | μg/kg<br>μg/kg | 0.20        |             | < 0.20   |
|                              | N       | 2760 |                | 0.20        |             | < 0.20   |
| cis-1,3-Dichloropropene      | N       |      | μg/kg          |             |             |          |
| Toluene                      |         | 2760 | μg/kg          | 0.20        |             | < 0.20   |
| Trans-1,3-Dichloropropene    | N       | 2760 | μg/kg          | 0.20        |             | < 0.20   |

| Client: Causeway Geotech Ltd |         |      |        | Job No.:    | 23-03006    | 23-03006 |
|------------------------------|---------|------|--------|-------------|-------------|----------|
| Quotation No.: Q22-28455     |         |      |        | nple ID.:   | 1582097     | 1582098  |
|                              |         | 5    |        | _ocation:   | BH112       | BH112    |
|                              |         |      |        | ole Type:   | SOIL        | SOIL     |
|                              |         |      | Top De | 1.0         | 1.5         |          |
|                              |         |      | Date S | 27-Jan-2023 | 27-Jan-2023 |          |
|                              |         |      | Asbes  | stos Lab:   |             | DURHAM   |
| Determinand                  | Accred. | SOP  | Units  | LOD         |             |          |
| 1,1,2-Trichloroethane        | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Tetrachloroethene            | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,3-Dichloropropane          | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Dibromochloromethane         | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,2-Dibromoethane            | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Chlorobenzene                | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,1,1,2-Tetrachloroethane    | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Ethylbenzene                 | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| m & p-Xylene                 | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| o-Xylene                     | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Styrene                      | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Tribromomethane              | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Isopropylbenzene             | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Bromobenzene                 | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,2,3-Trichloropropane       | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| N-Propylbenzene              | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 2-Chlorotoluene              | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,3,5-Trimethylbenzene       | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 4-Chlorotoluene              | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Tert-Butylbenzene            | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,2,4-Trimethylbenzene       | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Sec-Butylbenzene             | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,3-Dichlorobenzene          | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 4-Isopropyltoluene           | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,4-Dichlorobenzene          | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| N-Butylbenzene               | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,2-Dichlorobenzene          | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,2-Dibromo-3-Chloropropane  | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,2,4-Trichlorobenzene       | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Hexachlorobutadiene          | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| 1,2,3-Trichlorobenzene       | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| Methyl Tert-Butyl Ether      | N       | 2760 | μg/kg  | 0.20        |             | < 0.20   |
| N-Nitrosodimethylamine       | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Phenol                       | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2-Chlorophenol               | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Bis-(2-Chloroethyl)Ether     | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 1,3-Dichlorobenzene          | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 1,4-Dichlorobenzene          | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 1,2-Dichlorobenzene          | N       |      | mg/kg  | 0.050       |             | < 0.050  |

| Client: Causeway Geotech Ltd |         |      |        | Job No.:    | 23-03006    | 23-03006 |
|------------------------------|---------|------|--------|-------------|-------------|----------|
| Quotation No.: Q22-28455     |         |      |        | nple ID.:   | 1582097     | 1582098  |
|                              |         | 5    |        | ocation:    | BH112       | BH112    |
|                              |         |      |        | le Type:    | SOIL        | SOIL     |
|                              |         |      |        | epth (m):   | 1.0         | 1.5      |
|                              |         |      | Date S | 27-Jan-2023 | 27-Jan-2023 |          |
|                              |         |      | Asbes  | tos Lab:    |             | DURHAM   |
| Determinand                  | Accred. | SOP  | Units  | LOD         |             |          |
| 2-Methylphenol               | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Bis(2-Chloroisopropyl)Ether  | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Hexachloroethane             | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| N-Nitrosodi-n-propylamine    | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 4-Methylphenol               | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Nitrobenzene                 | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Isophorone                   | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2-Nitrophenol                | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2,4-Dimethylphenol           | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Bis(2-Chloroethoxy)Methane   | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2,4-Dichlorophenol           | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 1,2,4-Trichlorobenzene       | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Naphthalene                  | N       | 2790 | mg/kg  | 0.050       |             | 0.75     |
| 4-Chloroaniline              | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Hexachlorobutadiene          | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 4-Chloro-3-Methylphenol      | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2-Methylnaphthalene          | N       | 2790 | mg/kg  | 0.050       |             | 0.51     |
| Hexachlorocyclopentadiene    | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2,4,6-Trichlorophenol        | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2,4,5-Trichlorophenol        | N       |      | mg/kg  | 0.050       |             | < 0.050  |
| 2-Chloronaphthalene          | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2-Nitroaniline               | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Acenaphthylene               | N       | 2790 | mg/kg  | 0.050       |             | 0.80     |
| Dimethylphthalate            | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2,6-Dinitrotoluene           | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Acenaphthene                 | N       | 2790 | mg/kg  | 0.050       |             | 1.0      |
| 3-Nitroaniline               | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Dibenzofuran                 | N       | 2790 | mg/kg  | 0.050       |             | 0.70     |
| 4-Chlorophenylphenylether    | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2,4-Dinitrotoluene           | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Fluorene                     | N       | 2790 | mg/kg  | 0.050       |             | 0.97     |
| Diethyl Phthalate            | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 4-Nitroaniline               | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 2-Methyl-4,6-Dinitrophenol   | N       | 2790 | mg/kg  | 0.050       |             | 1.4      |
| Azobenzene                   | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| 4-Bromophenylphenyl Ether    | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Hexachlorobenzene            | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Pentachlorophenol            | N       | 2790 | mg/kg  | 0.050       |             | < 0.050  |
| Phenanthrene                 | N       | 2790 | mg/kg  | 0.050       | _           | 7.6      |

| Client: Causeway Geotech Ltd |         | Ch   | emtest . | Job No.:    | 23-03006    | 23-03006 |
|------------------------------|---------|------|----------|-------------|-------------|----------|
| Quotation No.: Q22-28455     |         | Chem | test San | nple ID.:   | 1582097     | 1582098  |
|                              |         | 5    | Sample I | _ocation:   | BH112       | BH112    |
|                              |         |      | Samp     | ole Type:   | SOIL        | SOIL     |
|                              |         |      |          | epth (m):   | 1.0         | 1.5      |
|                              |         |      | Date S   | 27-Jan-2023 | 27-Jan-2023 |          |
|                              |         |      | Asbes    | stos Lab:   |             | DURHAM   |
| Determinand                  | Accred. | SOP  | Units    | LOD         |             |          |
| Anthracene                   | N       | 2790 | mg/kg    |             |             | 1.9      |
| Carbazole                    | N       | 2790 | mg/kg    | 0.050       |             | 0.56     |
| Di-N-Butyl Phthalate         | N       | 2790 | mg/kg    | 0.050       |             | < 0.050  |
| Fluoranthene                 | N       | 2790 | mg/kg    | 0.050       |             | 14       |
| Pyrene                       | N       | 2790 | mg/kg    | 0.050       |             | 13       |
| Butylbenzyl Phthalate        | N       | 2790 | mg/kg    | 0.050       |             | < 0.050  |
| Benzo[a]anthracene           | N       | 2790 | mg/kg    | 0.050       |             | 8.3      |
| Chrysene                     | N       | 2790 | mg/kg    | 0.050       |             | 9.0      |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790 | mg/kg    | 0.050       |             | 0.19     |
| Di-N-Octyl Phthalate         | N       | 2790 | mg/kg    | 0.050       |             | < 0.050  |
| Benzo[b]fluoranthene         | N       | 2790 | mg/kg    | 0.050       |             | 11       |
| Benzo[k]fluoranthene         | N       | 2790 | mg/kg    | 0.050       |             | 4.0      |
| Benzo[a]pyrene               | N       | 2790 | mg/kg    | 0.050       |             | 9.1      |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790 | mg/kg    | 0.050       |             | 4.3      |
| Dibenz(a,h)Anthracene        | N       | 2790 | mg/kg    | 0.050       |             | 1.2      |
| Benzo[g,h,i]perylene         | N       | 2790 | mg/kg    | 0.050       |             | 5.1      |
| 4-Nitrophenol                | N       | 2790 | mg/kg    |             |             | < 0.050  |
| Naphthalene                  | N       | 2800 | mg/kg    |             |             | 1.8      |
| Acenaphthylene               | N       | 2800 | mg/kg    | 0.010       |             | 2.1      |
| Acenaphthene                 | N       | 2800 | mg/kg    | 0.010       |             | 2.3      |
| Fluorene                     | N       | 2800 | mg/kg    | 0.010       |             | 3.5      |
| Phenanthrene                 | N       | 2800 | mg/kg    | 0.010       |             | 32       |
| Anthracene                   | N       | 2800 | mg/kg    | 0.010       |             | 6.2      |
| Fluoranthene                 | N       | 2800 | mg/kg    | 0.010       |             | 45       |
| Pyrene                       | N       | 2800 | mg/kg    | 0.010       |             | 37       |
| Benzo[a]anthracene           | N       | 2800 | mg/kg    |             |             | 19       |
| Chrysene                     | N       | 2800 | mg/kg    | 0.010       |             | 20       |
| Benzo[b]fluoranthene         | N       | 2800 | mg/kg    |             |             | 23       |
| Benzo[k]fluoranthene         | N       | 2800 | mg/kg    |             |             | 7.8      |
| Benzo[a]pyrene               | N       | 2800 | mg/kg    | 0.010       |             | 19       |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2800 | mg/kg    | 0.010       |             | 11       |
| Dibenz(a,h)Anthracene        | N       | 2800 | mg/kg    | 0.010       |             | 1.9      |
| Benzo[g,h,i]perylene         | N       | 2800 | mg/kg    |             |             | 9.3      |
| Total Of 16 PAH's            | N       | 2800 | mg/kg    | 0.20        |             | 240      |
| PCB 81                       | N       | 2815 |          |             | < 0.0010    |          |
| PCB 77                       | N       | 2815 |          |             | < 0.0010    |          |
| PCB 105                      | N       | 2815 | mg/kg    |             | < 0.0010    |          |
| PCB 114                      | N       | 2815 |          |             | < 0.0010    |          |
| PCB 118                      | N       | 2815 |          | 0.0010      | 0.011       |          |
|                              |         |      |          |             |             |          |

| Client: Causeway Geotech Ltd |         | Ch   | emtest . | Job No.:  | 23-03006    | 23-03006    |
|------------------------------|---------|------|----------|-----------|-------------|-------------|
| Quotation No.: Q22-28455     |         | Chem | test Sar | 1582097   | 1582098     |             |
|                              |         | Ş    | Sample I | BH112     | BH112       |             |
|                              |         |      |          | ole Type: |             | SOIL        |
|                              |         |      |          | epth (m): |             | 1.5         |
|                              |         |      | Date S   | Sampled:  | 27-Jan-2023 | 27-Jan-2023 |
|                              |         |      | Asbes    | stos Lab: |             | DURHAM      |
| Determinand                  | Accred. | SOP  | Units    |           |             |             |
| PCB 123                      | N       | 2815 | mg/kg    | 0.0010    | < 0.0010    |             |
| PCB 126                      | N       | 2815 | mg/kg    | 0.0010    | < 0.0010    |             |
| PCB 156                      | N       | 2815 | mg/kg    | 0.0010    | < 0.0010    |             |
| PCB 157                      | N       | 2815 | mg/kg    | 0.0010    | < 0.0010    |             |
| PCB 167                      | N       | 2815 | mg/kg    | 0.0010    | < 0.0010    |             |
| PCB 169                      | N       | 2815 | mg/kg    | 0.0010    | < 0.0010    |             |
| PCB 189                      | N       | 2815 | mg/kg    | 0.0010    | < 0.0010    |             |
| Total PCBs (12 Congeners)    | N       | 2815 | mg/kg    | 0.0010    | 0.011       |             |
| Resorcinol                   | U       | 2920 | mg/kg    | 0.020     |             | < 0.020     |
| Phenol                       | U       | 2920 | mg/kg    | 0.020     |             | < 0.020     |
| Cresols                      | U       | 2920 | mg/kg    | 0.020     |             | < 0.020     |
| Xylenols                     | U       | 2920 | mg/kg    | 0.020     |             | < 0.020     |
| 1-Naphthol                   | N       | 2920 | mg/kg    | 0.020     |             | < 0.020     |
| Trimethylphenols             | U       | 2920 | mg/kg    | 0.020     |             | < 0.020     |
| Total Phenols                | U       | 2920 | mg/kg    | 0.10      |             | < 0.10      |

### **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                        | рН                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)         | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                                  | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                                   | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2180 | Sulphur (Elemental) in Soils by HPLC                                     | Sulphur                                                                                                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                                          | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                        | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2455 | Acid Soluble Metals in Soils                                             | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                         | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                                                                                                | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2680 | TPH A/A Split                                                            | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44                                                                                    | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.                             |
| 2790 | Semi-Volatile Organic<br>Compounds (SVOCs) in Soils<br>by GC-MS          | Semi-volatile organic compounds(cf. USEPA Method 8270)                                                                                                                                                                                                                    | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2815 | Polychlorinated Biphenyls<br>(PCB) ICES7Congeners in<br>Soils by GC-MS   | ICES7 PCB congeners                                                                                                                                                                                                                                                       | Acetone/Hexane extraction / GC-MS                                                                                                                                                      |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                                               |

### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 23-08329-1

Initial Date of Issue: 24-Mar-2023

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Carin Cornwall
Celine Rooney
Colm Hurley
Darren O'Mahony
Dean McCloskey
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Matthew Graham
Neil Haggan
Neil Patton

S

**Project** 22-1041A 3FM Planning Design GI

Paul Dunlop Rachel White

Quotation No.: Q22-28455 Date Received: 10-Mar-2023

Order No.: Date Instructed: 13-Mar-2023

No. of Samples: 8

Turnaround (Wkdays): 7 Results Due: 21-Mar-2023

Date Approved: 24-Mar-2023

Approved By:

**Details:** Stuart Henderson, Technical

Manager



### **Chemtest**

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

| Project: 22-1041A 3FW Planning Des  | sigii Gi |              |           |          |              |             |             |              |             |             |             |             |
|-------------------------------------|----------|--------------|-----------|----------|--------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|
| Client: Causeway Geotech Ltd        |          | Ch           | emtest Jo | ob No.:  | 23-08329     | 23-08329    | 23-08329    | 23-08329     | 23-08329    | 23-08329    | 23-08329    | 23-08329    |
| Quotation No.: Q22-28455            |          | Chem         | test Sam  | ple ID.: | 1605673      | 1605674     | 1605675     | 1605676      | 1605677     | 1605678     | 1605679     | 1605680     |
| Order No.:                          |          | CI           | ient Samp | le Ref.: | 1            | 1           | 1           | 1            | 1           | 1           | 1           | 1           |
|                                     |          |              | Sample Lo | ocation: | BH120        | BH121       | BH123       | BH125        | BH128       | SW1         | SW2         | SW3         |
|                                     |          |              | Sampl     | е Туре:  | WATER        | WATER       | WATER       | WATER        | WATER       | WATER       | WATER       | WATER       |
|                                     |          |              | Top Dep   | oth (m): | 4.45         | 4.15        | 4.09        | 4.46         | 1.64        | 0.00        | 0.00        | 0.00        |
|                                     |          |              | Date Sa   | ampled:  | 07-Mar-2023  | 07-Mar-2023 | 07-Mar-2023 | 07-Mar-2023  | 07-Mar-2023 | 07-Mar-2023 | 07-Mar-2023 | 07-Mar-2023 |
| Determinand                         | Accred.  | SOP          | Units     | LOD      |              |             |             |              |             |             |             |             |
| рН                                  | U        | 1010         |           | N/A      | 7.0          | 7.4         | 7.5         | 7.2          | 7.3         | 7.2         | 7.3         | 7.4         |
| Dissolved Oxygen                    | N        | 1150         | mg O2/I   | 0.50     | 6.3          | 6.5         | 7.3         | 7.3          | 6.9         | 6.4         | 6.1         | 6.2         |
| Dissolved CO2                       | N        | 1160         | mg/l      | 0.60     | 110          | 19          | 28          | 99           | 38          | 14          | 12          | 8.3         |
| Alkalinity (Total)                  | U        | 1220         | mg/l      | 10       | 490          | 250         | 440         | 730          | 400         | 120         | 110         | 100         |
| Orthophosphate as PO4               | U        | 1220         | mg/l      | 0.050    | 0.067        | 0.064       | 0.064       | 0.064        | 0.061       | 0.16        | 0.16        | 0.15        |
| Sulphur                             | T N      | 1220         | mg/l      | 1.0      | 570          | 530         | 570         | 17           | 230         | 870         | 830         | 880         |
| Cyanide (Total)                     | U        | 1300         | mg/l      | 0.050    | < 0.050      | < 0.050     | < 0.050     | < 0.050      | 0.050       | < 0.050     | < 0.050     | < 0.050     |
| Cyanide (Free)                      | T Ü      | 1300         | mg/l      | 0.050    | < 0.050      | < 0.050     | < 0.050     | < 0.050      | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Sulphide                            | Ü        | 1325         | mg/l      | 0.050    | [B] < 0.050  | [B] < 0.050 | [B] < 0.050 | [B] < 0.050  | [B] < 0.050 | [B] < 0.050 | [B] < 0.050 | [B] < 0.050 |
| Calcium (Dissolved)                 | T U      | 1455         | mg/l      | 2.00     | 350          | 460         | 400         | 200          | 340         | 380         | 390         | 410         |
| Total Hardness as CaCO3             | Ü        | 1270         | mg/l      | 15       | 3900         | 2100        | 4100        | 740          | 970         | 5200        | 5300        | 5300        |
| Aluminium (Dissolved)               | N        | 1455         | µg/l      | 5.0      | 12           | < 5.0       | < 5.0       | < 5.0        | < 5.0       | 53          | 32          | 31          |
| Arsenic (Dissolved)                 | U        | 1455         | μg/l      | 0.20     | 1.3          | 2.2         | 1.1         | 1.2          | 3.5         | 1.7         | 1.6         | 1.6         |
| Boron (Dissolved)                   | U        | 1455         | μg/l      | 10.0     | 3100         | 1400        | 3200        | 1300         | 310         | 3800        | 4200        | 4100        |
| Barium (Dissolved)                  | U        | 1455         | μg/l      | 5.00     | 230          | 1400        | 250         | 280          | 100         | 63          | 54          | 60          |
| Beryllium (Dissolved)               | T U      | 1455         | μg/l      | 1.00     | < 1.0        | < 1.0       | < 1.0       | < 1.0        | < 1.0       | < 1.0       | < 1.0       | < 1.0       |
| Cadmium (Dissolved)                 | U        | 1455         | μg/l      | 0.11     | < 0.11       | 0.15        | < 0.11      | < 0.11       | 2.3         | 0.12        | < 0.11      | < 0.11      |
| Chromium (Dissolved)                | U        | 1455         | μg/l      | 0.11     | 0.52         | 2.1         | < 0.11      | 0.70         | < 0.50      | < 0.50      | < 0.50      | < 0.11      |
| Copper (Dissolved)                  | U        | 1455         | μg/l      | 0.50     | 2.2          | 5.1         | 2.3         | 1.4          | 620         | 14          | 1.2         | 0.98        |
| Iron (Dissolved)                    | N        | 1455         | . · ·     | 5.0      | < 5.0        | < 5.0       | < 5.0       | 9.2          | < 5.0       | < 5.0       | < 5.0       | < 5.0       |
| Mercury (Dissolved)                 | U        | 1455         | μg/l      | 0.05     | < 0.05       | < 0.05      | < 0.05      | < 0.05       | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| , ,                                 | U        | 1455         | μg/l      |          | 3900         | 1700        | 4100        | 740          | 1100        | 34          | 7.7         | 7.4         |
| Manganese (Dissolved)               | U        |              | μg/l      | 0.50     |              | 1700        |             |              | 44          |             |             | 0.75        |
| Nickel (Dissolved) Lead (Dissolved) | U        | 1455<br>1455 | μg/l      | 0.50     | 23<br>< 0.50 |             | 23          | 21<br>< 0.50 | 180         | 1.5         | 0.52        | < 0.50      |
|                                     | U        |              | μg/l      | 0.50     |              | < 0.50      | < 0.50      |              |             | 4.1         | < 0.50      |             |
| Selenium (Dissolved)                | _        | 1455         | μg/l      | 0.50     | 1.5          | 1.4         | 1.3         | 0.79         | 1.2         | 1.2         | 1.5         | 1.2         |
| Vanadium (Dissolved)                | U        | 1455         | μg/l      | 0.50     | < 0.50       | 1.4         | < 0.50      | 0.50         | < 0.50      | 0.90        | 0.87        | 0.92        |
| Zinc (Dissolved)                    | U        | 1455         | μg/l      | 2.5      | 3.7          | 19          | 4.0         | 35           | 820         | 24          | 7.3         | 6.0         |
| Chromium (Total)                    | N        | 1455         | μg/l      | 0.50     | 4.4          | 3.7         | 5.4         | 5.9          | 13          | 3.7         | 3.7         | 4.3         |
| Low-Level Chromium (Hexavalent)     | U        | 1495         | μg/l      | 0.10     | [B] < 0.10   | [B] < 0.10  | [B] < 0.10  | [B] < 0.10   | [B] < 0.10  | [B] < 0.10  | [B] < 0.10  | [B] < 0.10  |
| Dissolved Organic Carbon            | U        | 1610         | mg/l      | 2.0      | 7.4          | 12          | 14          | 140          | 16          | 3.7         | 2.8         | 4.6         |
| Dissolved Methane                   | N        | 1630         | mg/l      | 0.050    | 0.16         | < 0.050     | 0.33        | < 0.050      | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Aliphatic TPH >C5-C6                | N        | 1675         | μg/l      | 0.010    | < 0.010      | < 0.010     | < 0.010     | < 0.010      | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Aliphatic TPH >C6-C8                | N        | 1675         | μg/l      | 0.010    | < 0.010      | < 0.010     | < 0.010     | < 0.010      | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Aliphatic TPH >C8-C10               | N        | 1675         | μg/l      | 0.10     | < 0.10       | < 0.10      | < 0.10      | < 0.10       | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C10-C12              | N        | 1675         | μg/l      | 0.10     | < 0.10       | < 0.10      | < 0.10      | < 0.10       | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C12-C16              | N        | 1675         | μg/l      | 0.10     | < 0.10       | < 0.10      | < 0.10      | < 0.10       | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C16-C21              | N        | 1675         | μg/l      | 0.10     | < 0.10       | < 0.10      | < 0.10      | < 0.10       | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C21-C35              | N        | 1675         | μg/l      | 0.10     | < 0.10       | < 0.10      | < 0.10      | < 0.10       | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aliphatic TPH >C35-C44              | N        | 1675         | μg/l      | 0.10     | < 0.10       | < 0.10      | < 0.10      | < 0.10       | < 0.10      | < 0.10      | < 0.10      | < 0.10      |

| Project: 22-1041A 3FW Planning Des | ign Gi  |              |           |          |             |             |             |             |             |             |             |             |
|------------------------------------|---------|--------------|-----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Client: Causeway Geotech Ltd       |         | Ch           | emtest Jo | ob No.:  | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    |
| Quotation No.: Q22-28455           |         | Chem         | test Sam  | ple ID.: | 1605673     | 1605674     | 1605675     | 1605676     | 1605677     | 1605678     | 1605679     | 1605680     |
| Order No.:                         |         | Cli          | ent Samp  | le Ref.: | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           |
|                                    |         |              | Sample Lo | ocation: | BH120       | BH121       | BH123       | BH125       | BH128       | SW1         | SW2         | SW3         |
|                                    |         |              | Sampl     | е Туре:  | WATER       |
|                                    |         |              | Top De    |          | 4.45        | 4.15        | 4.09        | 4.46        | 1.64        | 0.00        | 0.00        | 0.00        |
|                                    |         |              | Date Sa   | , ,      | 07-Mar-2023 |
| Determinand                        | Accred. | SOP          | Units     | LOD      |             |             |             |             |             |             |             |             |
| Total Aliphatic Hydrocarbons       | N       | 1675         | μg/l      | 1.0      | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       |
| Aromatic TPH >C5-C7                | N       | 1675         | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Aromatic TPH >C7-C8                | N       | 1675         | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Aromatic TPH >C8-C10               | N       | 1675         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C10-C12              | N       | 1675         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C12-C16              | N       | 1675         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C16-C21              | N       | 1675         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C21-C35              | N       | 1675         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Aromatic TPH >C35-C44              | N       | 1675         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Total Aromatic Hydrocarbons        | N       | 1675         | μg/l      | 1.0      | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       |
| Total Petroleum Hydrocarbons       | N       | 1675         | μg/l      | 2.0      | < 2.0       | < 2.0       | < 2.0       | < 2.0       | < 2.0       | < 2.0       | < 2.0       | < 2.0       |
| Dichlorodifluoromethane            | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Chloromethane                      | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Vinyl Chloride                     | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Bromomethane                       | N       | 1760         | μg/l      | 2.0      | < 2.0       | < 2.0       | < 2.0       | < 2.0       | < 2.0       | < 2.0       | < 2.0       | < 2.0       |
| Chloroethane                       | N       | 1760         |           | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
|                                    | N       | 1760         | μg/l      | 0.20     | < 0.20      |             |             |             |             |             | < 0.20      |             |
| Trichlorofluoromethane             |         |              | μg/l      |          |             | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      |
| 1,1-Dichloroethene                 | N       | 1760<br>1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Trans 1,2-Dichloroethene           | N       |              | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,1-Dichloroethane                 | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| cis 1,2-Dichloroethene             | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Bromochloromethane                 | N       | 1760         | μg/l      | 0.50     | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      |
| Trichloromethane                   | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,1,1-Trichloroethane              | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Tetrachloromethane                 | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,1-Dichloropropene                | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Benzene                            | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,2-Dichloroethane                 | N       | 1760         | μg/l      | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Trichloroethene                    | N       | 1760         | μg/l      | 0.10     | 12          | < 0.10      | 11          | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,2-Dichloropropane                | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Dibromomethane                     | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Bromodichloromethane               | N       | 1760         | μg/l      | 0.50     | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      |
| cis-1,3-Dichloropropene            | N       | 1760         | μg/l      | 1.0      | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       |
| Toluene                            | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Trans-1,3-Dichloropropene          | N       | 1760         | μg/l      | 1.0      | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       |
| 1,1,2-Trichloroethane              | N       | 1760         | μg/l      | 0.1      | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       |
| Tetrachloroethene                  | N       | 1760         | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,3-Dichloropropane                | N       | 1760         | μg/l      | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Dibromochloromethane               | N       | 1760         | μg/l      | 1.0      | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       |
|                                    |         |              |           |          |             |             |             |             |             |             |             |             |

| Project: 22-1041A 3FW Planning De | sign Gi |      |           |          |             |             |             |             |             |             |             |             |
|-----------------------------------|---------|------|-----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Client: Causeway Geotech Ltd      |         | Ch   | emtest Jo | ob No.:  | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    |
| Quotation No.: Q22-28455          |         | Chem | test Sam  | ple ID.: | 1605673     | 1605674     | 1605675     | 1605676     | 1605677     | 1605678     | 1605679     | 1605680     |
| Order No.:                        |         | Cli  | ent Samp  | le Ref.: | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           |
|                                   |         | (    | Sample Lo | ocation: | BH120       | BH121       | BH123       | BH125       | BH128       | SW1         | SW2         | SW3         |
|                                   |         |      | Sampl     | е Туре:  | WATER       |
|                                   |         |      | Top De    | pth (m): | 4.45        | 4.15        | 4.09        | 4.46        | 1.64        | 0.00        | 0.00        | 0.00        |
|                                   |         |      | Date Sa   | ampled:  | 07-Mar-2023 |
| Determinand                       | Accred. | SOP  | Units     | LOD      |             |             |             |             |             |             |             |             |
| 1,2-Dibromoethane                 | N       | 1760 | μg/l      | 0.50     | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      |
| Chlorobenzene                     | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,1,1,2-Tetrachloroethane         | N       | 1760 | μg/l      | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Ethylbenzene                      | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| m & p-Xylene                      | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| o-Xylene                          | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Styrene                           | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Tribromomethane                   | N       | 1760 | μg/l      | 1.0      | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       |
| Isopropylbenzene                  | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Bromobenzene                      | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,2,3-Trichloropropane            | N       | 1760 | μg/l      | 5        | < 5         | < 5         | < 5         | < 5         | < 5         | < 5         | < 5         | < 5         |
| N-Propylbenzene                   | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 2-Chlorotoluene                   | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,3,5-Trimethylbenzene            | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 4-Chlorotoluene                   | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Tert-Butylbenzene                 | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,2,4-Trimethylbenzene            | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Sec-Butylbenzene                  | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,3-Dichlorobenzene               | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 4-Isopropyltoluene                | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,4-Dichlorobenzene               | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| N-Butylbenzene                    | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,2-Dichlorobenzene               | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,2-Dibromo-3-Chloropropane       | N       | 1760 | μg/l      | 5        | < 5         | < 5         | < 5         | < 5         | < 5         | < 5         | < 5         | < 5         |
| 1,2,4-Trichlorobenzene            | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Hexachlorobutadiene               | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| 1,2,3-Trichlorobenzene            | N       | 1760 | μg/l      | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Methyl Tert-Butyl Ether           | N       | 1760 | μg/l      | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| N-Nitrosodimethylamine            | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Phenol                            | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2-Chlorophenol                    | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Bis-(2-Chloroethyl)Ether          | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 1,3-Dichlorobenzene               | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 1,4-Dichlorobenzene               | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 1,2-Dichlorobenzene               | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2-Methylphenol (o-Cresol)         | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Bis(2-Chloroisopropyl)Ether       | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Hexachloroethane                  | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| N-Nitrosodi-n-propylamine         | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| - 1 -1/2                          |         |      | 1.5       |          |             |             |             |             |             |             |             |             |

| Project: 22-1041A 3FW Planning Des | ign Gi  |      |           |          |             |             |             |             |             |             |             |             |
|------------------------------------|---------|------|-----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Client: Causeway Geotech Ltd       |         | Ch   | emtest Jo | ob No.:  | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    |
| Quotation No.: Q22-28455           |         | Chem | test Sam  | ple ID.: | 1605673     | 1605674     | 1605675     | 1605676     | 1605677     | 1605678     | 1605679     | 1605680     |
| Order No.:                         |         | Cli  | ent Samp  | le Ref.: | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           |
|                                    | 1       | (    | Sample Lo | ocation: | BH120       | BH121       | BH123       | BH125       | BH128       | SW1         | SW2         | SW3         |
|                                    |         |      | Sampl     |          | WATER       |
|                                    |         |      | Top De    |          | 4.45        | 4.15        | 4.09        | 4.46        | 1.64        | 0.00        | 0.00        | 0.00        |
|                                    |         |      | Date Sa   | ` ,      | 07-Mar-2023 |
| Determinand                        | Accred. | SOP  | Units     | LOD      |             |             |             |             |             |             |             |             |
| 4-Methylphenol                     | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Nitrobenzene                       | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Isophorone                         | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2-Nitrophenol                      | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2,4-Dimethylphenol                 | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Bis(2-Chloroethoxy)Methane         | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2,4-Dichlorophenol                 | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 1,2,4-Trichlorobenzene             | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Naphthalene                        | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 4-Chloroaniline                    | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Hexachlorobutadiene                | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 4-Chloro-3-Methylphenol            | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2-Methylnaphthalene                | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Hexachlorocyclopentadiene          | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2,4,6-Trichlorophenol              | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2,4,5-Trichlorophenol              | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2-Chloronaphthalene                | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2-Nitroaniline                     | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Acenaphthylene                     | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Dimethylphthalate                  | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2,6-Dinitrotoluene                 | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Acenaphthene                       | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 3-Nitroaniline                     | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Dibenzofuran                       | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 4-Chlorophenylphenylether          | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2,4-Dinitrotoluene                 | N       | 1790 | µg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Fluorene                           | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Diethyl Phthalate                  | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 4-Nitroaniline                     | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 2-Methyl-4,6-Dinitrophenol         | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Azobenzene                         | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 4-Bromophenylphenyl Ether          | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Hexachlorobenzene                  | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Pentachlorophenol                  | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Phenanthrene                       | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Anthracene                         | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Carbazole                          | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Di-N-Butyl Phthalate               | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Fluoranthene                       | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| i iuoraniinene                     | IN      | 1790 | μg/I      | 0.000    | < 0.000     | < 0.000     | < 0.000     | < 0.030     | < 0.000     | < 0.030     | < 0.050     | < 0.050     |

| Project: 22-1041A 3FW Planning Des | sign Gi |      |           |          |             |             |             |             |             |             |             |             |
|------------------------------------|---------|------|-----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Client: Causeway Geotech Ltd       |         | Ch   | emtest Jo | ob No.:  | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    |
| Quotation No.: Q22-28455           |         | Chem | test Sam  | ple ID.: | 1605673     | 1605674     | 1605675     | 1605676     | 1605677     | 1605678     | 1605679     | 1605680     |
| Order No.:                         |         | Cli  | ent Samp  | le Ref.: | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           |
|                                    |         |      | Sample Lo |          | BH120       | BH121       | BH123       | BH125       | BH128       | SW1         | SW2         | SW3         |
|                                    |         |      | Sampl     | е Туре:  | WATER       |
|                                    |         |      | Top De    |          | 4.45        | 4.15        | 4.09        | 4.46        | 1.64        | 0.00        | 0.00        | 0.00        |
|                                    |         |      | Date Sa   | , ,      | 07-Mar-2023 |
| Determinand                        | Accred. | SOP  | Units     | LOD      |             |             |             |             |             |             |             |             |
| Pyrene                             | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Butylbenzyl Phthalate              | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Benzo[a]anthracene                 | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Chrysene                           | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Bis(2-Ethylhexyl)Phthalate         | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Di-N-Octyl Phthalate               | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Benzo[b]fluoranthene               | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Benzo[k]fluoranthene               | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Benzo[a]pyrene                     | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Indeno(1,2,3-c,d)Pyrene            | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Dibenz(a,h)Anthracene              | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Benzo[g,h,i]perylene               | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| 4-Nitrophenol                      | N       | 1790 | μg/l      | 0.050    | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Naphthalene                        | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Acenaphthylene                     | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Acenaphthene                       | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Fluorene                           | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Phenanthrene                       | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Anthracene                         | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Fluoranthene                       | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Pyrene                             | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Benzo[a]anthracene                 | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Chrysene                           | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Benzo[b]fluoranthene               | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Benzo[k]fluoranthene               | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Benzo[a]pyrene                     | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Indeno(1,2,3-c,d)Pyrene            | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Dibenz(a,h)Anthracene              | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Benzo[g,h,i]perylene               | N       | 1800 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | [C] < 0.010 | < 0.010     | < 0.010     | < 0.010     |
| Total Of 16 PAH's                  | N       | 1800 | μg/l      | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| PCB 81                             | N       | 1815 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.20      |
| PCB 77                             | N       | 1815 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| PCB 105                            | N       | 1815 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| PCB 114                            | N       | 1815 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| PCB 118                            | N       | 1815 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| PCB 123                            | N       | 1815 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| PCB 126                            | N       | 1815 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| PCB 156                            | N       | 1815 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| PCB 150                            | N N     | 1815 |           | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     |             | < 0.010     | < 0.010     | < 0.010     |
| FUD IOI                            | IV      | 1010 | μg/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |

| Client: Causeway Geotech Ltd  |         | Ch             | emtest J | ob No.:  | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    | 23-08329    |
|-------------------------------|---------|----------------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.: Q22-28455      |         | Chem           | test Sam | ple ID.: | 1605673     | 1605674     | 1605675     | 1605676     | 1605677     | 1605678     | 1605679     | 1605680     |
| Order No.:                    |         | Cli            | ent Samp | le Ref.: | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           |
|                               |         | 5              | Sample L | ocation: | BH120       | BH121       | BH123       | BH125       | BH128       | SW1         | SW2         | SW3         |
|                               |         |                | Sampl    | е Туре:  | WATER       |
|                               |         | Top Depth (m): |          | 4.45     | 4.15        | 4.09        | 4.46        | 1.64        | 0.00        | 0.00        | 0.00        |             |
|                               |         |                | Date Sa  | ampled:  | 07-Mar-2023 |
| Determinand                   | Accred. | SOP            | Units    | LOD      |             |             |             |             |             |             |             |             |
| PCB 167                       | N       | 1815           | μg/l     | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| PCB 169                       | N       | 1815           | μg/l     | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| PCB 189                       | N       | 1815           | μg/l     | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Total PCBs (12 Congeners)     | N       | 1815           | μg/l     | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Phenol                        | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2-Chlorophenol                | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2-Methylphenol (o-Cresol)     | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 3-Methylphenol                | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 4-Methylphenol                | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2-Nitrophenol                 | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,4-Dimethylphenol            | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,4-Dichlorophenol            | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,6-Dichlorophenol            | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 4-Chloro-3-Methylphenol       | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,3,4-Trichlorophenol         | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,3,5-Trichlorophenol         | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,3,6-Trichlorophenol         | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,4,6-Trichlorophenol         | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,4,5-Trichlorophenol         | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 4-Nitrophenol                 | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,3,4,5-Tetrachlorophenol     | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,3,4,6-Tetrachlorophenol     | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2,3,5,6-Tetrachlorophenol     | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 3,4,5-Trichlorophenol         | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2-Methyl-4,6-Dinitrophenol    | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| Pentachlorophenol             | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| 2-Sec-Butyl-4,6-Dinitrophenol | N       | 1900           | μg/l     | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | [C] < 0.20  | < 0.20      | < 0.20      | < 0.20      |
| Total Phenols                 | N       | 1900           | μg/l     | 5.00     | < 5.0       | < 5.0       | < 5.0       | < 5.0       | [C] < 5.0   | < 5.0       | < 5.0       | < 5.0       |

### **Deviations**

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

| Sample: | Sample Ref: | Sample ID: | Sample<br>Location: | Sampled<br>Date: | Deviation Code(s): | Containers<br>Received:          |
|---------|-------------|------------|---------------------|------------------|--------------------|----------------------------------|
| 1605673 | 1           |            | BH120               | 07-Mar-2023      | В                  | Coloured<br>Winchester<br>1000ml |
| 1605673 | 1           |            | BH120               | 07-Mar-2023      | В                  | EPA Vial<br>40ml                 |
| 1605673 | 1           |            | BH120               | 07-Mar-2023      | В                  | Plastic Bottle<br>1000ml         |
| 1605674 | 1           |            | BH121               | 07-Mar-2023      | В                  | Coloured<br>Winchester<br>1000ml |
| 1605674 | 1           |            | BH121               | 07-Mar-2023      | В                  | EPA Vial<br>40ml                 |
| 1605674 | 1           |            | BH121               | 07-Mar-2023      | В                  | Plastic Bottle<br>1000ml         |
| 1605675 | 1           |            | BH123               | 07-Mar-2023      | В                  | Coloured<br>Winchester<br>1000ml |
| 1605675 | 1           |            | BH123               | 07-Mar-2023      | В                  | EPA Vial<br>40ml                 |
| 1605675 | 1           |            | BH123               | 07-Mar-2023      | В                  | Plastic Bottle<br>1000ml         |
| 1605676 | 1           |            | BH125               | 07-Mar-2023      | В                  | Coloured<br>Winchester<br>1000ml |
| 1605676 | 1           |            | BH125               | 07-Mar-2023      | В                  | EPA Vial<br>40ml                 |
| 1605676 | 1           |            | BH125               | 07-Mar-2023      | В                  | Plastic Bottle<br>1000ml         |
| 1605677 | 1           |            | BH128               | 07-Mar-2023      | ВС                 | EPA Vial<br>40ml                 |
| 1605677 | 1           |            | BH128               | 07-Mar-2023      | ВС                 | Plastic Bottle<br>1000ml         |
| 1605678 | 1           |            | SW1                 | 07-Mar-2023      | В                  | Coloured<br>Winchester<br>1000ml |
| 1605678 | 1           |            | SW1                 | 07-Mar-2023      | В                  | EPA Vial<br>40ml                 |
| 1605678 | 1           |            | SW1                 | 07-Mar-2023      | В                  | Plastic Bottle<br>1000ml         |
| 1605679 | 1           |            | SW2                 | 07-Mar-2023      | В                  | Coloured<br>Winchester<br>1000ml |
| 1605679 | 1           |            | SW2                 | 07-Mar-2023      | В                  | EPA Vial<br>40ml                 |
| 1605679 | 1           |            | SW2                 | 07-Mar-2023      | В                  | Plastic Bottle<br>1000ml         |
| 1605680 | 1           |            | SW3                 | 07-Mar-2023      | В                  | Coloured<br>Winchester<br>1000ml |

### **Deviations**

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

| Sample: | Sample Ref: | Sample ID: | Sample<br>Location: | Sampled<br>Date: | Deviation Code(s): | Containers<br>Received:  |
|---------|-------------|------------|---------------------|------------------|--------------------|--------------------------|
| 1605680 | 1           |            | SW3                 | 07-Mar-2023      | В                  | EPA Vial<br>40ml         |
| 1605680 | 1           |            | SW3                 | 07-Mar-2023      | В                  | Plastic Bottle<br>1000ml |

## **Test Methods**

| SOP  | Title                                                                                   | Parameters included                                                                                                                                                                                                                                          | Method summary                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1010 | pH Value of Waters                                                                      | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                         |
| 1150 | Dissolved Oxygen                                                                        | Dissolved Oxygen (DO)                                                                                                                                                                                                                                        | Electrometric determination (on site preferred), using oxygen sensitive membrane electrode.                                                      |
| 1160 | Aggressive Dissolved CO2                                                                | Aggressive Dissolved CO2                                                                                                                                                                                                                                     | Titration                                                                                                                                        |
| 1220 | Anions, Alkalinity & Ammonium in Waters                                                 | Fluoride; Chloride; Nitrite; Nitrate; Total;<br>Oxidisable Nitrogen (TON); Sulfate; Phosphate;<br>Alkalinity; Ammonium                                                                                                                                       | Automated colorimetric analysis using<br>'Aquakem 600' Discrete Analyser.                                                                        |
| 1270 | Total Hardness of Waters                                                                | Total hardness                                                                                                                                                                                                                                               | Calculation applied to calcium and magnesium results, expressed as mg l-1 CaCO3 equivalent.                                                      |
| 1300 | Cyanides & Thiocyanate in Waters                                                        | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                           | Continuous Flow Analysis.                                                                                                                        |
| 1325 | Sulphide in Waters                                                                      | Sulphides                                                                                                                                                                                                                                                    | Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.                                         |
| 1455 | Metals in Waters by ICP-MS                                                              | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc                                                                   | Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).                                 |
| 1495 | Low Level Hexavalent<br>Chromium in Waters                                              | Chromium [VI]                                                                                                                                                                                                                                                | Colorimetric determination of hexavalent chromium expressed as Cr (VI) µg/l in water, using Ion Chromatography and UV-visible spectrophotometry. |
| 1610 | Total/Dissolved Organic Carbon in Waters                                                | Organic Carbon                                                                                                                                                                                                                                               | TOC Analyser using Catalytic Oxidation                                                                                                           |
| 1675 | TPH Aliphatic/Aromatic split in<br>Waters by GC-FID(cf. Texas<br>Method 1006 / TPH CWG) | Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35, >C35-C44                                                                              | Pentane extraction / GCxGC FID detection                                                                                                         |
| 1760 | Volatile Organic Compounds<br>(VOCs) in Waters by<br>Headspace GC-MS                    | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)                                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.     |
| 1790 | Semi-Volatile Organic<br>Compounds (SVOCs) in<br>Waters by GC-MS                        | Semi-volatile organic compounds                                                                                                                                                                                                                              | Solvent extraction / GCMS detection                                                                                                              |
| 1800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Waters by GC-MS              | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene | Pentane extraction / GCMS detection                                                                                                              |
| 1815 | Polychlorinated Biphenyls<br>(PCB) ICES7 Congeners in<br>Waters by GC-MS                | ICES7 PCB congeners                                                                                                                                                                                                                                          | Solvent extraction / GCMS detection                                                                                                              |
| 1900 | Phenols in Waters by GC-MS                                                              | Approximately 24 substituted Phenols, including Chlorophenols                                                                                                                                                                                                | Solvent extraction / GCMS detection                                                                                                              |

#### **Report Information**

#### Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com



# APPENDIX J SPT HAMMER ENERGY MEASUREMENT REPORT



| Project Number: | 22-1041A         |                             |  |  |  |
|-----------------|------------------|-----------------------------|--|--|--|
| Project Name:   | 3FM Planning and | d Design GI Lot A DPC Lands |  |  |  |
| BH Location     | Driller          | SPT Hammer No.              |  |  |  |
| BH101           | CC / GT          | 0197 / 0208                 |  |  |  |
| BH102           | JFSC             | 0696                        |  |  |  |
| BH103           | JFSC             | 0696                        |  |  |  |
| BH105           | JFSC             | 0696                        |  |  |  |
| BH110           | JC               | 1367                        |  |  |  |
| BH112           | JC               | 1367                        |  |  |  |
| BH119           | CC               | 0197                        |  |  |  |
| BH120           | CC / GT          | 0197 / 0208                 |  |  |  |
| BH121           | CC               | 0197                        |  |  |  |
| BH122           | CC               | 0197                        |  |  |  |
| BH123           | BM / GT          | 1386 / 0208                 |  |  |  |
| BH124           | BM / JG          | 1386 / 1387                 |  |  |  |
| BH125           | BM / JG          | 1386 / 1387                 |  |  |  |
| BH126           | JM               | AI2                         |  |  |  |
| BH126A          | JM               | AI2                         |  |  |  |
| BH127           | JM               | AI2                         |  |  |  |
| BH128           | JM               | AI2                         |  |  |  |
| BH130           | CC               | 0197                        |  |  |  |
| BH131           | CC               | 0197                        |  |  |  |

in accordance with BSEN ISO 22476-3:2005

**Southern Testing** 

Unit 11

**Charlwoods Road East Grinstead West Sussex** 

**RH19 2HU** 

SPT Hammer Ref: T30491

Test Date:

18/02/2023

Report Date:

20/02/2023

File Name:

T30491.spt

Test Operator:

**RWS** 

#### **Instrumented Rod Data**

Diameter  $d_r$  (mm):

54

Wall Thickness  $t_r$  (mm):

6.7

Assumed Modulus Ea (GPa): 208

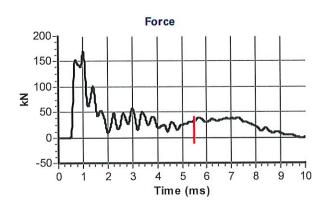
Accelerometer No.1:

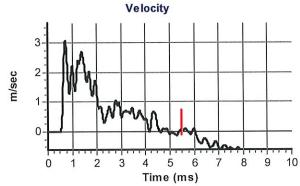
64786

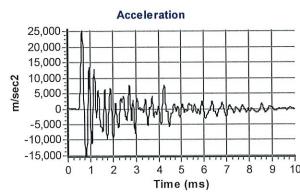
Accelerometer No.2:

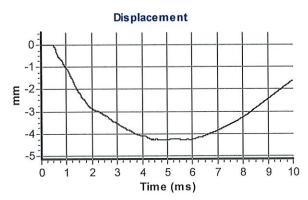
64789

#### **SPT Hammer Information**


Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


SPT String Length L (m): 10.0


#### **Comments / Location**

**CAUSEWAY** 









#### **Calculations**

Area of Rod A (mm2):

996

Theoretical Energy  $E_{theor}$  (J):

473

Measured Energy E<sub>meas</sub>

327

Energy Ratio E<sub>r</sub> (%):

69

Signed: **Bob Stewart** 

Title:

Technician

in accordance with BSEN ISO 22476-3:2005

**Southern Testing** 

Unit 11

Charlwoods Road East Grinstead West Sussex RH19 2HU SPT Hammer Ref: 0197.

Test Date:

18/02/2023

Report Date:

20/02/2023

File Name:

0197..spt

Test Operator:

RWS

#### **Instrumented Rod Data**

Diameter d<sub>r</sub> (mm):

54

Wall Thickness  $t_r$  (mm):

6.7

Assumed Modulus E<sub>a</sub> (GPa): 208

Fallil

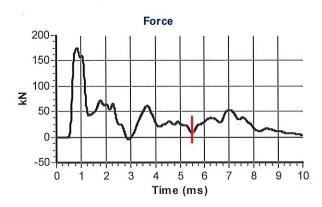
Accelerometer No.1:

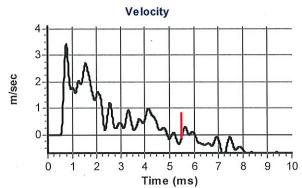
64786

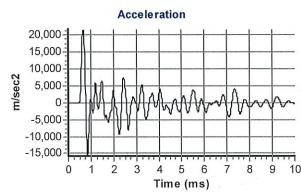
Accelerometer No.2:

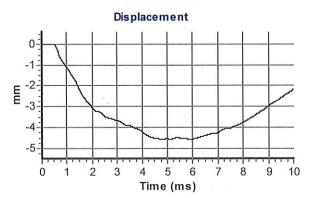
64789

#### **SPT Hammer Information**


Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


SPT String Length L (m): 10.0


#### **Comments / Location**

**CAUSEWAY** 









#### Calculations

Area of Rod A (mm2):

996

Theoretical Energy  $E_{theor}$  (J):

473

Measured Energy E<sub>meas</sub>

(J): 356

Energy Ratio  $E_r$  (%):

**75** 

Signed: Bob Stewart
Title: Technician

in accordance with BSEN ISO 22476-3:2005

**Southern Testing** 

Unit 11

Charlwoods Road East Grinstead West Sussex RH19 2HU SPT Hammer Ref: (

0208.

Test Date:

18/02/2023

Report Date:

20/02/2023

File Name:

0208..spt

Test Operator:

**RWS** 

#### **Instrumented Rod Data**

Diameter d<sub>r</sub> (mm):

54

Wall Thickness  $t_r$  (mm):

6.7

Assumed Modulus E<sub>a</sub> (GPa): 208

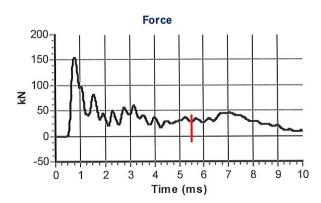
Accelerometer No.1:

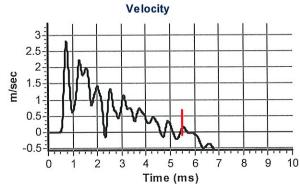
64786

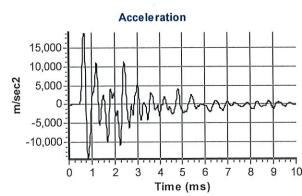
Accelerometer No.2:

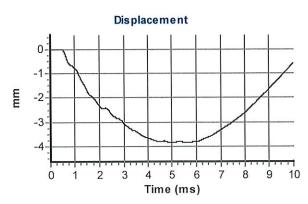
64789

#### **SPT Hammer Information**


Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


SPT String Length L (m): 10.0


Comments / Location

CAUSEWAY









#### Calculations

Area of Rod A (mm2):

996

Theoretical Energy  $E_{theor}$  (J):

473

Measured Energy E<sub>meas</sub>

(J): 244

Energy Ratio  $E_r$  (%):

**52** 

Signed: Bob Stewart
Title: Technician

in accordance with BSEN ISO 22476-3:2005

**Southern Testing** 

Unit 11

Charlwoods Road East Grinstead West Sussex RH19 2HU SPT Hammer Ref: T7.

Test Date:

18/02/2023

Report Date:

20/02/2023

File Name:

T7..spt

Test Operator:

**RWS** 

#### **Instrumented Rod Data**

Diameter d<sub>r</sub> (mm):

54

Wall Thickness  $t_r$  (mm):

6.7

Assumed Modulus Ea (GPa): 208

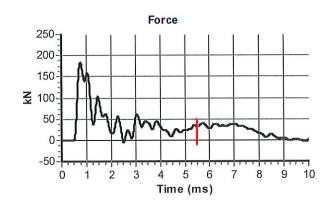
Accelerometer No.1:

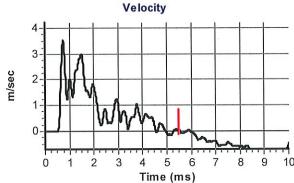
64786

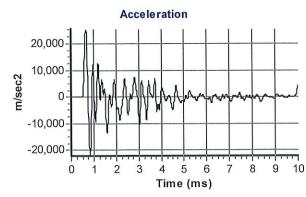
Accelerometer No.2:

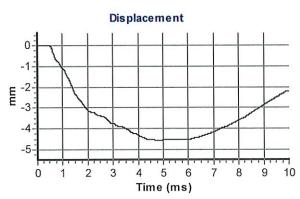
64789

#### **SPT Hammer Information**


Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


SPT String Length L (m): 10.0


#### **Comments / Location**

**CAUSEWAY** 









#### Calculations

Area of Rod A (mm2):

996

Theoretical Energy  $E_{theor}$  (J):

473

Measured Energy  $E_{\rm meas}$ 

(J): 354

Signed: Bob Stewart

Title:

Technician

Energy Ratio  $E_r$  (%):

**75** 

in accordance with BSEN ISO 22476-3:2005

**Southern Testing** 

Unit 11

**Charlwoods Road East Grinstead West Sussex** 

**RH19 2HU** 

SPT Hammer Ref:

1386.

Test Date:

18/02/2023

Report Date:

20/02/2023

File Name:

1386..spt

Test Operator:

**RWS** 

#### **Instrumented Rod Data**

Diameter d<sub>r</sub> (mm):

54

Wall Thickness  $t_r$  (mm):

6.7

Assumed Modulus Ea (GPa): 208

Accelerometer No.1:

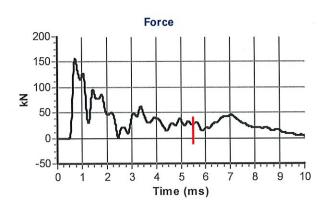
64786

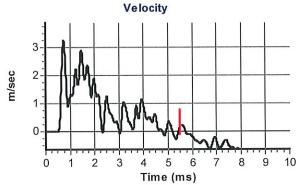
Accelerometer No.2:

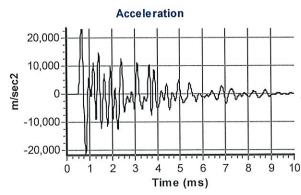
64789

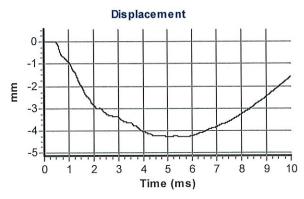
#### **SPT Hammer Information**

Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


10.0


SPT String Length L (m):


#### **Comments / Location**

**CAUSEWAY** 









#### **Calculations**

Area of Rod A (mm2):

996

Theoretical Energy  $E_{theor}$  (J):

473

Measured Energy E<sub>meas</sub>

306 (J):

Energy Ratio  $E_r$  (%):

65

Signed: **Bob Stewart** 

Title:

Technician



in accordance with BSEN ISO 22476-3:2005

SPT Hammer Ref: AI2

Test Date: 05/01/2023
Report Date: 05/01/2023
File Name: AI2.spt

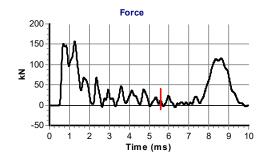
Test Operator: RC

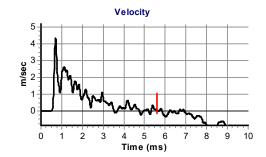
#### **Instrumented Rod Data**

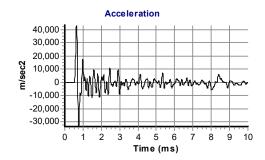
Diameter  $d_r$  (mm): 54

Wall Thickness  $t_r$  (mm): 6.5

Assumed Modulus  $E_a$  (GPa): 208


Accelerometer No.1: 69556


Accelerometer No.2: 69558


#### **SPT Hammer Information**

Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 17.0

**Comments / Location** 









#### **Calculations**

Area of Rod A (mm2): 970 Theoretical Energy  $E_{theor}$  (J): 473 Measured Energy  $E_{meas}$  (J): 352

Energy Ratio  $E_r$  (%):

74

Signed: L Comeon

Title: Principal Geotechnical Engineer



# APPENDIX K GROUNDWATER AND GAS MONITORING RECORDS



## **GROUNDWATER MONITORING RECORDS**

Project Number: 22-1041A





NA= No Access

| Davah ala          | Borehole Installation |                    | Installation   | Depth to water level (mbgl) |        |        |        |        |        |        |        |        |        |        |
|--------------------|-----------------------|--------------------|----------------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Borehole<br>Number | Туре                  | Elevation<br>(mOD) | Date Installed | Depth Range<br>(mbgl)       | 15-Feb | 16-Feb | 17-Feb | 16-Mar | 23-Mar | 07-Apr | 14-Apr | 14-Jul | 08-Aug | 09-Aug |
| BH102              | 50mm                  | 3.05               | 04/01/2023     | 0.50-2.40                   | -      | -      | Dry    |
| BH103              | 50mm                  | 3.52               | 06/01/2023     | 0.50-3.70                   | NA     |
| BH105              | 50mm                  | 3.55               | 20/01/2023     | 0.50-2.20                   | NA     |
| BH112              | 50mm                  | 4.23               | 07/02/2023     | 0.50-3.40                   | Dry    | -      | -      | Dry    | 3.25   | Dry    | Dry    | 4.64   | 3.00   | 3.00   |
| BH120              | 50mm                  | 5.13               | 23/01/2023     | 6.50-20.00                  | -      | 4.65   | -      | 4.02   | 4.90   | 4.45   | 4.64   | 4.47   | 4.18   | 4.40   |
| BH121              | 50mm                  | 4.81               | 17/11/2023     | 0.50-5.50                   | -      | 4.20   | -      | 3.93   | 4.25   | 4.15   | 4.10   | 4.20   | 3.72   | 3.72   |
| BH122              | 50mm                  | 4.72               | 20/11/2022     | 0.50-5.00                   | -      | -      | -      | -      | NA     | NA     | NA     | NA     | NA     | NA     |
| BH123              | 50mm                  | 4.58               | 18/12/2022     | 4.50-6.50                   | 4.13   | -      | -      | 3.80   | 3.91   | 4.09   | 3.75   | 3.88   | NA     | NA     |
| BH124              | 50mm                  | 4.75               | 18/12/2022     | 0.50-1.50                   | -      | -      | -      | 0.94   | -      | 1.47   | 0.98   | Dry    | 0.70   | 0.87   |
| BH125              | 50mm                  | 4.94               | 17/01/2022     | 0.50-5.00                   | 4.52   | -      | -      | 2.04   | 4.40   | 4.46   | 4.42   | 4.45   | 4.32   | 4.28   |
| BH126A             | 50mm                  | 4.89               | 01/12/2022     | 0.50-1.50                   | Dry    | -      | -      | NA     | Dry    | Dry    | NA     | NA     | NA     | NA     |
| BH127              | 50mm                  | 4.65               | 01/12/2022     | 0.50-2.50                   | Dry    | -      | -      | NA     | Dry    | Dry    | NA     | NA     | NA     | NA     |
| BH128              | 50mm                  | 4.71               | 01/12/2022     | 0.50-2.10                   | 1.60   | -      | -      | NA     | 0.95   | 1.64   | NA     | 1.82   | NA     | NA     |

August 2023



| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 16/03/2023                             |
| Weather:     | Dry                                    |
| Engineer:    | RS                                     |

| Equipment:            |                        | Geotechnical Instruments GA5000 |                     |        |          |           |  |  |
|-----------------------|------------------------|---------------------------------|---------------------|--------|----------|-----------|--|--|
| Ambient<br>Conditions | Barometric<br>Pressure | CH₄ (%)                         | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |  |  |
| Before:               | 994                    | 0.0                             | 0.1                 | 21.4   | 0        | 0         |  |  |
| After:                | 994                    | 0.0                             | 0.2                 | 21.1   | 0        | 0         |  |  |

| BH102      |         | Gas readings        |        |          |                        |  |
|------------|---------|---------------------|--------|----------|------------------------|--|
| Time (sec) | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |  |
| 30         | 0.0     | 4.6                 | 15.5   | 0        | 0                      |  |
| 60         | 0.0     | 6.6                 | 12.5   | 0        | 0                      |  |
| 90         | 0.0     | 6.2                 | 13.0   | 0        | 0                      |  |
| 120        | 0.0     | 5.6                 | 13.7   | 0        | 0                      |  |
| 150        | 0.0     | 5.7                 | 13.7   | 0        | 0                      |  |
| 180        | 0.0     | 5.5                 | 13.9   | 0        | 0                      |  |
| 240        | 0.0     | 2.2                 | 14.1   | 0        | 0                      |  |
| 300        | 0.0     | 4.9                 | 14.4   | 0        | 0                      |  |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 0.1        |  |  |
| 60         | 0.2        |  |  |
| 90         | 0.2        |  |  |
| 120        | 0.2        |  |  |
| 150        | 0.2        |  |  |
| 180        | 0.2        |  |  |
| 240        | 0.2        |  |  |
| 300        | 0.2        |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | Dry  |

| BH103      |         | Ga                  | s readings |          |           |
|------------|---------|---------------------|------------|----------|-----------|
| Time (sec) | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%)     | CO (ppm) | H₂S (ppm) |
| 30         | 1       | -                   | -          | -        | -         |
| 60         | 1       | -                   | -          | 1        | -         |
| 90         | -       | -                   | -          | -        | -         |
| 120        | -       | -                   | -          | -        | -         |
| 150        | -       | -                   | -          | -        | -         |
| 180        | -       | -                   | -          | -        | -         |
| 240        | -       | -                   | -          | -        | -         |
| 300        | -       | -                   | -          | -        | -         |

| Flow rates |            |  |  |  |  |
|------------|------------|--|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |  |
| 30         | 1          |  |  |  |  |
| 60         | 1          |  |  |  |  |
| 90         | 1          |  |  |  |  |
| 120        | 1          |  |  |  |  |
| 150        | 1          |  |  |  |  |
| 180        | -          |  |  |  |  |
| 240        | -          |  |  |  |  |
| 300        | -          |  |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

#### No Access to BH103

| BH105      | Gas readings |                                                            |   |          |                        |  |  |
|------------|--------------|------------------------------------------------------------|---|----------|------------------------|--|--|
| Time (sec) | CH₄ (%)      | CH <sub>4</sub> (%) CO <sub>2</sub> (%) O <sub>2</sub> (%) |   | CO (ppm) | H <sub>2</sub> S (ppm) |  |  |
| 30         | 1            | -                                                          | - | -        | 1                      |  |  |
| 60         | -            | -                                                          | - | -        | -                      |  |  |
| 90         | -            | -                                                          | - | -        | -                      |  |  |
| 120        | -            | -                                                          | - | -        | -                      |  |  |
| 150        | -            | -                                                          | - | -        | -                      |  |  |
| 180        | -            | -                                                          | - | -        | -                      |  |  |
| 240        | -            | -                                                          | - | -        | -                      |  |  |
| 300        | -            | -                                                          | - | -        | -                      |  |  |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 1          |  |  |
| 60         | -          |  |  |
| 90         | -          |  |  |
| 120        | -          |  |  |
| 150        | 1          |  |  |
| 180        | -          |  |  |
| 240        | -          |  |  |
| 300        | -          |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

| BH112      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 0.0          | 4.2                 | 15.5   | 0        | 0                      |
| 60         | 0.0          | 6.6                 | 12.5   | 0        | 0                      |
| 90         | 0.0          | 6.2                 | 13.0   | 0        | 0                      |
| 120        | 0.0          | 5.6                 | 13.7   | 0        | 0                      |
| 150        | 0.0          | 5.7                 | 13.7   | 0        | 0                      |
| 180        | 0.0          | 5.5                 | 13.9   | 0        | 0                      |
| 240        | 0.0          | 2.2                 | 14.1   | 0        | 0                      |
| 300        | 0.0          | 4.9                 | 14.4   | 0        | 0                      |

| Flow rates |  |  |
|------------|--|--|
| Flow (I/h) |  |  |
| 0.1        |  |  |
| 0.2        |  |  |
| 0.2        |  |  |
| 0.2        |  |  |
| 0.2        |  |  |
| 0.2        |  |  |
| 0.2        |  |  |
| 0.2        |  |  |
|            |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | Dry  |

| BH120      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 0.5          | 0.8                 | 19.1   | 2        | 0         |
| 60         | 0.5          | 0.9                 | 18.8   | 1        | 0         |
| 90         | 0.6          | 1.1                 | 18.4   | 1        | 0         |
| 120        | 0.7          | 1.3                 | 17.9   | 1        | 0         |
| 150        | 0.8          | 1.4                 | 17.5   | 1        | 0         |
| 180        | 0.9          | 1.6                 | 17.2   | 1        | 0         |
| 240        | 1.5          | 2.0                 | 16.5   | 1        | 0         |
| 300        | 6.3          | 2.7                 | 14.4   | 1        | 0         |
| 400        | 16.5         | 3.4                 | 11.6   | 1        | 0         |
| 500        | 26.5         | 4.1                 | 8.9    | 1        | 0         |
| 600        | 34.4         | 4.8                 | 6.6    | 1        | 0         |
| 700        | 41.0         | 5.3                 | 4.8    | 1        | 0         |
| 800        | 45.9         | 5.7                 | 3.5    | 1        | 0         |
| 900        | 49.5         | 6.0                 | 3.2    | 1        | 0         |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | -4.7       |  |  |  |
| 60         | -3.8       |  |  |  |
| 90         | -3.0       |  |  |  |
| 120        | -2.4       |  |  |  |
| 150        | -1.7       |  |  |  |
| 180        | -1.3       |  |  |  |
| 240        | -0.4       |  |  |  |
| 300        | -0.1       |  |  |  |
| 400        | -0.1       |  |  |  |
| 500        | 0.0        |  |  |  |
| 600        | 0.1        |  |  |  |
| 700        | 0.1        |  |  |  |
| 800        | 0.1        |  |  |  |
| 900        | 0.2        |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4.02 |





| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 16/03/2023                             |
| Weather:     | Dry                                    |
| Engineer:    | RS                                     |

| Equipment:            |                        | Geotechnica | Geotechnical Instruments GA5000 |        |          |                        |
|-----------------------|------------------------|-------------|---------------------------------|--------|----------|------------------------|
| Ambient<br>Conditions | Barometric<br>Pressure | CH₄ (%)     | CO <sub>2</sub> (%)             | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| Before:               | 994                    | 0.0         | 0.1                             | 21.4   | 0        | 0                      |
| After:                | 994                    | 0.0         | 0.2                             | 21.1   | 0        | 0                      |

| BH121      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 0.0          | 1.2                 | 14.9   | 0        | 0         |
| 60         | 0.0          | 1.3                 | 14.7   | 0        | 0         |
| 90         | 0.0          | 1.3                 | 14.7   | 0        | 0         |
| 120        | 0.0          | 1.3                 | 14.7   | 0        | 0         |
| 150        | 0.0          | 1.3                 | 14.8   | 0        | 0         |
| 180        | 0.0          | 1.3                 | 14.8   | 0        | 0         |
| 240        | 0.0          | 1.2                 | 14.9   | 0        | 0         |
| 300        | 0.0          | 1.2                 | 15.1   | 0        | 0         |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | 0.1        |  |  |  |
| 60         | 0.1        |  |  |  |
| 90         | 0.1        |  |  |  |
| 120        | 0.1        |  |  |  |
| 150        | 0.1        |  |  |  |
| 180        | 0.1        |  |  |  |
| 240        | 0.1        |  |  |  |
| 300        | 0.1        |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 3.93 |

| BH123      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 6.2          | 2.1                 | 17.7   | 1        | 0         |
| 60         | 5.6          | 1.9                 | 17.9   | 0        | 0         |
| 90         | 5.1          | 1.7                 | 18.2   | 0        | 0         |
| 120        | 4.6          | 1.5                 | 18.5   | 0        | 0         |
| 150        | 4.2          | 1.4                 | 18.7   | 0        | 0         |
| 180        | 4.0          | 1.3                 | 18.9   | 0        | 0         |
| 240        | 3.5          | 1.1                 | 19.1   | 0        | 0         |
| 300        | 3.1          | 1.0                 | 19.4   | 0        | 0         |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | -15.7      |  |  |
| 60         | -14.5      |  |  |
| 90         | -13.3      |  |  |
| 120        | -12.1      |  |  |
| 150        | -11.2      |  |  |
| 180        | -10.0      |  |  |
| 240        | -8.0       |  |  |
| 300        | -6.2       |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 3.80 |

| BH124      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 44.8         | 11.2                | 0.7    | 2        | 0         |
| 60         | 44.7         | 11.1                | 0.3    | 2        | 0         |
| 90         | 44.9         | 11.2                | 0.2    | 1        | 0         |
| 120        | 45.3         | 11.2                | 0.2    | 1        | 0         |
| 150        | 45.6         | 11.2                | 0.2    | 1        | 0         |
| 180        | 45.7         | 11.2                | 0.1    | 1        | 0         |
| 240        | 45.9         | 11.2                | 0.1    | 1        | 0         |
| 300        | 45.9         | 11.3                | 0.1    | 1        | 0         |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 0.1        |  |  |
| 60         | 0.1        |  |  |
| 90         | 0.2        |  |  |
| 120        | 0.2        |  |  |
| 150        | 0.2        |  |  |
| 180        | 0.2        |  |  |
| 240        | 0.2        |  |  |
| 300        | 0.1        |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 0.95 |

| BH125      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 0.0          | 0.3                 | 24.4   | 0        | 0         |
| 60         | 0.0          | 0.2                 | 20.9   | 0        | 0         |
| 90         | 0.0          | 0.2                 | 21.1   | 0        | 0         |
| 120        | 0.0          | 0.1                 | 21.2   | 0        | 0         |
| 150        | 0.0          | 0.1                 | 21.2   | 0        | 0         |
| 180        | 0.0          | 0.1                 | 21.2   | 0        | 0         |
| 240        | 0.0          | 0.1                 | 21.3   | 0        | 0         |
| 300        | 0.0          | 0.1                 | 21.3   | 0        | 0         |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 0.1        |  |  |
| 60         | 0.1        |  |  |
| 90         | 0.1        |  |  |
| 120        | 0.1        |  |  |
| 150        | 0.1        |  |  |
| 180        | 0.1        |  |  |
| 240        | 0.1        |  |  |
| 300        | 0.1        |  |  |

| Groundwater monitoring | mbgl |  |
|------------------------|------|--|
| Depth to top of water  | 2.04 |  |

| BH126      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | -            | -                   | -      | -        | -         |
| 60         | 1            | ī                   | 1      | -        | -         |
| 90         | 1            | ī                   | 1      | -        | -         |
| 120        | 1            | ī                   | 1      | -        | -         |
| 150        | 1            | ī                   | 1      | -        | -         |
| 180        | 1            | ī                   | 1      | -        | -         |
| 240        | -            | -                   | -      | -        | -         |
| 300        | -            | ī                   | -      | -        | -         |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 1          |  |  |
| 60         | 1          |  |  |
| 90         | 1          |  |  |
| 120        | 1          |  |  |
| 150        | 1          |  |  |
| 180        | -          |  |  |
| 240        | -          |  |  |
| 300        | -          |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |





| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 16/03/2023                             |
| Weather:     | Dry                                    |
| Engineer:    | RS                                     |

| Equipment:            |                        | Geotechnical Instruments GA5000 |                     |        |          |           |
|-----------------------|------------------------|---------------------------------|---------------------|--------|----------|-----------|
| Ambient<br>Conditions | Barometric<br>Pressure | CH₄ (%)                         | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| Before:               | 994                    | 0.0                             | 0.1                 | 21.4   | 0        | 0         |
| After:                | 994                    | 0.0                             | 0.2                 | 21.1   | 0        | 0         |

| BH127      | Gas readings |                     |        |          |           |  |
|------------|--------------|---------------------|--------|----------|-----------|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |  |
| 30         | -            | -                   | -      | -        | -         |  |
| 60         | 1            | -                   | -      | -        | 1         |  |
| 90         | -            | -                   | -      | -        | -         |  |
| 120        | -            | -                   | -      | -        | -         |  |
| 150        | -            | -                   | -      | -        | -         |  |
| 180        | -            | -                   | -      | -        | -         |  |
| 240        | -            | -                   | -      | -        | -         |  |
| 300        | -            | -                   | -      | -        | -         |  |

| Flow rates            |   |  |  |
|-----------------------|---|--|--|
| Time (sec) Flow (I/h) |   |  |  |
| 30                    | - |  |  |
| 60                    | 1 |  |  |
| 90                    | 1 |  |  |
| 120                   | 1 |  |  |
| 150                   | 1 |  |  |
| 180                   | - |  |  |
| 240                   | - |  |  |
| 300                   | - |  |  |

| Groundwater monitoring | mbgl |  |
|------------------------|------|--|
| Depth to top of water  | -    |  |

| No Access | to | BH1 | 27 |
|-----------|----|-----|----|
|-----------|----|-----|----|

| BH128      | Gas readings |                     |        |          |                        |  |
|------------|--------------|---------------------|--------|----------|------------------------|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |  |
| 30         | -            | -                   | -      | -        | -                      |  |
| 60         | 1            | -                   | -      | 1        | 1                      |  |
| 90         | -            | -                   | -      | -        | -                      |  |
| 120        | -            | -                   | -      | -        | -                      |  |
| 150        | -            | -                   | -      | -        | -                      |  |
| 180        | -            | -                   | -      | -        | -                      |  |
| 240        | -            | -                   | -      | -        | -                      |  |
| 300        | -            | -                   | -      | -        | -                      |  |

| Flow rates            |   |  |  |
|-----------------------|---|--|--|
| Time (sec) Flow (I/h) |   |  |  |
| 30                    | - |  |  |
| 60                    | - |  |  |
| 90                    | - |  |  |
| 120                   | - |  |  |
| 150                   | - |  |  |
| 180                   | - |  |  |
| 240                   | - |  |  |
| 300                   | - |  |  |

| Groundwater monitoring | mbgl |  |
|------------------------|------|--|
| Depth to top of water  | 1    |  |



| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 14/04/2023                             |
| Weather:     | Dry                                    |
| Engineer:    | MRG                                    |

| Equipment:            |                        | Geotechnical Instruments GA5000 |                     |        |          |           |
|-----------------------|------------------------|---------------------------------|---------------------|--------|----------|-----------|
| Ambient<br>Conditions | Barometric<br>Pressure | CH₄ (%)                         | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| Before:               | 1000                   | 0.0                             | 0.2                 | 21.0   | 0        | 0         |
| After:                | 1000                   | 0.0                             | 0.1                 | 21.1   | 0        | 0         |

| BH102      | Gas readings |                     |        |          |           |  |
|------------|--------------|---------------------|--------|----------|-----------|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |  |
| 30         | 0.0          | 0.1                 | 20.8   | 0        | 0         |  |
| 60         | 0.0          | 0.1                 | 20.7   | 0        | 0         |  |
| 90         | 0.0          | 0.1                 | 20.7   | 0        | 0         |  |
| 120        | 0.0          | 0.1                 | 20.7   | 0        | 0         |  |
| 150        | 0.0          | 0.1                 | 20.7   | 0        | 0         |  |
| 180        | 0.0          | 0.1                 | 20.7   | 0        | 0         |  |
| 240        | 0.0          | 0.1                 | 20.7   | 0        | 0         |  |
| 300        | 0.0          | 0.1                 | 20.7   | 0        | 0         |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | Dry  |

| -          |              |                     |        |          |                        |  |
|------------|--------------|---------------------|--------|----------|------------------------|--|
| BH103      | Gas readings |                     |        |          |                        |  |
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |  |
| 30         | -            | -                   | -      | -        | -                      |  |
| 60         | -            | -                   | -      | -        | -                      |  |
| 90         | -            | -                   | -      | -        | -                      |  |
| 120        | -            | -                   | -      | -        | -                      |  |
| 150        | -            | -                   | -      | -        | -                      |  |
| 180        | -            | -                   | -      | -        | -                      |  |
| 240        | -            | -                   | -      | -        | -                      |  |
| 300        | -            | -                   | -      | -        | -                      |  |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | 1          |  |  |  |
| 60         | -          |  |  |  |
| 90         | -          |  |  |  |
| 120        | -          |  |  |  |
| 150        | -          |  |  |  |
| 180        | -          |  |  |  |
| 240        | 1          |  |  |  |
| 300        | -          |  |  |  |

Flow rates Time (sec) Flow (I/h)

30 60

90

120

150

180

240

300

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Flow (I/h)

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

| BH105 | Gas readings |   |   |   |   |
|-------|--------------|---|---|---|---|
| 300   | -            | - | - | - | - |
| 240   | -            | - | - | - | - |
| 180   | -            | - | - | - | - |
| 150   | -            | - | - | - | - |
| 120   | -            | - | - | - | - |
| 90    | -            | - | - | - | - |
| 60    | 1            | ī | - | 1 | - |
|       |              |   |   |   |   |

| No Access to | BH103 |
|--------------|-------|
|              |       |

| BH105      |         | Gas readings        |        |          |                        |            | rates |
|------------|---------|---------------------|--------|----------|------------------------|------------|-------|
| Time (sec) | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) | Time (sec) | Flow  |
| 30         | 1       | -                   | -      | -        | -                      | 30         |       |
| 60         | -       | -                   | -      | -        | -                      | 60         |       |
| 90         | -       | -                   | -      | -        | -                      | 90         |       |
| 120        | -       | -                   | -      | -        | -                      | 120        |       |
| 150        | 1       | -                   | -      | -        | -                      | 150        |       |
| 180        | 1       | -                   | -      | -        | -                      | 180        |       |
| 240        | -       | -                   | -      | -        | -                      | 240        |       |
| 300        | -       | -                   | -      | -        | -                      | 300        |       |

| Groundwater monitoring | m |
|------------------------|---|
| Depth to top of water  |   |
|                        |   |
| No Access to BH105     |   |

| BH112      | Gas readings |                     |        |          |                        |  |
|------------|--------------|---------------------|--------|----------|------------------------|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |  |
| 30         | 0.0          | 0.1                 | 20.8   | 0        | 0                      |  |
| 60         | 0.0          | 0.1                 | 20.8   | 0        | 0                      |  |
| 90         | 0.0          | 0.1                 | 20.8   | 0        | 0                      |  |
| 120        | 0.0          | 0.1                 | 20.8   | 0        | 0                      |  |
| 150        | 0.0          | 0.1                 | 20.8   | 0        | 0                      |  |
| 180        | 0.0          | 0.1                 | 20.8   | 0        | 0                      |  |
| 240        | 0.0          | 0.1                 | 20.8   | 0        | 0                      |  |
| 300        | 0.0          | 0.1                 | 20.8   | 0        | 0                      |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | Drv  |

| BH120      | Gas readings |                     |        |          |                        |  |
|------------|--------------|---------------------|--------|----------|------------------------|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |  |
| 30         | 0.0          | 6.9                 | 20.2   | 0        | 0                      |  |
| 60         | 59.4         | 7.2                 | 6.3    | 0        | 0                      |  |
| 90         | 40.6         | 7.3                 | 5.8    | 0        | 0                      |  |
| 120        | 42.1         | 7.6                 | 5.2    | 0        | 0                      |  |
| 150        | 43.1         | 7.7                 | 4.8    | 0        | 0                      |  |
| 180        | 43.6         | 7.8                 | 4.5    | 0        | 0                      |  |
| 240        | 43.6         | 7.8                 | 4.5    | 0        | 0                      |  |
| 300        | 43.6         | 7.8                 | 4.5    | 0        | 0                      |  |

| Flow rates |            |  |
|------------|------------|--|
| Time (sec) | Flow (I/h) |  |
| 30         | 8.1        |  |
| 60         | 9.2        |  |
| 90         | 9.8        |  |
| 120        | 10.7       |  |
| 150        | 10.7       |  |
| 180        | 10.8       |  |
| 240        | 10.8       |  |
| 300        | 10.8       |  |

Flow rates Time (sec) Flow (I/h)

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

30

60

90

120

150

180

240

300

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4.64 |



| Site:        | 3FM Planning Design GI Lot A DPC Lands |  |
|--------------|----------------------------------------|--|
| Project No.: | 22-1041A                               |  |
| Date:        | 14/04/2023                             |  |
| Weather:     | Dry                                    |  |
| Engineer:    | MRG                                    |  |

| Equipment:            |                        | Geotechnical Instruments GA5000 |                     |        |          |                        |
|-----------------------|------------------------|---------------------------------|---------------------|--------|----------|------------------------|
| Ambient<br>Conditions | Barometric<br>Pressure | CH₄ (%)                         | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| Before:               | 1000                   | 0.0                             | 0.2                 | 21.0   | 0        | 0                      |
| After:                | 1000                   | 0.0                             | 0.1                 | 21.1   | 0        | 0                      |

| BH121      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 0.0          | 2.1                 | 18.4   | 0        | 0                      |
| 60         | 0.0          | 1.8                 | 18.3   | 0        | 0                      |
| 90         | 0.0          | 1.9                 | 17.6   | 0        | 0                      |
| 120        | 0.0          | 1.5                 | 15.4   | 0        | 0                      |
| 150        | 0.0          | 1.5                 | 15.2   | 0        | 0                      |
| 180        | 0.0          | 1.5                 | 14.8   | 0        | 0                      |
| 240        | 0.0          | 1.5                 | 14.8   | 0        | 0                      |
| 300        | 0.0          | 1.5                 | 14.8   | 0        | 0                      |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 0.1        |  |  |
| 60         | 0.1        |  |  |
| 90         | 0.1        |  |  |
| 120        | 0.1        |  |  |
| 150        | 0.1        |  |  |
| 180        | 0.1        |  |  |
| 240        | 0.1        |  |  |
| 300        | 0.1        |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4.10 |
|                        |      |

| BH123      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 2.9          | 1.3                 | 18.7   | 0        | 0                      |
| 60         | 2.8          | 1.3                 | 18.7   | 0        | 0                      |
| 90         | 2.2          | 1.0                 | 19.0   | 0        | 0                      |
| 120        | 1.8          | 0.9                 | 19.3   | 0        | 0                      |
| 150        | 1.7          | 0.8                 | 19.3   | 0        | 0                      |
| 180        | 1.5          | 0.8                 | 19.3   | 0        | 0                      |
| 240        | 1.4          | 0.8                 | 19.3   | 0        | 0                      |
| 300        | 1.4          | 0.8                 | 19.3   | 0        | 0                      |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 5.2        |  |  |
| 60         | 5.6        |  |  |
| 90         | 5.7        |  |  |
| 120        | 5.7        |  |  |
| 150        | 5.7        |  |  |
| 180        | 5.7        |  |  |
| 240        | 5.7        |  |  |
| 300        | 5.7        |  |  |

| Groundwater monitoring | mbgl |  |
|------------------------|------|--|
| Depth to top of water  | 3.75 |  |

| BH124      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 1.5          | 1.3                 | 19.0   | 0        | 0         |
| 60         | 2.2          | 2.0                 | 17.8   | 0        | 0         |
| 90         | 4.7          | 3.6                 | 15.3   | 0        | 0         |
| 120        | 6.2          | 5.1                 | 12.3   | 0        | 0         |
| 150        | 6.8          | 5.4                 | 11.6   | 0        | 0         |
| 180        | 6.8          | 5.5                 | 11.4   | 0        | 0         |
| 240        | 6.9          | 5.6                 | 11.3   | 0        | 0         |
| 300        | 6.8          | 5.6                 | 11.3   | 0        | 0         |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 0.1        |  |  |
| 60         | 0.1        |  |  |
| 90         | 0.1        |  |  |
| 120        | 0.1        |  |  |
| 150        | 0.1        |  |  |
| 180        | 0.1        |  |  |
| 240        | 0.1        |  |  |
| 300        | 0.1        |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 0.98 |

| BH125      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 0.0          | 0.3                 | 20.3   | 0        | 0                      |
| 60         | 0.0          | 0.3                 | 20.3   | 0        | 0                      |
| 90         | 0.0          | 0.3                 | 20.3   | 0        | 0                      |
| 120        | 0.0          | 0.4                 | 20.1   | 0        | 0                      |
| 150        | 0.0          | 0.4                 | 20.1   | 0        | 0                      |
| 180        | 0.0          | 0.4                 | 20.1   | 0        | 0                      |
| 240        | 0.0          | 0.4                 | 20.1   | 0        | 0                      |
| 300        | 0.0          | 0.4                 | 20.1   | 0        | 0                      |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 5.2        |  |  |
| 60         | 4.1        |  |  |
| 90         | 3.8        |  |  |
| 120        | 3.5        |  |  |
| 150        | 3.6        |  |  |
| 180        | 3.4        |  |  |
| 240        | 2.8        |  |  |
| 300        | 2.5        |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4.42 |

| BH126      |         | Gas readings        |        |          |                        |
|------------|---------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | -       | ı                   | -      | -        | -                      |
| 60         | 1       | ī                   | 1      | 1        | -                      |
| 90         | 1       | ī                   | 1      | 1        | -                      |
| 120        | 1       | ī                   | 1      | 1        | -                      |
| 150        | 1       | ī                   | 1      | 1        | -                      |
| 180        | 1       | ī                   | 1      | 1        | -                      |
| 240        | -       | -                   | -      | -        | -                      |
| 300        | -       | ı                   | -      | -        | -                      |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | -          |  |  |  |
| 60         | -          |  |  |  |
| 90         | -          |  |  |  |
| 120        | -          |  |  |  |
| 150        | -          |  |  |  |
| 180        | -          |  |  |  |
| 240        | -          |  |  |  |
| 300        | -          |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |





| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 14/04/2023                             |
| Weather:     | Dry                                    |
| Engineer:    | MRG                                    |

| Equipment:            |                        | Geotechnical Instruments GA5000 |                     |        |          |           |
|-----------------------|------------------------|---------------------------------|---------------------|--------|----------|-----------|
| Ambient<br>Conditions | Barometric<br>Pressure | CH₄ (%)                         | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| Before:               | 1000                   | 0.0                             | 0.2                 | 21.0   | 0        | 0         |
| After:                | 1000                   | 0.0                             | 0.1                 | 21.1   | 0        | 0         |

| BH127      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 1            | ı                   | -      | -        | -         |
| 60         | 1            | ı                   | -      | -        | -         |
| 90         | 1            | ı                   | -      | -        | -         |
| 120        | 1            | ī                   | -      | -        | 1         |
| 150        | 1            | ī                   | -      | -        | 1         |
| 180        | 1            | ī                   | -      | -        | 1         |
| 240        | -            | -                   | -      | -        | -         |
| 300        | -            | -                   | -      | -        | -         |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | 1          |  |  |  |
| 60         | 1          |  |  |  |
| 90         | 1          |  |  |  |
| 120        | 1          |  |  |  |
| 150        | 1          |  |  |  |
| 180        | -          |  |  |  |
| 240        | -          |  |  |  |
| 300        | -          |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

No Access to BH127

| BH128      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 1            | ī                   | -      | 1        | 1                      |
| 60         | 1            | ī                   | -      | 1        | 1                      |
| 90         | 1            | ī                   | -      | 1        | 1                      |
| 120        | -            | -                   | -      | -        | -                      |
| 150        | -            | ı                   | -      | -        | -                      |
| 180        | 1            | ī                   | -      | 1        | -                      |
| 240        | -            | ı                   | -      | -        | -                      |
| 300        | -            | -                   | -      | -        | -                      |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | -          |  |  |  |
| 60         | -          |  |  |  |
| 90         | -          |  |  |  |
| 120        | -          |  |  |  |
| 150        | -          |  |  |  |
| 180        | -          |  |  |  |
| 240        | -          |  |  |  |
| 300        | -          |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 1    |



mbgl Dry

| Site: 3FM Planning Design GI Lot A DPC Lands |            |
|----------------------------------------------|------------|
| Project No.:                                 | 22-1041A   |
| Date:                                        | 14/07/2023 |
| Weather:                                     | Wet        |
| Engineer:                                    | RS         |

| Equipment: Geotechnical Instruments GA5000 |                        |         |                     |        |          |           |
|--------------------------------------------|------------------------|---------|---------------------|--------|----------|-----------|
| Ambient<br>Conditions                      | Barometric<br>Pressure | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| Before:                                    | 1005                   | 0.1     | 0.0                 | 21.2   | 1        | 0         |
| After:                                     | 1005                   | 0.1     | 0.0                 | 21.1   | 0        | 0         |

| BH102      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 0.1          | 1.0                 | 18.3   | 1        | 0         |
| 60         | 0.1          | 1.0                 | 18.1   | 1        | 0         |
| 90         | 0.1          | 1.0                 | 18.0   | 1        | 0         |
| 120        | 0.0          | 1.0                 | 17.9   | 0        | 0         |
| 150        | 0.1          | 1.1                 | 17.9   | 1        | 0         |
| 180        | 0.1          | 1.1                 | 17.8   | 0        | 0         |
| 240        | 0.1          | 1.1                 | 17.8   | 0        | 0         |
| 300        | 0.1          | 1.1                 | 17.8   | 0        | 0         |

| Flow     | Flow rates |  |
|----------|------------|--|
| me (sec) | Flow (I/h) |  |
| 30       | 0.5        |  |
| 60       | 0.5        |  |
| 90       | 0.5        |  |
| 120      | 0.5        |  |
| 150      | 0.5        |  |
| 180      | 0.5        |  |
| 240      | 0.5        |  |

| BH103      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 1            | -                   | -      | -        | -                      |
| 60         | 1            | -                   | -      | -        | -                      |
| 90         | 1            | -                   | -      | -        | -                      |
| 120        | -            | -                   | -      | -        | -                      |
| 150        | -            | -                   | -      | -        | -                      |
| 180        | -            | -                   | -      | -        | -                      |
| 240        | -            | -                   | -      | -        | -                      |
| 300        | -            | -                   | -      | -        | -                      |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | -          |  |  |  |
| 60         | -          |  |  |  |
| 90         | -          |  |  |  |
| 120        | -          |  |  |  |
| 150        | -          |  |  |  |
| 180        | -          |  |  |  |
| 240        | -          |  |  |  |
| 300        | -          |  |  |  |

Flow rates

300

0.5

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

| 60    | -            | - | - | 1 | - |
|-------|--------------|---|---|---|---|
| 90    | 1            | ī | 1 | 1 | - |
| 120   | 1            | ī | 1 | 1 | - |
| 150   | -            | - | - | 1 | - |
| 180   | 1            | ī | 1 | 1 | - |
| 240   | 1            | ī | 1 | 1 | - |
| 300   | -            | i | - | - | - |
| BH105 | Gas readings |   |   |   |   |

| No | Access | το | <b>RH103</b> |
|----|--------|----|--------------|
|    |        |    |              |

| BH105      |         | Ga                  | Flow   | rates    |                        |            |            |
|------------|---------|---------------------|--------|----------|------------------------|------------|------------|
| Time (sec) | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) | Time (sec) | Flow (I/h) |
| 30         | -       | -                   | -      | -        | -                      | 30         | -          |
| 60         | -       | -                   | -      | -        | -                      | 60         | -          |
| 90         | -       | -                   | -      | -        | -                      | 90         | -          |
| 120        | -       | -                   | -      | -        | -                      | 120        | -          |
| 150        | -       | -                   | -      | -        | -                      | 150        | -          |
| 180        | -       | -                   | -      | -        | -                      | 180        | -          |
| 240        | -       | -                   | -      | -        | -                      | 240        | -          |
| 300        | -       | -                   | -      | -        | -                      | 300        | -          |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

Groundwater monitoring

Depth to top of water

| 240        | -       | -                   | -          | -        | -         | 240        | -          |
|------------|---------|---------------------|------------|----------|-----------|------------|------------|
| 300        | -       | -                   | -          | -        | -         | 300        | -          |
| BH112      |         | Ga                  | s readings |          |           | Flow       | rates      |
| Time (sec) | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%)     | CO (ppm) | H₂S (ppm) | Time (sec) | Flow (I/h) |
| 30         |         |                     |            |          |           | 30         |            |
| 60         |         |                     |            |          |           | 60         |            |
| 90         |         |                     |            |          |           | 90         |            |
| 120        |         |                     |            |          |           | 120        |            |
| 150        |         |                     |            |          |           | 150        |            |
| 180        |         |                     |            |          |           | 180        |            |
|            |         |                     |            |          |           |            |            |

| No | Access | to | BH105 |
|----|--------|----|-------|
|----|--------|----|-------|

| 300        |              |                     |        |          |                        |  |  |  |
|------------|--------------|---------------------|--------|----------|------------------------|--|--|--|
| BH120      | Gas readings |                     |        |          |                        |  |  |  |
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |  |  |  |
| 30         | 40.2         | 14.6                | 5.3    | 2        | 0                      |  |  |  |
| 60         | 40.5         | 14.8                | 4.7    | 2        | 0                      |  |  |  |
| 90         | 40.7         | 14.9                | 4.5    | 1        | 0                      |  |  |  |
| 120        | 41.0         | 14.9                | 4.4    | 1        | 0                      |  |  |  |
| 150        | 41.5         | 15.1                | 4.2    | 1        | 0                      |  |  |  |
| 180        | 42.0         | 15.4                | 3.9    | 1        | 0                      |  |  |  |
| 240        | 43.4         | 15.9                | 3.4    | 1        | 0                      |  |  |  |

2.9

16.3

300

44.8

| Flow rates |            |  |  |  |  |
|------------|------------|--|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |  |
| 30         |            |  |  |  |  |
| 60         |            |  |  |  |  |
| 90         |            |  |  |  |  |
| 120        |            |  |  |  |  |
| 150        |            |  |  |  |  |
| 180        |            |  |  |  |  |
| 240        |            |  |  |  |  |
| 300        |            |  |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4 47 |

| Flow rates |            |  |  |  |  |  |
|------------|------------|--|--|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |  |  |
| 30         | 0.6        |  |  |  |  |  |
| 60         | 0.7        |  |  |  |  |  |
| 90         | 0.7        |  |  |  |  |  |
| 120        | 0.6        |  |  |  |  |  |
| 150        | 0.6        |  |  |  |  |  |
| 180        | 0.6        |  |  |  |  |  |
| 240        | 0.6        |  |  |  |  |  |
| 300        | 0.6        |  |  |  |  |  |

mbgl



| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 14/07/2023                             |
| Weather:     | Wet                                    |
| Engineer:    | RS                                     |

| Equipment:            |                        | Geotechnica | Geotechnical Instruments GA5000 |        |          |                        |
|-----------------------|------------------------|-------------|---------------------------------|--------|----------|------------------------|
| Ambient<br>Conditions | Barometric<br>Pressure | CH₄ (%)     | CO <sub>2</sub> (%)             | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| Before:               | 1005                   | 0.1         | 0.0                             | 21.2   | 1        | 0                      |
| After:                | 1005                   | 0.1         | 0.0                             | 21.1   | 0        | 0                      |

| BH121      | Gas readings |                     |        |          |           |  |  |
|------------|--------------|---------------------|--------|----------|-----------|--|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |  |  |
| 30         | 0.1          | 4.9                 | 7.1    | 1        | 0         |  |  |
| 60         | 0.1          | 4.9                 | 7.1    | 1        | 0         |  |  |
| 90         | 0.1          | 4.9                 | 7.0    | 1        | 0         |  |  |
| 120        | 0.1          | 4.9                 | 6.9    | 1        | 0         |  |  |
| 150        | 0.1          | 4.9                 | 6.9    | 1        | 0         |  |  |
| 180        | 0.1          | 4.9                 | 6.9    | 1        | 0         |  |  |
| 240        | 0.1          | 4.9                 | 6.7    | 0        | 0         |  |  |
| 300        | 0.1          | 2.0                 | 6.5    | 0        | 0         |  |  |

| Flow rates |            |  |  |  |  |  |  |
|------------|------------|--|--|--|--|--|--|
|            |            |  |  |  |  |  |  |
| Time (sec) | Flow (I/h) |  |  |  |  |  |  |
| 30         | 0.5        |  |  |  |  |  |  |
| 60         | 0.5        |  |  |  |  |  |  |
| 90         | 0.5        |  |  |  |  |  |  |
| 120        | 0.5        |  |  |  |  |  |  |
| 150        | 0.5        |  |  |  |  |  |  |
| 180        | 0.5        |  |  |  |  |  |  |
| 240        | 0.5        |  |  |  |  |  |  |
| 300        | 0.5        |  |  |  |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4.20 |
|                        |      |

| BH123      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 19.5         | 8.9                 | 11.2   | 3        | 0                      |
| 60         | 19.1         | 8.8                 | 11.3   | 2        | 0                      |
| 90         | 18.9         | 8.7                 | 11.4   | 2        | 0                      |
| 120        | 18.7         | 8.6                 | 11.6   | 2        | 0                      |
| 150        | 18.0         | 8.4                 | 11.8   | 2        | 0                      |
| 180        | 17.0         | 7.8                 | 12.4   | 2        | 0                      |
| 240        | 15.2         | 7.4                 | 13.1   | 2        | 0                      |
| 300        | 14.8         | 7.2                 | 13.3   | 2        | 0                      |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | -19.8      |  |  |
| 60         | -18.9      |  |  |
| 90         | -18.0      |  |  |
| 120        | -16.9      |  |  |
| 150        | -16.0      |  |  |
| 180        | -15.2      |  |  |
| 240        | -13.6      |  |  |
| 300        | -12.2      |  |  |

| Groundwater monitoring | mbgl |  |
|------------------------|------|--|
| Depth to top of water  | 3.88 |  |

| BH124      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 28.1         | 20.7                | 0.7    | 9        | 2         |
| 60         | 28.5         | 21.0                | 0.2    | 8        | 3         |
| 90         | 29.1         | 21.1                | 0.1    | 8        | 3         |
| 120        | 29.3         | 21.1                | 0.1    | 7        | 3         |
| 150        | 29.4         | 21.2                | 0.1    | 7        | 3         |
| 180        | 29.5         | 21.1                | 0.1    | 7        | 3         |
| 240        | 29.3         | 21.0                | 0.2    | 6        | 3         |
| 300        | 29.7         | 21.2                | 0.0    | 6        | 3         |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 0.5        |  |  |
| 60         | 0.5        |  |  |
| 90         | 0.5        |  |  |
| 120        | 0.5        |  |  |
| 150        | 0.5        |  |  |
| 180        | 0.5        |  |  |
| 240        | 0.5        |  |  |
| 300        | 0.5        |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | Dry  |

| BH125      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 3.9          | 13.6                | 2.8    | 3        | 0                      |
| 60         | 3.9          | 13.6                | 2.8    | 3        | 0                      |
| 90         | 3.9          | 13.7                | 2.9    | 3        | 0                      |
| 120        | 4.1          | 14.1                | 2.5    | 3        | 0                      |
| 150        | 4.9          | 15.4                | 1.9    | 3        | 0                      |
| 180        | 5.2          | 16.0                | 1.6    | 3        | 0                      |
| 240        | 6.8          | 18.0                | 0.6    | 3        | 0                      |
| 300        | 7.6          | 18.8                | 0.2    | 3        | 0                      |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | 0.5        |  |  |
| 60         | 0.5        |  |  |
| 90         | 0.5        |  |  |
| 120        | 0.6        |  |  |
| 150        | 0.6        |  |  |
| 180        | 0.6        |  |  |
| 240        | 0.6        |  |  |
| 300        | 0.6        |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4.45 |

| BH126      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | -            | -                   | -      | -        | -                      |
| 60         | 1            | ī                   | -      | -        | -                      |
| 90         | 1            | ī                   | -      | -        | -                      |
| 120        | 1            | ī                   | -      | -        | -                      |
| 150        | 1            | ī                   | -      | -        | -                      |
| 180        | 1            | ī                   | -      | -        | -                      |
| 240        | -            | -                   | -      | -        | -                      |
| 300        | -            | -                   | -      | -        | -                      |

| Flow rates |            |  |
|------------|------------|--|
| Time (sec) | Flow (I/h) |  |
| 30         | -          |  |
| 60         | -          |  |
| 90         | -          |  |
| 120        | -          |  |
| 150        | -          |  |
| 180        | -          |  |
| 240        | -          |  |
| 300        | -          |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |





| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 14/07/2023                             |
| Weather:     | Wet                                    |
| Engineer:    | RS                                     |

| Equipment:            | uipment: Geotechnical Instruments GA5000 |                                                                                            |     |      |   |   |
|-----------------------|------------------------------------------|--------------------------------------------------------------------------------------------|-----|------|---|---|
| Ambient<br>Conditions | Barometric<br>Pressure                   | CH <sub>4</sub> (%) CO <sub>2</sub> (%) O <sub>2</sub> (%) CO (ppm) H <sub>2</sub> S (ppm) |     |      |   |   |
| Before:               | 1005                                     | 0.1                                                                                        | 0.0 | 21.2 | 1 | 0 |
| After:                | 1005                                     | 0.1                                                                                        | 0.0 | 21.1 | 0 | 0 |

| BH127      | Gas readings |                     |        |          |           |  |  |
|------------|--------------|---------------------|--------|----------|-----------|--|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |  |  |
| 30         | -            | ı                   | -      | -        | -         |  |  |
| 60         | 1            | ī                   | -      | 1        | 1         |  |  |
| 90         | 1            | ī                   | -      | 1        | 1         |  |  |
| 120        | -            | -                   | -      | -        | -         |  |  |
| 150        | -            | -                   | -      | -        | -         |  |  |
| 180        | -            | -                   | -      | -        | -         |  |  |
| 240        | -            | -                   | -      | -        | -         |  |  |
| 300        | -            | -                   | -      | -        | -         |  |  |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | -          |  |  |  |
| 60         | -          |  |  |  |
| 90         | 1          |  |  |  |
| 120        | 1          |  |  |  |
| 150        | 1          |  |  |  |
| 180        | -          |  |  |  |
| 240        | -          |  |  |  |
| 300        | -          |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

| No / | Access to | o BH121 |
|------|-----------|---------|
|------|-----------|---------|

| BH128      | Gas readings |                     |        |          |                        |  |
|------------|--------------|---------------------|--------|----------|------------------------|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |  |
| 30         | 0.1          | 1.4                 | 20.7   | 0        | 0                      |  |
| 60         | 0.0          | 1.4                 | 20.9   | 0        | 0                      |  |
| 90         | 0.0          | 1.6                 | 20.8   | 0        | 0                      |  |
| 120        | 0.0          | 1.9                 | 20.7   | 0        | 0                      |  |
| 150        | 0.0          | 2.3                 | 20.4   | 0        | 0                      |  |
| 180        | 0.0          | 2.6                 | 20.1   | 0        | 0                      |  |
| 240        | 0.0          | 3.1                 | 19.5   | 0        | 0                      |  |
| 300        | 0.1          | 3.4                 | 19.0   | 0        | 0                      |  |

| Flow rates            |     |  |  |  |
|-----------------------|-----|--|--|--|
| Time (sec) Flow (I/h) |     |  |  |  |
| 30                    | 0.5 |  |  |  |
| 60                    | 0.5 |  |  |  |
| 90                    | 0.5 |  |  |  |
| 120                   | 0.5 |  |  |  |
| 150                   | 0.5 |  |  |  |
| 180                   | 0.5 |  |  |  |
| 240                   | 0.5 |  |  |  |
| 300                   | 0.5 |  |  |  |

| Groundwater monitoring | mbgl |  |
|------------------------|------|--|
| Depth to top of water  | 1.82 |  |



| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 08/08/2023                             |
| Weather:     | Dry; LOW TIDE                          |
| Engineer:    | EGA                                    |

| Equipment:            |                        | Geotechnical Instruments GA5000 |                     |                    |          |           |
|-----------------------|------------------------|---------------------------------|---------------------|--------------------|----------|-----------|
| Ambient<br>Conditions | Barometric<br>Pressure | CH₄ (%)                         | CO <sub>2</sub> (%) | 0 <sub>2</sub> (%) | CO (ppm) | H₂S (ppm) |
| Before:               | 1015                   | 0.0                             | 0.0                 | 21.2               | 1        | 0         |
| After:                | 1015                   | 0.0                             | 0.0                 | 21.3               | 1        | 0         |

| BH102      | Gas readings |                     |        |          |           |  |
|------------|--------------|---------------------|--------|----------|-----------|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |  |
| 30         | 0.1          | 0.0                 | 21.1   | 1        | 0         |  |
| 60         | 0.1          | 0.0                 | 21.1   | 1        | 0         |  |
| 90         | 0.1          | 0.0                 | 21.1   | 1        | 1         |  |
| 120        | 0.1          | 0.1                 | 21.0   | 1        | 1         |  |
| 150        | 0.1          | 0.1                 | 21.0   | 0        | 1         |  |
| 180        | 0.1          | 0.1                 | 21.0   | 1        | 1         |  |
| 240        | 0.1          | 0.1                 | 21.0   | 1        | 1         |  |
| 300        | 0.1          | 0.1                 | 21.0   | 1        | 1         |  |

| Flow rates |            |  |  |  |  |
|------------|------------|--|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |  |
| 30         | 0.1        |  |  |  |  |
| 60         | 0.1        |  |  |  |  |
| 90         | 0.1        |  |  |  |  |
| 120        | 0.1        |  |  |  |  |
| 150        | 0.1        |  |  |  |  |
| 180        | 0.1        |  |  |  |  |
| 240        | 0.1        |  |  |  |  |
| 300        | 0.1        |  |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | Dry  |

| BH103      | Gas readings |                     |        |          |                        |  |  |
|------------|--------------|---------------------|--------|----------|------------------------|--|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |  |  |
| 30         | 1            | -                   | -      | 1        | 1                      |  |  |
| 60         | 1            | -                   | -      | 1        | 1                      |  |  |
| 90         | -            | -                   | -      | -        | -                      |  |  |
| 120        | -            | -                   | -      | -        | -                      |  |  |
| 150        | -            | -                   | -      | -        | -                      |  |  |
| 180        | -            | -                   | -      | -        | -                      |  |  |
| 240        | -            | -                   | -      | -        | -                      |  |  |
| 300        | -            | -                   | -      | -        | -                      |  |  |

| Flow rates |            |  |  |  |  |
|------------|------------|--|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |  |
| 30         | 1          |  |  |  |  |
| 60         | 1          |  |  |  |  |
| 90         | -          |  |  |  |  |
| 120        | -          |  |  |  |  |
| 150        | 1          |  |  |  |  |
| 180        | 1          |  |  |  |  |
| 240        | 1          |  |  |  |  |
| 300        | -          |  |  |  |  |

3.8

4.1

4.3

4.6

4.7

4.8

4.8

Flow rates Time (sec) Flow (I/h)

60

90

120

150

180

240

300

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

| BH105 | Gas readings |   |   |   |   | Flow | rates |
|-------|--------------|---|---|---|---|------|-------|
|       |              |   |   |   |   |      |       |
| 300   | -            | - | - | - | - | 300  | -     |
| 240   | 1            | ī | 1 | 1 | - | 240  | -     |
| 180   | 1            | ī | 1 | 1 | - | 180  | -     |
| 150   | 1            | ī | 1 | 1 | - | 150  | -     |
| 120   | 1            | ī | 1 | 1 | - | 120  | -     |
| 90    | -            | - | - | - | - | 90   | -     |
| 00    | -            | - | _ | _ | - | 00   | -     |

| No | Access | to | BH | 103 |
|----|--------|----|----|-----|
|----|--------|----|----|-----|

| BH105      | Gas readings        |                     |        |          |                        | Flow       | rates      |
|------------|---------------------|---------------------|--------|----------|------------------------|------------|------------|
| Time (sec) | CH <sub>4</sub> (%) | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) | Time (sec) | Flow (I/h) |
| 30         | -                   | -                   | -      | -        | -                      | 30         | -          |
| 60         | -                   | -                   | -      | -        | -                      | 60         | -          |
| 90         | -                   | -                   | -      | -        | -                      | 90         | -          |
| 120        | -                   | -                   | -      | -        | -                      | 120        | -          |
| 150        | -                   | -                   | -      | -        | -                      | 150        | -          |
| 180        | -                   | -                   | -      | -        | -                      | 180        | -          |
| 240        | -                   | -                   | -      | -        | -                      | 240        | -          |
| 300        | -                   | -                   | -      | -        | -                      | 300        | -          |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

| BH112      | Gas readings |                     |        |          |                        | Flow       | rates      |
|------------|--------------|---------------------|--------|----------|------------------------|------------|------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) | Time (sec) | Flow (I/h) |
| 30         | 0.1          | 0.2                 | 20.9   | 1        | 0                      | 30         | 0.1        |
| 60         | 0.1          | 0.3                 | 20.6   | 1        | 0                      | 60         | 0.1        |
| 90         | 0.1          | 0.7                 | 20.0   | 1        | 0                      | 90         | 0.1        |
| 120        | 0.1          | 0.5                 | 20.5   | 1        | 0                      | 120        | 0.1        |
| 150        | 0.1          | 0.3                 | 20.5   | 1        | 0                      | 150        | 0.1        |
| 180        | 0.1          | 0.1                 | 20.8   | 1        | 0                      | 180        | 0.1        |
| 240        | 0.1          | 3.2                 | 18.5   | 1        | 0                      | 240        | 0.1        |
| 300        | 0.0          | 4.0                 | 15.8   | 1        | 1                      | 300        | 0.1        |

| No | Access | to | BH105 |
|----|--------|----|-------|
|----|--------|----|-------|

| 300        | 0.0          | 7.0                 | 15.0   | 1        | _                      |  |  |
|------------|--------------|---------------------|--------|----------|------------------------|--|--|
|            |              | •                   | •      | •        |                        |  |  |
| BH120      | Gas readings |                     |        |          |                        |  |  |
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |  |  |
| 30         | 27.2         | 10.3                | 8.7    | 2        | 0                      |  |  |
| 60         | 27.7         | 10.5                | 8.3    | 2        | 0                      |  |  |
| 90         | 28.3         | 10.7                | 8.0    | 2        | 0                      |  |  |
| 120        | 28.7         | 10.8                | 7.7    | 2        | 0                      |  |  |
| 150        | 29.1         | 11.0                | 7.5    | 2        | 0                      |  |  |
| 180        | 29.7         | 11.2                | 7.2    | 2        | 0                      |  |  |
| 240        | 31.6         | 12.0                | 6.3    | 2        | 0                      |  |  |
| 300        | 33.7         | 12.8                | 5.5    | 1        | 0                      |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 3.00 |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4.18 |



| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 08/08/2023                             |
| Weather:     | Dry; LOW TIDE                          |
| Engineer:    | EGA                                    |

| Equipment:            | Equipment: Geotechnical Instruments GA5000 |         |                     |        |          |           |
|-----------------------|--------------------------------------------|---------|---------------------|--------|----------|-----------|
| Ambient<br>Conditions | Barometric<br>Pressure                     | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| Before:               | 1015                                       | 0.0     | 0.0                 | 21.2   | 1        | 0         |
| After:                | 1015                                       | 0.0     | 0.0                 | 21.3   | 1        | 0         |

| BH121      | Gas readings |                     |        |          |           |  |
|------------|--------------|---------------------|--------|----------|-----------|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |  |
| 30         | 0.0          | 1.9                 | 13.1   | 1        | 0         |  |
| 60         | 0.0          | 1.9                 | 13.0   | 1        | 0         |  |
| 90         | 0.0          | 1.9                 | 13.0   | 1        | 0         |  |
| 120        | 0.0          | 1.9                 | 13.0   | 1        | 0         |  |
| 150        | 0.0          | 1.9                 | 13.0   | 1        | 0         |  |
| 180        | 0.0          | 1.9                 | 13.0   | 1        | 0         |  |
| 240        | 0.0          | 1.9                 | 13.1   | 1        | 0         |  |
| 300        | 0.0          | 1.9                 | 13.3   | 1        | 0         |  |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | 0.2        |  |  |  |
| 60         | 0.3        |  |  |  |
| 90         | 0.3        |  |  |  |
| 120        | 0.3        |  |  |  |
| 150        | 0.3        |  |  |  |
| 180        | 0.3        |  |  |  |
| 240        | 0.3        |  |  |  |
| 300        | 0.3        |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 3.72 |

| BH123      | Gas readings |                     |        |          |           |  |
|------------|--------------|---------------------|--------|----------|-----------|--|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |  |
| 30         | -            | -                   | -      | -        | -         |  |
| 60         | -            | -                   | -      | 1        | 1         |  |
| 90         | -            | -                   | -      | 1        | 1         |  |
| 120        | -            | -                   | -      | 1        | 1         |  |
| 150        | -            | -                   | -      | 1        | 1         |  |
| 180        | -            | -                   | -      | -        | -         |  |
| 240        | -            | -                   | -      | -        | -         |  |
| 300        | -            | -                   | -      | -        | -         |  |

| Flow rates |            |  |  |
|------------|------------|--|--|
| Time (sec) | Flow (I/h) |  |  |
| 30         | -          |  |  |
| 60         | -          |  |  |
| 90         | -          |  |  |
| 120        | -          |  |  |
| 150        | -          |  |  |
| 180        | -          |  |  |
| 240        | -          |  |  |
| 300        | -          |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 1    |

No Access to BH123

| BH124      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 9.4          | 3.0                 | 0.4    | 6        | 4         |
| 60         | 10.0         | 3.0                 | 0.2    | 6        | 4         |
| 90         | 10.0         | 3.0                 | 0.2    | 6        | 4         |
| 120        | 9.9          | 3.1                 | 0.2    | 5        | 5         |
| 150        | 9.7          | 3.1                 | 0.2    | 5        | 5         |
| 180        | 9.7          | 3.2                 | 0.1    | 5        | 6         |
| 240        | 9.5          | 3.2                 | 0.1    | 5        | 6         |
| 300        | 9.4          | 3.3                 | 0.1    | 5        | 3         |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | 0.1        |  |  |  |
| 60         | 0.1        |  |  |  |
| 90         | 0.1        |  |  |  |
| 120        | 0.1        |  |  |  |
| 150        | 0.1        |  |  |  |
| 180        | 0.1        |  |  |  |
| 240        | 0.1        |  |  |  |
| 300        | 0.1        |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 0.70 |

| BH125      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 12.0         | 14.4                | 6.6    | 5        | 0                      |
| 60         | 11.7         | 14.1                | 6.8    | 5        | 0                      |
| 90         | 10.7         | 13.1                | 7.8    | 4        | 0                      |
| 120        | 9.2          | 11.8                | 9.2    | 4        | 0                      |
| 150        | 7.7          | 10.6                | 10.6   | 3        | 0                      |
| 180        | 6.4          | 9.7                 | 11.7   | 3        | 0                      |
| 240        | 3.7          | 7.7                 | 14.0   | 1        | 0                      |
| 300        | 1.8          | 6.5                 | 15.7   | 1        | 0                      |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | 0.2        |  |  |  |
| 60         | 0.2        |  |  |  |
| 90         | 0.2        |  |  |  |
| 120        | 0.2        |  |  |  |
| 150        | 0.2        |  |  |  |
| 180        | 0.2        |  |  |  |
| 240        | 0.2        |  |  |  |
| 300        | 0.2        |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4.32 |

| BH126      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | -            | -                   | -      | -        | -         |
| 60         | 1            | ī                   | 1      | -        | -         |
| 90         | 1            | ī                   | 1      | -        | -         |
| 120        | 1            | ī                   | 1      | -        | -         |
| 150        | 1            | ī                   | 1      | -        | -         |
| 180        | 1            | ī                   | 1      | -        | -         |
| 240        | -            | -                   | -      | -        | -         |
| 300        | -            | ī                   | -      | -        | -         |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | 1          |  |  |  |
| 60         | 1          |  |  |  |
| 90         | 1          |  |  |  |
| 120        | 1          |  |  |  |
| 150        | 1          |  |  |  |
| 180        | 1          |  |  |  |
| 240        | -          |  |  |  |
| 300        | -          |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |





| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 08/08/2023                             |
| Weather:     | Dry; LOW TIDE                          |
| Engineer:    | EGA                                    |

| Equipment:            |                        | Geotechnical Instruments GA5000 |                     |        |          |           |
|-----------------------|------------------------|---------------------------------|---------------------|--------|----------|-----------|
| Ambient<br>Conditions | Barometric<br>Pressure | CH₄ (%)                         | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| Before:               | 1015                   | 0.0                             | 0.0                 | 21.2   | 1        | 0         |
| After:                | 1015                   | 0.0                             | 0.0                 | 21.3   | 1        | 0         |

| BH127      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | -            | -                   | -      | -        | -         |
| 60         | -            | -                   | -      | -        | -         |
| 90         | -            | -                   | -      | -        | -         |
| 120        | -            | -                   | -      | -        | -         |
| 150        | -            | -                   | -      | -        | -         |
| 180        | -            | -                   | -      | -        | -         |
| 240        | -            | -                   | -      | -        | -         |
| 300        | -            | -                   | -      | -        | -         |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | 1          |  |  |  |
| 60         | -          |  |  |  |
| 90         | -          |  |  |  |
| 120        | 1          |  |  |  |
| 150        | 1          |  |  |  |
| 180        | -          |  |  |  |
| 240        | -          |  |  |  |
| 300        | -          |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

| No / | Access to | o BH121 |
|------|-----------|---------|
|------|-----------|---------|

| BH128      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 1            | -                   | -      | 1        | 1                      |
| 60         | 1            | -                   | -      | 1        | 1                      |
| 90         | 1            | -                   | -      | 1        | 1                      |
| 120        | -            | -                   | -      | -        | -                      |
| 150        | -            | -                   | -      | -        | -                      |
| 180        | -            | -                   | -      | -        | -                      |
| 240        | -            | -                   | -      | -        | -                      |
| 300        | -            | -                   | -      | -        | -                      |

| Flow rates |            |  |  |  |  |
|------------|------------|--|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |  |
| 30         | -          |  |  |  |  |
| 60         | -          |  |  |  |  |
| 90         | -          |  |  |  |  |
| 120        | -          |  |  |  |  |
| 150        | -          |  |  |  |  |
| 180        | -          |  |  |  |  |
| 240        | -          |  |  |  |  |
| 300        | -          |  |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 1    |



| Site:        | 3FM Planning Design GI Lot A DPC Lands |  |  |
|--------------|----------------------------------------|--|--|
| Project No.: | 22-1041A                               |  |  |
| Date:        | 09/08/2023                             |  |  |
| Weather:     | Dry; HIGH TIDE                         |  |  |
| Engineer:    | EGA                                    |  |  |

| Equipment:            |                        | Geotechnical Instruments GA5000                                                           |     |      |   |   |
|-----------------------|------------------------|-------------------------------------------------------------------------------------------|-----|------|---|---|
| Ambient<br>Conditions | Barometric<br>Pressure | CH <sub>4</sub> (%) CO <sub>2</sub> (%) O <sub>2</sub> (%) CO (ppm) H <sub>2</sub> S (ppn |     |      |   |   |
| Before:               | 10                     | 0.1                                                                                       | 0.0 | 21.4 | 1 | 0 |
| After:                | 1017                   | 0.0                                                                                       | 0.0 | 21.0 | 1 | 0 |

| BH102      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 0.1          | 0.9                 | 18.8   | 0        | 0         |
| 60         | 0.1          | 0.9                 | 18.6   | 0        | 0         |
| 90         | 0.1          | 0.9                 | 18.5   | 0        | 0         |
| 120        | 0.1          | 0.9                 | 18.4   | 0        | 0         |
| 150        | 0.1          | 1.0                 | 18.3   | 0        | 0         |
| 180        | 0.1          | 1.0                 | 18.2   | 0        | 0         |
| 240        | 0.1          | 1.0                 | 18.2   | 0        | 0         |
| 300        | 0.1          | 1.0                 | 18.1   | 0        | 0         |

| Flow     | rates      |
|----------|------------|
| me (sec) | Flow (I/h) |
| 30       | 0.0        |
| 60       | 0.1        |
| 90       | 0.1        |
| 120      | 0.1        |

| BH103      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | -            | -                   | -      | -        | -                      |
| 60         | -            | -                   | -      | -        | -                      |
| 90         | -            | -                   | -      | -        | -                      |
| 120        | -            | -                   | -      | -        | -                      |
| 150        | -            | -                   | -      | -        | -                      |
| 180        | -            | -                   | -      | -        | -                      |
| 240        | -            | -                   | -      | -        | -                      |
| 300        | -            | -                   | -      | -        | -                      |

| Flow rates |            |  |  |  |  |
|------------|------------|--|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |  |
| 30         | -          |  |  |  |  |
| 60         | -          |  |  |  |  |
| 90         | -          |  |  |  |  |
| 120        | -          |  |  |  |  |
| 150        | -          |  |  |  |  |
| 180        | -          |  |  |  |  |
| 240        | -          |  |  |  |  |
| 300        | -          |  |  |  |  |

0.1

0.1

0.1

Time

150 180

240

300

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

| 30  | - | - | - | - | - | l |
|-----|---|---|---|---|---|---|
| 60  | 1 | ī | 1 | 1 | 1 |   |
| 90  | 1 | ī | 1 | 1 | 1 |   |
| 120 | - | - | - | - | - | 1 |
| 150 | - | - | - | - | - | 1 |
| 180 | 1 | ī | 1 | 1 | 1 | 1 |
| 240 | 1 | ī | 1 | 1 | 1 | 2 |
| 300 | - | - | - | - | - | 3 |

| No | Access | to | ВН | 1 | 03 | 3 |
|----|--------|----|----|---|----|---|
|----|--------|----|----|---|----|---|

| Ī | BH105      |         | Ga                  | s readings |          |                        |   |      |
|---|------------|---------|---------------------|------------|----------|------------------------|---|------|
|   | Time (sec) | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%)     | CO (ppm) | H <sub>2</sub> S (ppm) |   | Time |
|   | 30         | 1       | -                   | -          | -        | -                      |   | 3    |
| Ī | 60         | -       | -                   | -          | -        | -                      | Ī | 6    |
|   | 90         | -       | -                   | -          | -        | -                      |   | 9    |
|   | 120        | 1       | -                   | -          | -        | -                      |   | 12   |
|   | 150        | 1       | -                   | -          | -        | -                      |   | 15   |
|   | 180        | 1       | -                   | -          | -        | -                      |   | 18   |
|   | 240        | 1       | -                   | -          | -        | -                      |   | 24   |
| ſ | 300        | -       | -                   | -          | -        | -                      | ſ | 30   |

|   | Flow rates |            |  |  |
|---|------------|------------|--|--|
| ) | Time (sec) | Flow (I/h) |  |  |
|   | 30         | -          |  |  |
|   | 60         | -          |  |  |
|   | 90         | -          |  |  |
|   | 120        | -          |  |  |
|   | 150        | 1          |  |  |
|   | 180        | -          |  |  |
|   | 240        | -          |  |  |
|   | 300        | _          |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |
|                        |      |

| BH112      |         | Ga                  | s readings |          |           | ı  |
|------------|---------|---------------------|------------|----------|-----------|----|
| Time (sec) | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%)     | CO (ppm) | H₂S (ppm) | Ti |
| 30         | 0.1     | 0.1                 | 20.9       | 0        | 0         |    |
| 60         | 0.1     | 0.0                 | 20.9       | 1        | 0         |    |
| 90         | 0.1     | 0.1                 | 20.8       | 1        | 0         |    |
| 120        | 0.1     | 0.1                 | 20.9       | 1        | 0         |    |
| 150        | 0.1     | 0.1                 | 20.9       | 0        | 0         |    |
| 180        | 0.1     | 0.0                 | 20.9       | 1        | 0         |    |
| 240        | 0.0     | 0.1                 | 20.8       | 1        | 0         |    |
| 300        | 0.1     | 1.0                 | 20.7       | 1        | 1         |    |

Groundwater monitoring

Depth to top of water

| •          |              |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| BH120      | Gas readings |                     |        |          |           |
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 36.4         | 13.1                | 5.6    | 2        | 0         |
| 60         | 36.4         | 13.2                | 5.3    | 2        | 0         |
| 90         | 36.5         | 13.2                | 5.2    | 2        | 0         |
| 120        | 36.7         | 13.3                | 5.1    | 2        | 0         |
| 150        | 36.9         | 13.4                | 4.9    | 2        | 0         |
| 180        | 37.3         | 13.6                | 4.7    | 2        | 0         |
| 240        | 38.7         | 14.2                | 4.2    | 2        | 0         |
| 300        | 40.1         | 14.6                | 3.8    | 2        | 0         |

| Flow rates |     |  |  |  |
|------------|-----|--|--|--|
| Time (sec) | 0   |  |  |  |
| 30         | 0.0 |  |  |  |
| 60         | 0.0 |  |  |  |
| 90         | 0.0 |  |  |  |
| 120        | 0.0 |  |  |  |
| 150        | 0.0 |  |  |  |
| 180        | 0.0 |  |  |  |
| 240        | 0.0 |  |  |  |
| 300        | 0.0 |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4.40 |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | 3.8        |  |  |  |
| 60         | 4.6        |  |  |  |
| 90         | 4.8        |  |  |  |
| 120        | 5.1        |  |  |  |
| 150        | 5.3        |  |  |  |
| 180        | 5.4        |  |  |  |
| 240        | 5.5        |  |  |  |
| 300        | 5.5        |  |  |  |

mbgl

3.00



| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 09/08/2023                             |
| Weather:     | Dry; HIGH TIDE                         |
| Engineer:    | EGA                                    |

| Equipment: Geotechnical Instruments GA5000 |                        |         |                     |        |          |                        |
|--------------------------------------------|------------------------|---------|---------------------|--------|----------|------------------------|
| Ambient<br>Conditions                      | Barometric<br>Pressure | CH₄ (%) | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| Before:                                    | 10                     | 0.1     | 0.0                 | 21.4   | 1        | 0                      |
| After:                                     | 1017                   | 0.0     | 0.0                 | 21.0   | 1        | 0                      |

| BH121      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 0.0          | 1.5                 | 16.2   | 1        | 0         |
| 60         | 0.0          | 1.5                 | 16.1   | 1        | 0         |
| 90         | 0.0          | 1.6                 | 15.9   | 1        | 0         |
| 120        | 0.0          | 1.6                 | 15.8   | 1        | 0         |
| 150        | 0.0          | 1.7                 | 15.7   | 1        | 0         |
| 180        | 0.0          | 1.7                 | 15.5   | 1        | 0         |
| 240        | 0.0          | 1.8                 | 15.3   | 1        | 0         |
| 300        | 0.0          | 1.9                 | 14.9   | 1        | 0         |

| Flow       | rates      |  |
|------------|------------|--|
| Time (sec) | Flow (I/h) |  |
| 30         | 0.3        |  |
| 60         | 0.3        |  |
| 90         | 0.3        |  |
| 120        | 0.3        |  |
| 150        | 0.3        |  |
| 180        | 0.3        |  |
| 240        | 0.3        |  |
| 300        | 0.3        |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 3.72 |

| BH123      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 1            | -                   | -      | -        | 1         |
| 60         | 1            | -                   | -      | -        | 1         |
| 90         | -            | -                   | -      | -        | -         |
| 120        | -            | -                   | -      | -        | -         |
| 150        | -            | -                   | -      | -        | -         |
| 180        | -            | -                   | -      | -        | -         |
| 240        | -            | -                   | -      | -        | -         |
| 300        | -            | -                   | -      | -        | -         |

| Flow rates |            |  |
|------------|------------|--|
| Time (sec) | Flow (I/h) |  |
| 30         | -          |  |
| 60         | -          |  |
| 90         | -          |  |
| 120        | -          |  |
| 150        | -          |  |
| 180        | -          |  |
| 240        | -          |  |
| 300        | -          |  |

| Groundwater monitoring | mbgl |  |
|------------------------|------|--|
| Depth to top of water  | -    |  |

No Access to BH123

| BH124      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | 0.1          | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | 0.1          | 3.9                 | 1.8    | 2        | 0         |
| 60         | 0.1          | 3.9                 | 1.4    | 2        | 0         |
| 90         | 0.1          | 3.9                 | 1.1    | 1        | 0         |
| 120        | 0.1          | 3.9                 | 1.0    | 1        | 0         |
| 150        | 0.1          | 4.0                 | 0.8    | 1        | 0         |
| 180        | 0.1          | 4.0                 | 0.6    | 1        | 0         |
| 240        | 0.1          | 4.0                 | 0.4    | 1        | 0         |
| 300        | 0.0          | 4.0                 | 0.3    | 1        | 0         |

| Flow rates |            |  |
|------------|------------|--|
| Time (sec) | Flow (I/h) |  |
| 30         | 0.8        |  |
| 60         | 1.7        |  |
| 90         | 2.3        |  |
| 120        | 2.6        |  |
| 150        | 2.8        |  |
| 180        | 2.9        |  |
| 240        | 3.0        |  |
| 300        | 3.1        |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 0.87 |

| BH125      | Gas readings |                     |        |          |                        |
|------------|--------------|---------------------|--------|----------|------------------------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H <sub>2</sub> S (ppm) |
| 30         | 0.5          | 5.0                 | 16.8   | 2        | 0                      |
| 60         | 0.6          | 5.2                 | 15.4   | 2        | 0                      |
| 90         | 0.6          | 5.4                 | 14.8   | 2        | 0                      |
| 120        | 0.7          | 5.8                 | 14.4   | 2        | 0                      |
| 150        | 0.8          | 6.5                 | 12.9   | 2        | 0                      |
| 180        | 1.1          | 8.3                 | 10.0   | 2        | 0                      |
| 240        | 1.1          | 10.7                | 7.0    | 2        | 0                      |
| 300        | 0.4          | 11.5                | 5.7    | 1        | 0                      |

| Flow rates |            |  |
|------------|------------|--|
| Time (sec) | Flow (I/h) |  |
| 30         | 0.1        |  |
| 60         | 0.1        |  |
| 90         | 0.1        |  |
| 120        | 0.1        |  |
| 150        | 0.1        |  |
| 180        | 0.1        |  |
| 240        | 0.1        |  |
| 300        | 0.1        |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | 4.28 |

| BH126      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | -            | -                   | -      | -        | -         |
| 60         | 1            | ī                   | 1      | -        | -         |
| 90         | 1            | ī                   | 1      | -        | -         |
| 120        | 1            | ī                   | 1      | -        | -         |
| 150        | 1            | ī                   | 1      | -        | -         |
| 180        | 1            | ī                   | 1      | -        | -         |
| 240        | -            | -                   | -      | -        | -         |
| 300        | -            | ī                   | -      | -        | -         |

| Flow rates |                       |  |  |  |
|------------|-----------------------|--|--|--|
| Time (sec) | Time (sec) Flow (I/h) |  |  |  |
| 30         | -                     |  |  |  |
| 60         | -                     |  |  |  |
| 90         | -                     |  |  |  |
| 120        | -                     |  |  |  |
| 150        | -                     |  |  |  |
| 180        | -                     |  |  |  |
| 240        | -                     |  |  |  |
| 300        | -                     |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |





| Site:        | 3FM Planning Design GI Lot A DPC Lands |
|--------------|----------------------------------------|
| Project No.: | 22-1041A                               |
| Date:        | 09/08/2023                             |
| Weather:     | Dry; HIGH TIDE                         |
| Engineer:    | EGA                                    |

| Equipment:            |                        | Geotechnical Instruments GA5000                                                            |     |      |   |           |
|-----------------------|------------------------|--------------------------------------------------------------------------------------------|-----|------|---|-----------|
| Ambient<br>Conditions | Barometric<br>Pressure | CH <sub>4</sub> (%) CO <sub>2</sub> (%) O <sub>2</sub> (%) CO (ppm) H <sub>2</sub> S (ppm) |     |      |   | H₂S (ppm) |
| Before:               | 10                     | 0.1                                                                                        | 0.0 | 21.4 | 1 | 0         |
| After:                | 1017                   | 0.0                                                                                        | 0.0 | 21.0 | 1 | 0         |

| BH127      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | -            | -                   | -      | -        | -         |
| 60         | -            | -                   | -      | -        | -         |
| 90         | -            | -                   | -      | -        | -         |
| 120        | -            | -                   | -      | -        | -         |
| 150        | -            | -                   | -      | -        | -         |
| 180        | -            | -                   | -      | -        | -         |
| 240        | -            | -                   | -      | -        | -         |
| 300        | -            | _                   | -      | _        | _         |

| Flow rates |            |  |  |  |
|------------|------------|--|--|--|
| Time (sec) | Flow (I/h) |  |  |  |
| 30         | 1          |  |  |  |
| 60         | 1          |  |  |  |
| 90         | 1          |  |  |  |
| 120        | 1          |  |  |  |
| 150        | 1          |  |  |  |
| 180        | -          |  |  |  |
| 240        | -          |  |  |  |
| 300        | -          |  |  |  |

| Groundwater monitoring | mbgl |
|------------------------|------|
| Depth to top of water  | -    |

No Access to BH127

| BH128      | Gas readings |                     |        |          |           |
|------------|--------------|---------------------|--------|----------|-----------|
| Time (sec) | CH₄ (%)      | CO <sub>2</sub> (%) | 02 (%) | CO (ppm) | H₂S (ppm) |
| 30         | -            | ı                   | -      | -        | -         |
| 60         | -            | -                   | -      | -        | -         |
| 90         | -            | -                   | -      | -        | -         |
| 120        | -            | -                   | -      | -        | -         |
| 150        | -            | -                   | -      | -        | -         |
| 180        | -            | -                   | -      | -        | -         |
| 240        | -            | -                   | -      | -        | -         |
| 300        | -            | -                   | -      | -        | -         |

| Flow rates            |   |  |  |  |
|-----------------------|---|--|--|--|
| Time (sec) Flow (I/h) |   |  |  |  |
| 30                    | - |  |  |  |
| 60                    | - |  |  |  |
| 90                    | - |  |  |  |
| 120                   | - |  |  |  |
| 150                   | - |  |  |  |
| 180                   | - |  |  |  |
| 240                   | - |  |  |  |
| 300                   | - |  |  |  |

| Groundwater monitoring | mbgl |  |
|------------------------|------|--|
| Depth to top of water  | 1    |  |

# **Low-Flow Test Report:**

Test Date / Time: 07/03/2023 12:20:32

Project: 22-1941 Operator Name: RS

Location Name: BH120 Well Diameter: 5 cm Screen Length: 17 m Top of Screen: 6.5 m Total Depth: 17.05 m

Initial Depth to Water: 4.45 m

Pump Type: Geo Sub 2 Flow Cell Volume: 130 ml Final Draw Down: 4.45 m Instrument Used: Aqua TROLL 500

Serial Number: 787450

#### **Test Notes:**

#### Low-Flow Readings:

| Date Time           | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP     | Depth to<br>Water | Salinity  |
|---------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|---------|-------------------|-----------|
|                     |              | +/- 0.1 | +/- 0.5     | +/- 3 %                  | +/- 0.3              | +/- 10    | +/- 10  | +/- 5             | +/- 10    |
| 07/03/2023<br>12:20 | 00:00        | 6.73 pH | 11.80 °C    | 31,176 µS/cm             | 0.00 mg/L            | 0.59 NTU  | -7.8 mV | 445.00 cm         | 19.29 PSU |
| 07/03/2023<br>12:20 | 00:20        | 6.74 pH | 11.81 °C    | 31,172 μS/cm             | 0.00 mg/L            | 0.66 NTU  | -7.9 mV | 445.00 cm         | 19.29 PSU |
| 07/03/2023<br>12:21 | 00:40        | 6.74 pH | 11.79 °C    | 31,171 μS/cm             | 0.00 mg/L            | 0.53 NTU  | -8.0 mV | 445.00 cm         | 19.28 PSU |
| 07/03/2023<br>12:21 | 01:00        | 6.74 pH | 11.77 °C    | 31,159 μS/cm             | 0.00 mg/L            | 0.55 NTU  | -8.1 mV | 445.00 cm         | 19.27 PSU |
| 07/03/2023<br>12:21 | 01:20        | 6.74 pH | 11.70 °C    | 31,183 µS/cm             | 0.00 mg/L            | 0.58 NTU  | -8.2 mV | 445.00 cm         | 19.29 PSU |
| 07/03/2023<br>12:22 | 01:40        | 6.74 pH | 11.69 °C    | 31,209 µS/cm             | 0.00 mg/L            | 0.57 NTU  | -8.3 mV | 445.00 cm         | 19.30 PSU |
| 07/03/2023<br>12:22 | 02:00        | 6.74 pH | 11.74 °C    | 31,230 μS/cm             | 0.00 mg/L            | 0.58 NTU  | -8.5 mV | 445.00 cm         | 19.32 PSU |
| 07/03/2023<br>12:22 | 02:20        | 6.74 pH | 11.84 °C    | 31,243 µS/cm             | 0.00 mg/L            | 0.57 NTU  | -8.7 mV | 445.00 cm         | 19.34 PSU |
| 07/03/2023<br>12:23 | 02:40        | 6.74 pH | 11.86 °C    | 31,239 µS/cm             | 0.00 mg/L            | 0.56 NTU  | -8.8 mV | 445.00 cm         | 19.33 PSU |
| 07/03/2023<br>12:23 | 03:00        | 6.74 pH | 11.89 °C    | 31,236 μS/cm             | 0.00 mg/L            | 0.57 NTU  | -8.9 mV | 445.00 cm         | 19.33 PSU |
| 07/03/2023<br>12:23 | 03:20        | 6.74 pH | 11.87 °C    | 31,222 µS/cm             | 0.00 mg/L            | 0.58 NTU  | -9.0 mV | 445.00 cm         | 19.32 PSU |
| 07/03/2023<br>12:24 | 03:40        | 6.74 pH | 11.82 °C    | 31,220 µS/cm             | 0.00 mg/L            | 0.62 NTU  | -9.0 mV | 445.00 cm         | 19.32 PSU |
| 07/03/2023<br>12:24 | 04:00        | 6.74 pH | 11.82 °C    | 31,241 µS/cm             | 0.00 mg/L            | 0.56 NTU  | -9.1 mV | 445.00 cm         | 19.33 PSU |
| 07/03/2023<br>12:24 | 04:20        | 6.74 pH | 11.87 °C    | 31,255 μS/cm             | 0.00 mg/L            | 0.58 NTU  | -9.2 mV | 445.00 cm         | 19.35 PSU |
| 07/03/2023<br>12:25 | 04:40        | 6.75 pH | 11.92 °C    | 31,259 μS/cm             | 0.00 mg/L            | 0.58 NTU  | -9.2 mV | 445.00 cm         | 19.35 PSU |
| 07/03/2023<br>12:25 | 05:00        | 6.74 pH | 11.96 °C    | 31,256 μS/cm             | 0.00 mg/L            | 0.60 NTU  | -9.3 mV | 445.00 cm         | 19.35 PSU |
| 07/03/2023<br>12:25 | 05:20        | 6.75 pH | 11.86 °C    | 31,237 µS/cm             | 0.00 mg/L            | 0.62 NTU  | -9.4 mV | 445.00 cm         | 19.33 PSU |

|                     |       |         |          |              |           |          |          | 1         |           |
|---------------------|-------|---------|----------|--------------|-----------|----------|----------|-----------|-----------|
| 07/03/2023<br>12:26 | 05:40 | 6.75 pH | 11.71 °C | 31,212 µS/cm | 0.00 mg/L | 0.59 NTU | -9.3 mV  | 445.00 cm | 19.31 PSU |
| 07/03/2023<br>12:26 | 06:00 | 6.75 pH | 11.55 °C | 31,219 μS/cm | 0.00 mg/L | 0.60 NTU | -9.4 mV  | 445.00 cm | 19.30 PSU |
| 07/03/2023<br>12:26 | 06:20 | 6.75 pH | 11.43 °C | 31,240 μS/cm | 0.00 mg/L | 0.62 NTU | -9.4 mV  | 445.00 cm | 19.31 PSU |
| 07/03/2023<br>12:27 | 06:40 | 6.75 pH | 11.38 °C | 31,262 μS/cm | 0.00 mg/L | 3.11 NTU | -9.5 mV  | 445.00 cm | 19.32 PSU |
| 07/03/2023<br>12:27 | 07:00 | 6.75 pH | 11.66 °C | 31,334 μS/cm | 0.00 mg/L | 0.59 NTU | -10.0 mV | 445.00 cm | 19.39 PSU |
| 07/03/2023<br>12:27 | 07:20 | 6.75 pH | 11.87 °C | 31,298 μS/cm | 0.00 mg/L | 0.63 NTU | -10.7 mV | 445.00 cm | 19.37 PSU |
| 07/03/2023<br>12:28 | 07:40 | 6.75 pH | 11.89 °C | 31,272 μS/cm | 0.00 mg/L | 0.60 NTU | -11.1 mV | 445.00 cm | 19.36 PSU |
| 07/03/2023<br>12:28 | 08:00 | 6.75 pH | 11.94 °C | 31,308 μS/cm | 0.00 mg/L | 0.61 NTU | -11.5 mV | 445.00 cm | 19.39 PSU |
| 07/03/2023<br>12:28 | 08:20 | 6.75 pH | 11.97 °C | 31,279 μS/cm | 0.00 mg/L | 0.59 NTU | -11.9 mV | 445.00 cm | 19.37 PSU |
| 07/03/2023<br>12:29 | 08:40 | 6.75 pH | 12.01 °C | 31,258 μS/cm | 0.00 mg/L | 0.57 NTU | -12.2 mV | 445.00 cm | 19.36 PSU |
| 07/03/2023<br>12:29 | 09:00 | 6.75 pH | 12.02 °C | 31,271 μS/cm | 0.00 mg/L | 0.59 NTU | -12.5 mV | 445.00 cm | 19.36 PSU |
| 07/03/2023<br>12:29 | 09:20 | 6.75 pH | 12.03 °C | 31,262 μS/cm | 0.00 mg/L | 0.57 NTU | -12.8 mV | 445.00 cm | 19.36 PSU |
| 07/03/2023<br>12:30 | 09:40 | 6.75 pH | 12.03 °C | 31,273 μS/cm | 0.00 mg/L | 0.59 NTU | -13.0 mV | 445.00 cm | 19.37 PSU |
| 07/03/2023<br>12:30 | 10:00 | 6.75 pH | 12.02 °C | 31,272 μS/cm | 0.00 mg/L | 0.62 NTU | -13.2 mV | 445.00 cm | 19.37 PSU |
| 07/03/2023<br>12:30 | 10:20 | 6.75 pH | 12.03 °C | 31,264 μS/cm | 0.00 mg/L | 0.60 NTU | -13.5 mV | 445.00 cm | 19.36 PSU |
| 07/03/2023<br>12:31 | 10:40 | 6.75 pH | 11.99 °C | 31,270 μS/cm | 0.00 mg/L | 0.63 NTU | -13.6 mV | 445.00 cm | 19.36 PSU |
| 07/03/2023<br>12:31 | 11:00 | 6.75 pH | 12.01 °C | 31,277 μS/cm | 0.00 mg/L | 0.62 NTU | -13.9 mV | 445.00 cm | 19.37 PSU |
| 07/03/2023<br>12:31 | 11:20 | 6.75 pH | 12.01 °C | 31,268 μS/cm | 0.00 mg/L | 0.66 NTU | -14.1 mV | 445.00 cm | 19.36 PSU |
| 07/03/2023<br>12:32 | 11:40 | 6.75 pH | 12.05 °C | 31,266 μS/cm | 0.00 mg/L | 0.61 NTU | -14.3 mV | 445.00 cm | 19.36 PSU |
| 07/03/2023<br>12:32 | 12:00 | 6.75 pH | 12.07 °C | 31,283 μS/cm | 0.00 mg/L | 0.62 NTU | -14.5 mV | 445.00 cm | 19.38 PSU |
| 07/03/2023<br>12:32 | 12:20 | 6.75 pH | 12.08 °C | 31,282 μS/cm | 0.00 mg/L | 0.63 NTU | -14.7 mV | 445.00 cm | 19.38 PSU |
| 07/03/2023<br>12:33 | 12:40 | 6.75 pH | 12.07 °C | 31,282 μS/cm | 0.00 mg/L | 0.62 NTU | -14.8 mV | 445.00 cm | 19.38 PSU |
| 07/03/2023<br>12:33 | 13:00 | 6.75 pH | 12.04 °C | 31,271 μS/cm | 0.00 mg/L | 0.63 NTU | -15.0 mV | 445.00 cm | 19.37 PSU |
| 07/03/2023<br>12:33 | 13:20 | 6.75 pH | 12.15 °C | 31,302 μS/cm | 0.00 mg/L | 0.58 NTU | -15.2 mV | 445.00 cm | 19.39 PSU |
| 07/03/2023<br>12:34 | 13:40 | 6.75 pH | 12.26 °C | 31,263 μS/cm | 0.00 mg/L | 0.65 NTU | -15.3 mV | 445.00 cm | 19.37 PSU |
| 07/03/2023<br>12:34 | 14:00 | 6.75 pH | 12.29 °C | 31,282 μS/cm | 0.00 mg/L | 0.64 NTU | -15.3 mV | 445.00 cm | 19.39 PSU |
| 07/03/2023<br>12:34 | 14:20 | 6.75 pH | 12.28 °C | 31,262 μS/cm | 0.00 mg/L | 0.62 NTU | -15.3 mV | 445.00 cm | 19.37 PSU |
| 07/03/2023<br>12:35 | 14:40 | 6.75 pH | 12.29 °C | 31,276 μS/cm | 0.00 mg/L | 0.61 NTU | -15.4 mV | 445.00 cm | 19.38 PSU |
| 07/03/2023<br>12:35 | 15:00 | 6.75 pH | 12.30 °C | 31,259 μS/cm | 0.00 mg/L | 0.64 NTU | -15.4 mV | 445.00 cm | 19.37 PSU |
|                     |       |         |          |              |           |          |          |           |           |

| 07/03/2023          |       |         |          | 1            |           |          |          |           |           |
|---------------------|-------|---------|----------|--------------|-----------|----------|----------|-----------|-----------|
| 12:35               | 15:20 | 6.75 pH | 12.26 °C | 31,298 µS/cm | 0.00 mg/L | 0.62 NTU | -15.4 mV | 445.00 cm | 19.40 PSU |
| 07/03/2023<br>12:36 | 15:40 | 6.75 pH | 12.28 °C | 31,282 µS/cm | 0.00 mg/L | 0.66 NTU | -15.5 mV | 445.00 cm | 19.39 PSU |
| 07/03/2023<br>12:36 | 16:00 | 6.75 pH | 12.25 °C | 31,280 µS/cm | 0.00 mg/L | 0.64 NTU | -15.5 mV | 445.00 cm | 19.38 PSU |
| 07/03/2023<br>12:36 | 16:20 | 6.75 pH | 12.21 °C | 31,287 µS/cm | 0.00 mg/L | 0.63 NTU | -15.6 mV | 445.00 cm | 19.39 PSU |
| 07/03/2023<br>12:37 | 16:40 | 6.75 pH | 12.19 °C | 31,278 µS/cm | 0.00 mg/L | 0.67 NTU | -15.7 mV | 445.00 cm | 19.38 PSU |
| 07/03/2023<br>12:37 | 17:04 | 6.75 pH | 12.19 °C | 31,299 µS/cm | 0.00 mg/L | 0.66 NTU | -15.8 mV | 445.00 cm | 19.39 PSU |
| 07/03/2023<br>12:40 | 19:39 | 6.73 pH | 12.28 °C | 31,364 µS/cm | 0.00 mg/L | 0.59 NTU | -16.8 mV | 445.00 cm | 19.44 PSU |
| 07/03/2023<br>12:42 | 22:04 | 6.74 pH | 12.30 °C | 31,342 µS/cm | 0.00 mg/L | 0.58 NTU | -16.9 mV | 445.00 cm | 19.43 PSU |
| 07/03/2023<br>12:43 | 22:29 | 6.74 pH | 12.32 °C | 31,352 µS/cm | 0.00 mg/L | 0.72 NTU | -17.0 mV | 445.00 cm | 19.44 PSU |
| 07/03/2023<br>12:44 | 23:34 | 6.74 pH | 12.33 °C | 31,361 µS/cm | 0.00 mg/L | 0.64 NTU | -17.1 mV | 445.00 cm | 19.44 PSU |
| 07/03/2023<br>12:44 | 23:54 | 6.74 pH | 12.31 °C | 31,363 µS/cm | 0.00 mg/L | 0.71 NTU | -17.2 mV | 445.00 cm | 19.44 PSU |
| 07/03/2023<br>12:44 | 24:14 | 6.74 pH | 12.31 °C | 31,384 µS/cm | 0.00 mg/L | 0.60 NTU | -17.2 mV | 445.00 cm | 19.46 PSU |
| 07/03/2023<br>12:45 | 24:34 | 6.74 pH | 12.35 °C | 31,407 µS/cm | 0.00 mg/L | 0.63 NTU | -17.2 mV | 445.00 cm | 19.48 PSU |
| 07/03/2023<br>12:45 | 24:54 | 6.74 pH | 12.35 °C | 31,380 µS/cm | 0.00 mg/L | 0.62 NTU | -17.3 mV | 445.00 cm | 19.46 PSU |
| 07/03/2023<br>12:45 | 25:14 | 6.75 pH | 12.32 °C | 31,366 µS/cm | 0.00 mg/L | 0.63 NTU | -17.3 mV | 445.00 cm | 19.45 PSU |
| 07/03/2023<br>12:46 | 25:34 | 6.75 pH | 12.32 °C | 31,382 µS/cm | 0.00 mg/L | 0.63 NTU | -17.3 mV | 445.00 cm | 19.46 PSU |
| 07/03/2023<br>12:46 | 25:54 | 6.75 pH | 12.33 °C | 31,398 µS/cm | 0.00 mg/L | 0.62 NTU | -17.4 mV | 445.00 cm | 19.47 PSU |
| 07/03/2023<br>12:46 | 26:14 | 6.75 pH | 12.35 °C | 31,380 µS/cm | 0.00 mg/L | 0.63 NTU | -17.4 mV | 445.00 cm | 19.46 PSU |
| 07/03/2023<br>12:47 | 26:34 | 6.75 pH | 12.33 °C | 31,381 µS/cm | 0.00 mg/L | 0.62 NTU | -17.5 mV | 445.00 cm | 19.46 PSU |
| 07/03/2023<br>12:47 | 26:54 | 6.75 pH | 12.32 °C | 31,410 µS/cm | 0.00 mg/L | 0.63 NTU | -17.5 mV | 445.00 cm | 19.47 PSU |
| 07/03/2023<br>12:47 | 27:14 | 6.75 pH | 12.23 °C | 31,401 µS/cm | 0.00 mg/L | 0.60 NTU | -17.5 mV | 445.00 cm | 19.46 PSU |
| 07/03/2023<br>12:48 | 27:34 | 6.75 pH | 12.15 °C | 31,385 μS/cm | 0.00 mg/L | 0.64 NTU | -17.5 mV | 445.00 cm | 19.45 PSU |
| 07/03/2023<br>12:48 | 27:54 | 6.75 pH | 12.14 °C | 31,427 µS/cm | 0.00 mg/L | 0.66 NTU | -17.5 mV | 445.00 cm | 19.48 PSU |
| 07/03/2023<br>12:48 | 28:14 | 6.75 pH | 12.16 °C | 31,388 µS/cm | 0.00 mg/L | 0.70 NTU | -17.7 mV | 445.00 cm | 19.45 PSU |
| 07/03/2023<br>12:49 | 28:34 | 6.75 pH | 12.27 °C | 31,439 µS/cm | 0.00 mg/L | 0.66 NTU | -17.8 mV | 445.00 cm | 19.49 PSU |
| 07/03/2023<br>12:49 | 28:54 | 6.75 pH | 12.28 °C | 31,421 µS/cm | 0.00 mg/L | 0.64 NTU | -17.8 mV | 445.00 cm | 19.48 PSU |
| 07/03/2023<br>12:49 | 29:14 | 6.75 pH | 12.24 °C | 31,418 µS/cm | 0.00 mg/L | 0.64 NTU | -17.9 mV | 445.00 cm | 19.48 PSU |
| 07/03/2023          |       | ·       |          |              |           |          |          |           |           |

#### **Samples**

| Sample ID: | Description: |
|------------|--------------|
| BH120      |              |

Created using VuSitu from In-Situ, Inc.

## **Low-Flow Test Report:**

**Test Date / Time:** 07/03/2023 15:09:11 **Project:** 22-1041 3FM Planning Design GI

**Operator Name:** Martin Gardiner

Location Name: BH-123 Initial Depth to Water: 4 m Pump Type: Geosub 2

**Estimated Total Volume Pumped:** 

25 liter

Flow Cell Volume: 130 ml Final Draw Down: 4.65 m **Instrument Used: Aqua TROLL 500** 

Serial Number: 787450

#### **Test Notes:**

#### **Low-Flow Readings:**

| Date Time           | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP                | Depth to<br>Water | Salinity |
|---------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|--------------------|-------------------|----------|
|                     |              | +/- 0.1 | +/- 0.5     | +/- 3 %                  | +/- 0.3              | +/- 10    | +/- 10             | +/- 5             | +/- 10   |
| 07/03/2023<br>15:09 | 00:00        | 7.22 pH | 9.22 °C     | 2,305.7<br>μS/cm         | 5.17 mg/L            | 39.17 NTU | -40.0 mV           | 400.00 cm         | 1.18 PSU |
| 07/03/2023<br>15:09 | 00:20        | 7.06 pH | 9.57 °C     | 2,234.8<br>μS/cm         | 2.56 mg/L            | 30.35 NTU | -55.9 mV           | 400.00 cm         | 1.14 PSU |
| 07/03/2023<br>15:09 | 00:40        | 7.02 pH | 9.62 °C     | 2,273.2<br>μS/cm         | 1.30 mg/L            | 38.02 NTU | -65.4 mV           | 400.00 cm         | 1.16 PSU |
| 07/03/2023<br>15:10 | 01:00        | 7.00 pH | 9.57 °C     | 2,298.5<br>μS/cm         | 0.65 mg/L            | 36.72 NTU | -70.3 mV           | 400.00 cm         | 1.18 PSU |
| 07/03/2023<br>15:10 | 01:20        | 6.99 pH | 9.50 °C     | 2,309.5<br>μS/cm         | 0.36 mg/L            | 31.38 NTU | -73.8 mV           | 400.00 cm         | 1.18 PSU |
| 07/03/2023<br>15:10 | 01:40        | 6.99 pH | 9.44 °C     | 2,312.4<br>μS/cm         | 0.25 mg/L            | 25.64 NTU | -75.8 mV           | 400.00 cm         | 1.18 PSU |
| 07/03/2023<br>15:11 | 02:00        | 6.98 pH | 9.38 °C     | 2,310.7<br>μS/cm         | 0.19 mg/L            | 19.04 NTU | -77.4 mV           | 400.00 cm         | 1.18 PSU |
| 07/03/2023<br>15:11 | 02:20        | 6.98 pH | 9.33 °C     | 2,302.5<br>μS/cm         | 0.15 mg/L            | 12.98 NTU | -78.5 mV           | 400.00 cm         | 1.18 PSU |
| 07/03/2023<br>15:11 | 02:40        | 6.98 pH | 9.28 °C     | 2,302.7<br>μS/cm         | 0.12 mg/L            | 9.87 NTU  | -79.4 mV           | 400.00 cm         | 1.18 PSU |
| 07/03/2023<br>15:12 | 03:00        | 6.98 pH | 9.30 °C     | 2,303.9<br>μS/cm         | 0.10 mg/L            | 7.88 NTU  | -80.2 mV           | 400.00 cm         | 1.18 PSU |
| 07/03/2023<br>15:12 | 03:20        | 6.98 pH | 9.32 °C     | 2,299.2<br>μS/cm         | 0.08 mg/L            | 6.64 NTU  | -81.0 mV           | 400.00 cm         | 1.18 PSU |
| 07/03/2023<br>15:12 | 03:40        | 6.97 pH | 9.33 °C     | 2,293.8<br>μS/cm         | 0.07 mg/L            | 5.56 NTU  | -81.4 mV           | 400.00 cm         | 1.17 PSU |
| 07/03/2023<br>15:13 | 04:00        | 6.97 pH | 9.31 °C     | 2,287.8<br>μS/cm         | 0.07 mg/L            | 5.26 NTU  | -81.9 mV           | 400.00 cm         | 1.17 PSU |
| 07/03/2023<br>15:13 | 04:20        | 6.97 pH | 9.28 °C     | 2,282.0<br>μS/cm         | 0.06 mg/L            | 4.64 NTU  | -82.3 mV           | 400.00 cm         | 1.17 PSU |
| 07/03/2023<br>15:13 | 04:40        | 6.97 pH | 9.28 °C     | 2,282.6<br>μS/cm         | 0.05 mg/L            | 3.21 NTU  | -82.8 mV           | 400.00 cm         | 1.17 PSU |
| 07/03/2023<br>15:14 | 05:00        | 6.97 pH | 9.30 °C     | 2,286.1<br>μS/cm         | 0.05 mg/L            | 3.68 NTU  | -83.3 mV           | 400.00 cm         | 1.17 PSU |
| 07/03/2023<br>15:14 | 05:20        | 6.97 pH | 9.30 °C     | 2,286.5<br>μS/cm         | 0.05 mg/L            | 3.69 NTU  | -83.8 mV 400.00 cr |                   | 1.17 PSU |

| 07/03/2023<br>15:14 | 05:40 | 6.97 pH | 9.28 °C | 2,286.4<br>μS/cm | 0.04 mg/L | 3.47 NTU | -84.1 mV | 400.00 cm | 1.17 PSU |
|---------------------|-------|---------|---------|------------------|-----------|----------|----------|-----------|----------|
| 07/03/2023<br>15:15 | 06:00 | 6.98 pH | 9.23 °C | 2,284.5<br>μS/cm | 0.04 mg/L | 2.91 NTU | -84.5 mV | 400.00 cm | 1.17 PSU |
| 07/03/2023<br>15:15 | 06:20 | 6.98 pH | 9.15 °C | 2,282.8<br>μS/cm | 0.04 mg/L | 3.67 NTU | -84.8 mV | 400.00 cm | 1.17 PSU |
| 07/03/2023<br>15:15 | 06:40 | 6.98 pH | 9.10 °C | 2,281.9<br>μS/cm | 0.03 mg/L | 4.03 NTU | -85.0 mV | 400.00 cm | 1.17 PSU |
| 07/03/2023<br>15:16 | 07:00 | 6.98 pH | 9.07 °C | 2,278.3<br>μS/cm | 0.03 mg/L | 3.15 NTU | -85.3 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:16 | 07:20 | 6.98 pH | 9.08 °C | 2,278.4<br>µS/cm | 0.03 mg/L | 3.86 NTU | -85.7 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:16 | 07:40 | 6.98 pH | 9.08 °C | 2,276.9<br>µS/cm | 0.03 mg/L | 3.81 NTU | -85.8 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:17 | 08:00 | 6.98 pH | 9.05 °C | 2,273.4<br>μS/cm | 0.02 mg/L | 3.56 NTU | -86.0 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:17 | 08:20 | 6.98 pH | 8.98 °C | 2,271.2<br>μS/cm | 0.02 mg/L | 3.40 NTU | -86.1 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:17 | 08:40 | 6.98 pH | 8.92 °C | 2,270.8<br>µS/cm | 0.02 mg/L | 2.94 NTU | -86.2 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:18 | 09:00 | 6.98 pH | 8.88 °C | 2,270.1<br>μS/cm | 0.02 mg/L | 3.45 NTU | -86.4 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:18 | 09:20 | 6.98 pH | 8.84 °C | 2,267.9<br>μS/cm | 0.02 mg/L | 3.14 NTU | -86.5 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:18 | 09:40 | 6.98 pH | 8.79 °C | 2,267.4<br>µS/cm | 0.02 mg/L | 3.03 NTU | -86.6 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:19 | 10:00 | 6.98 pH | 8.75 °C | 2,265.4<br>µS/cm | 0.02 mg/L | 3.34 NTU | -86.8 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:19 | 10:20 | 6.98 pH | 8.70 °C | 2,264.1<br>µS/cm | 0.02 mg/L | 2.59 NTU | -86.9 mV | 400.00 cm | 1.15 PSU |
| 07/03/2023<br>15:19 | 10:40 | 6.98 pH | 8.75 °C | 2,265.3<br>μS/cm | 0.02 mg/L | 1.96 NTU | -87.0 mV | 400.00 cm | 1.16 PSU |
| 07/03/2023<br>15:20 | 11:00 | 6.98 pH | 8.55 °C | 2,263.3<br>μS/cm | 0.02 mg/L | 2.64 NTU | -86.7 mV | 400.00 cm | 1.15 PSU |
| 07/03/2023<br>15:20 | 11:20 | 6.98 pH | 8.57 °C | 2,269.6<br>μS/cm | 0.03 mg/L | 2.39 NTU | -86.9 mV | 400.00 cm | 1.16 PSU |

### Samples

| Sample ID: | Description: |
|------------|--------------|
| BH123      |              |

Created using VuSitu from In-Situ, Inc.



## 3FM Planning Design and GI Lot B 3<sup>rd</sup> Party Lands

Client: Dublin Port Company (DPC)

Client's Representative: RPS

Report No.: 22-1041B

Date: October 2023

Status: Final for Issue





#### **CONTENTS**

#### **Document Control Sheet**

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

| 1 | AUTHORITY                 |                                                                                                                                      |          |  |  |  |  |  |  |  |
|---|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|
| 2 | SCOPE                     |                                                                                                                                      |          |  |  |  |  |  |  |  |
| 3 | DESCRIPTION OF SITE       |                                                                                                                                      |          |  |  |  |  |  |  |  |
| 4 | SITE<br>4.1<br>4.2        | OPERATIONS Summary of site works Boreholes                                                                                           | 6        |  |  |  |  |  |  |  |
|   |                           | <ul><li>4.2.1 Light cable percussion boreholes</li></ul>                                                                             | 7        |  |  |  |  |  |  |  |
|   | 4.3<br>4.4                | 4.2.3 Dynamic sampled borehole                                                                                                       | 8        |  |  |  |  |  |  |  |
|   | 4.5<br>4.6                | Indirect CBR tests (DCP)                                                                                                             | 9        |  |  |  |  |  |  |  |
|   | 4.7                       | Surveying                                                                                                                            |          |  |  |  |  |  |  |  |
| 5 | LAB0<br>5.1<br>5.2<br>5.3 | ORATORY WORKGeotechnical laboratory testing of soilsGeotechnical laboratory testing of rockEnvironmental laboratory testing of soils | 10<br>11 |  |  |  |  |  |  |  |
| 6 | GRO<br>6.1<br>6.2<br>6.3  | UND CONDITIONSGeneral geology of the areaGround types encountered during investigation of the siteGroundwater                        | 12       |  |  |  |  |  |  |  |
| 7 | DEE                       | EDENCES                                                                                                                              | 13       |  |  |  |  |  |  |  |





#### **APPENDICES**

Appendix A Site and exploratory hole location plans

Appendix B Borehole logs

Appendix C Core photographs

Appendix D Slit trench logs and drawings

Appendix E Slit trench photographs

Appendix F Indirect in-situ CBR test results

Appendix G Pavement core logs and photographs
Appendix H Geotechnical laboratory test results
Appendix I Environmental laboratory test results

Appendix J SPT hammer energy measurement report

October 2023 Page 2





# **Document Control Sheet**

| Report No.:                      |            | 22-1041B                                                 |                 |                                              |  |  |  |  |  |
|----------------------------------|------------|----------------------------------------------------------|-----------------|----------------------------------------------|--|--|--|--|--|
| Project Title:                   |            | 3FM Planning Design GI Lot B 3 <sup>rd</sup> Party Lands |                 |                                              |  |  |  |  |  |
| Client:                          |            | Dublin Port Company (DPC)                                |                 |                                              |  |  |  |  |  |
| Client's Repres                  | sentative: | RPS                                                      | RPS             |                                              |  |  |  |  |  |
| Revision:                        | A02        | Status:                                                  | Final for Issue | Issue Date: 2nd October 2023                 |  |  |  |  |  |
| Prepared by:                     |            | Reviewed by:                                             |                 | Approved by:                                 |  |  |  |  |  |
| Radiel White                     |            | hia                                                      | Ross.           | Jan O Maj.                                   |  |  |  |  |  |
| Rachel White<br>B.A. (Mod.) Geos | science    | Sean Ross<br>BSc MSc PGeo M                              | IIEI            | Darren O'Mahony<br>BSc MSc MIEI EurGeol PGeo |  |  |  |  |  |

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015+A1:2020, Code of practice for ground investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9





# METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Ground Investigation.

| Abbreviations use            | ed on exploratory hole logs                                                                                                                                                                                                                                 |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U                            | Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).                                                                                                                                                                                 |
| UT                           | Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).                                                                                                                                                                                  |
| P                            | Nominal 100mm diameter undisturbed piston sample.                                                                                                                                                                                                           |
| В                            | Bulk disturbed sample.                                                                                                                                                                                                                                      |
| LB                           | Large bulk disturbed sample.                                                                                                                                                                                                                                |
| D                            | Small disturbed sample.                                                                                                                                                                                                                                     |
| С                            | Core sub-sample (displayed in the Field Records column on the logs).                                                                                                                                                                                        |
| L                            | Liner sample from dynamic sampled borehole.                                                                                                                                                                                                                 |
| W                            | Water sample.                                                                                                                                                                                                                                               |
| ES / EW                      | Soil sample for environmental testing / Water sample for environmental testing.                                                                                                                                                                             |
| SPT (s)                      | Standard penetration test using a split spoon sampler (small disturbed sample obtained).                                                                                                                                                                    |
| SPT (c)                      | Standard penetration test using 60 degree solid cone.                                                                                                                                                                                                       |
| (x,x/x,x,x,x)                | Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.                                                                      |
| (Y for Z/Y for Z)            | Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).                                                                                    |
| N=X                          | SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).                                                                                                                                                  |
| HVP / HVR                    | In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.                                                                                                                                                          |
| V<br>VR                      | Shear vane test (borehole). Shear strength stated in kPa. V: undisturbed vane shear strength VR: remoulded vane shear strength                                                                                                                              |
| Soil consistency description | In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).                    |
| dd-mm-yyyy                   | Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.                                                                                                             |
| $\bigvee$                    | Water strike: initial depth of strike.                                                                                                                                                                                                                      |
| •                            | Water strike: depth water rose to.                                                                                                                                                                                                                          |
| Abbreviations relating       | g to rock core – reference Clause 36.4.4 of BS 5930: 2015+A1:2020                                                                                                                                                                                           |
| TCR (%)                      | Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.                                                                                                                                         |
| SCR (%)                      | Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures. |
| RQD (%)                      | Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.                                                                                                                                    |
| FI                           | Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.                                                                                                                            |
| NI                           | Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.                                                                                                                                     |
| AZCL                         | Assessed zone of core loss: The estimated depth range where core was not recovered.                                                                                                                                                                         |
| DIF                          | Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.                                                                                                                                                            |
| (xxx/xxx/xxx)                | Spacing between discontinuities (minimum/average/maximum) measured in millimetres.                                                                                                                                                                          |





# 3FM Planning Design GI Lot B 3rd Party Lands

#### 1 **AUTHORITY**

On the instructions of RPS, ("the Client's Representative"), acting on the behalf of Dublin Port Company (DPC) ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information for input to the design and construction of a proposed development of the southern port lands.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the ground investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

## 2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, slit trenches, concrete coring, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

## 3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on 3<sup>rd</sup> party owned lands in Dublin Port in southern port areas south of the River Liffey in Poolbeg/Ringsend, Dublin. Works were conducted within Pigeon House Park, within the Poolbeg Powerstation and CCGT compound, within Nora Oil Storage Terminal, along Pigeon House Road, along Shellybanks Road and along a Dublin City Council owned public path in located in Pembroke. Elevations vary across the site.





#### 4 SITE OPERATIONS

## 4.1 Summary of site works

Site operations, which were conducted between the  $2^{nd}$  of December 2022 and the  $10^{th}$  of February 2023, comprised:

- ten boreholes
  - six light cable percussion boreholes
  - three boreholes by light cable percussive extended by rotary follow-on drilling
  - one borehole by dynamic (windowless) sampling
- two machine dug slit trenches
- indirect CBR tests at eighteen locations; and
- twenty pavement cores.

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, and as shown on the exploratory hole location plan in Appendix A.

#### 4.2 Boreholes

A total of ten boreholes were put down in a minimum diameter of 150mm through soils and rock strata to their completion depths by a combination of methods, including light percussion boring light cable percussion boring and rotary drilling.

The borehole logs state the methodology and plant used for each location, as well as the appropriate depth ranges.

A summary of the boreholes, subdivided by category in accordance with the methods employed for their completion, is presented in the following sub-sections.

## 4.2.1 Light cable percussion boreholes

Six boreholes (BH208-BH208D and BH212) were put down to completion in minimum 200mm diameter using Dando 2500 light cable percussion boring rigs. All boreholes were terminated on encountering virtual refusal on obstructions.

Machine dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions. BH208-BH208D were terminated within the inspection pit upon encountering refusal.





Disturbed (bulk and small bag) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by the Client's Representative.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals using the split spoon sampler ( $SPT_{(s)}$ ) or solid cone attachment ( $SPT_{(c)}$ ). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix J.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

## 4.2.2 Boreholes by combined percussion boring and rotary follow-on drilling

Three boreholes (BH215-BH217) were put down by a combination of light cable percussion boring and rotary follow-on drilling techniques with core recovery in overburden and bedrock. Where the cable percussion borehole had not been advanced onto competent strata, rotary percussive methods were employed to advance the borehole to completion. Symmetrix cased full-hole drilling was used, with SPTs carried out at standard intervals as required.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by the Client's Representative. Undisturbed (U100) samples were taken as appropriate within cohesive strata.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals throughout the overburden using the split spoon sampler ( $SPT_{(s)}$ ) or solid cone attachment ( $SPT_{(c)}$ ). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix J.

Any water strikes encountered during boring were recorded along with any changes in their levels as the boreholes proceeded.

Where water was added to assist with boring, a note has been added to the log to account for the same.





Where coring was carried out, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using an SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930: 2015+A1:2020: Code of practice for ground investigations.* 

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

## 4.2.3 Dynamic sampled borehole

One borehole (BH203) was put down to completion by light percussion boring techniques using a Premier 110 dynamic sampling rig.

A hand dug inspection pit was carried out between ground level and 0.60m depth to ensure the borehole was put down clear of services or subsurface obstructions. The borehole was terminated at 0.60m on encountering a watermain obstruction.

No groundwater strikes were encountered during dynamic sampling.

Appendix B presents the borehole logs.

#### 4.3 Slit trenches

Two slit trenches (ST203 and ST204) were excavated by a combination of hand digging and mechanical excavation using a compact 3t tracked excavator fitted with a 600mm wide toothless bucket, to locate and identify buried services at the site.

Drawing of the trenches and the locations of services encountered during excavation are shown along with the slit trench logs in Appendix D, with photographs presented in Appendix E.

# 4.4 PID tests

PID (Photo ionizing detection) testing was undertaken on small, disturbed samples recovered from all boreholes using a hand-held PID meter, to determine if any volatile organic compound contamination was present in the overburden.

Results of the PID tests are presented on the individual borehole logs in Appendix B.





## 4.5 Indirect CBR tests (DCP)

An indirect CBR test was conducted at eighteen locations (RC202-RC207, RC209 and RC211-221) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, and is discussed in Highways England CS229 (2020) which refers to the methodology described in TRL Overseas Road Note 18 (1999).

The test results are presented in Appendix F in the form of plots of the variation with depth of the penetration per blow. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, which is taken from TRRL Overseas Road Note 8 (1990), *A user's manual for a program to analyse dynamic cone penetrometer data*.

Log CBR = 2.48-1.057 Log (mm/blow)

The frequently elevated CBR values are a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

#### 4.6 Pavement cores

Twenty cores (RC202 to RC221) were carried out at locations as directed by the Client's Representative to establish the pavement make-up. The cores were taken using hand-held diamond coring equipment. Core thicknesses and compositions are outlined in Table 1.

Table 1. Pavement core thickness and composition

| Location | Thickness (mm) | Composition          |
|----------|----------------|----------------------|
| RC202    | 160            | Bitmac               |
| RC203    | 125            | Bitmac               |
| RC204    | 105            | Bitmac               |
| RC205    | 110            | Bitmac               |
| RC206    | 195            | Bitmac               |
| RC207    | 280            | Bitmac               |
| RC208    | 295            | Concrete over bitmac |
| RC209    | 400            | Bitmac               |
| RC210    | 240            | Bitmac               |
| RC211    | 450            | Concrete over bitmac |
| RC212    | 355            | Concrete over bitmac |
| RC213    | 245            | Bitmac               |
| RC214    | 210            | Bitmac               |
| RC215    | 64             | Bitmac               |
| RC216    | 180            | Bitmac               |
| RC217    | 170            | Bitmac               |





| RC218 | 250 | Bitmac |
|-------|-----|--------|
| RC129 | 61  | Bitmac |
| RC220 | 150 | Bitmac |
| RC221 | 210 | Bitmac |

Photographs of the pavement cores are presented in Appendix G.

## 4.7 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R10 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin )at each location are recorded on the individual exploratory hole logs. The exploratory hole location plan presented in Appendix A shows these as-built positions.

## 5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described, and their descriptions incorporated into the borehole logs.

## 5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **compressibility:** one dimensional consolidation (oedometer).
- **shear strength** (total stress): unconsolidated undrained triaxial tests.
- **direct shear:** shear box tests.
- compaction related: California bearing ratio tests.
- **soil chemistry:** pH and water soluble sulphate content.

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).* 

The test results are presented in Appendix H.





## 5.2 Geotechnical laboratory testing of rock

Laboratory testing of rock sub-samples comprised:

point load index

| Test             | Test carried out in accordance with                                       |
|------------------|---------------------------------------------------------------------------|
| Point load index | ISRM Suggested Methods (1985) Suggested method for determining point-load |
|                  | strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp. 53–60      |

The test results are presented in Appendix H.

## 5.3 Environmental laboratory testing of soils

Environmental testing, as specified by the Client's Representative was conducted on selected environmental soil samples by Chemtest at its laboratory in Newmarket, Suffolk.

Testing was carried out according to RPS Soil Testing Suites A, B, C, D and E, for a range of determinants, including:

- Metals
- Speciated total petroleum hydrocarbons (TPH)
- Speciated polycyclic aromatic hydrocarbons (PAH)
- BTEX compounds
- Volatile Organic Compounds (VOCs)
- Semi-Volatile Organic Compounds (SVOCs)
- Polychlorinated biphenyls (PCBs)
- Phenols
- Organic matter
- Total Organic Carbon (TOC)
- Cyanides
- Asbestos screen
- Sulphate
- Sulphur
- Phosphate
- pH
- Waste acceptance criteria (WAC)

Results of environmental laboratory testing are presented in Appendix I.





#### 6 GROUND CONDITIONS

## 6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise urban sediments. These deposits are underlain by dark limestones and shales of the Lucan Formation.

## 6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Paved surface:** BH203 encountered 500mm of bitmac surfacing. In addition, bitmac surfacing was encountered in ST203 and ST204 in approximately 100mm thickness.
- Made Ground (sub-base): approximately 200mm of aggregate fill beneath all paved surfaces.
- Made Ground (fill): reworked sandy gravelly clay fill or reworked sandy silty gravel fill or gravelly
  silty sand fill with varying fragments of steel, concrete and red brick was encountered across the site
  extending to a depth of 0.15-6.80m.
- **Marine beach deposits:** typically medium dense to dense sands and gravels interspersed with layers of sandy gravelly clay frequently with shell fragments encountered across the site to a maximum depth of 19.50m in BH216 and BH217.
- **Port Clay:** firm to stiff sandy silty clay often with laminations of silty sand encountered across the site to a maximum depth of 36.50m in BH217.
- **Fluvioglacial deposits:** very dense sandy clayey gravel encountered beneath Port Clay and overlying bedrock in BH217.
- **Bedrock (Limestone):** Medium strong to strong limestone rockhead was encountered at depths ranging from 36.00m in BH215-BH216 and 39.05m in BH217.

### 6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater was encountered during the ground investigation as water strikes seen in Table 2 below.



Table 2. Groundwater strikes encountered during the ground investigation.

| Location | Depth (mbgl) | Comments                                        |
|----------|--------------|-------------------------------------------------|
| BH215    | 4.30         | Water rose from 4.30m to 2.10m over 20 minutes  |
| BH216    | 13.00        | Water rose from 13.00m to 1.60m over 20 minutes |
| BH217    | 7.65         | -                                               |

An ingress of sea water was noted during excavation of the inspection pit in BH212 at a depth of 1.85m.

Groundwater was not noted during drilling at several of the borehole locations. However, it should be noted that the casing used in supporting the borehole walls during drilling may have sealed out any groundwater strikes and the possibility of encountering groundwater during excavation works should not be ruled out.

It should be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

Seasonal variation in groundwater levels should be factored into design considerations.

#### 7 REFERENCES

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland.

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS 5930: 2015+A1:2020: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS EN ISO 14689-1:2018: Geotechnical investigation and testing. Identification and classification of rock. Identification and description.

BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.



# APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLANS





Client: Dublin Port Company (DPC)

**Project Name:** 3FM Planning Design GI - Lot B 3rd Party Lands

Client's Representative:

Legend Key



Title:

Site Location Plan

**Last Revised:** Scale: 03/04/2023 1:20000



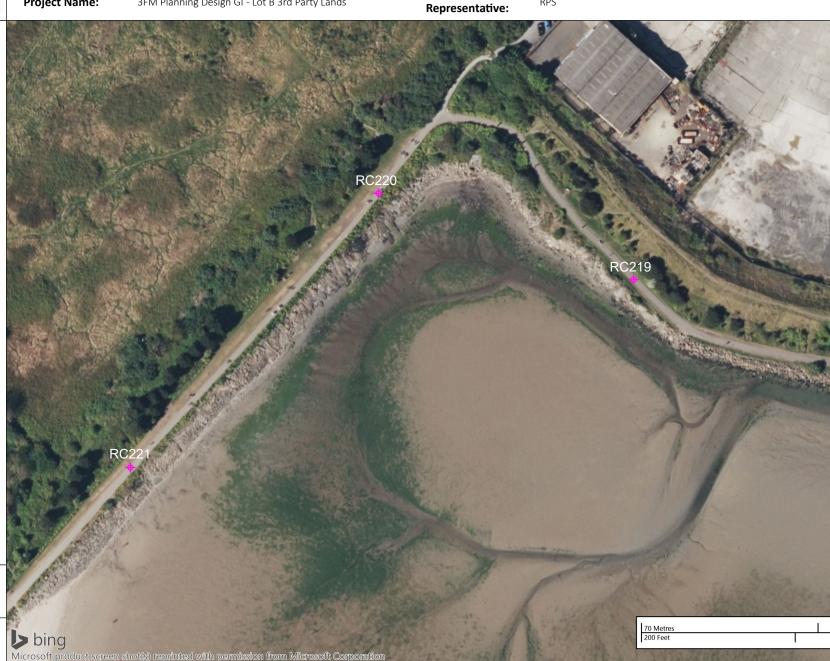
Client: Dublin Port Company (DPC)

**Project Name:** 

3FM Planning Design GI - Lot B 3rd Party Lands

Client's

RPS


## Legend Key

Locations By Type - CP+RC

Locations By Type - IP

Locations By Type - PC

Locations By Type - TP



Title:

Exploratory Hole Location Plan - 1

Last Revised: Scale: 19/04/2023 1:1500



Client: Dublin Port Company (DPC)

RPS

**Project Name:** 3FM Planning Design GI - Lot B 3rd Party Lands Client's

## Legend Key


Locations By Type - CP

Locations By Type - CP+RC

Locations By Type - IP

Locations By Type - PC

Locations By Type - TP



### Title:

Exploratory Hole Location Plan - 2

Last Revised: Scale: 19/04/2023 1:2000



Client: Dublin Port Company (DPC)

**Project Name:** 

3FM Planning Design GI - Lot B 3rd Party Lands

Client's

Representative: RPS

## Legend Key

Locations By Type - CP+RC

Locations By Type - IP

Locations By Type - PC

Locations By Type - TP

BH217 BH216 20 Metres 80 Feet soft product screen shot(s) reprinted with permission from Microsoft Corporation

Title:

Exploratory Hole Location Plan - 3

**Last Revised: Scale:** 19/04/2023 1:500



Client: Dublin Port Company (DPC)

RPS

**Project Name:** 3FM Planning Design GI - Lot B 3rd Party Lands Client's

## Legend Key

Locations By Type - CP

Locations By Type - CP+RC

Locations By Type - IP

Locations By Type - PC

Locations By Type - TP



Title:

Exploratory Hole Location Plan - 4

Last Revised: Scale: 19/04/2023 1:1500



Client: Dublin Port Company (DPC)

**Project Name:** 

3FM Planning Design GI - Lot B 3rd Party Lands

Client's

RPS Representative:

## Legend Key

Locations By Type - CP+RC

Locations By Type - IP

Locations By Type - PC

Locations By Type - TP

Title:

Exploratory Hole Location Plan - 5

Last Revised: Scale: 19/04/2023

1:500





Client: Dublin Port Company (DPC)

**Project Name:** 

3FM Planning Design GI - Lot B 3rd Party Lands

Client's

Representative: RPS

## Legend Key

Locations By Type - CP

Locations By Type - CP+RC

Locations By Type - IP

Locations By Type - PC

Locations By Type - TP



Title:

Exploratory Hole Location Plan - 6

**Last Revised: Scale:** 19/04/2023 1:1000



APPENDIX B
BOREHOLE LOGS



|                    |          | Proj               | ect No.      | Project                                     |          | Trial Pit ID                                                                           |               |             |           |  |
|--------------------|----------|--------------------|--------------|---------------------------------------------|----------|----------------------------------------------------------------------------------------|---------------|-------------|-----------|--|
|                    | CALIC    | EVA/AV             |              | 1041B                                       |          | anning Design GI - Lot B 3rd Party Lands                                               |               |             |           |  |
| HH                 | CAUS     | EWAY<br>EOTECH     | Coor         | dinates                                     | Client:  |                                                                                        |               | В           | H203      |  |
|                    | G        | LOTECTI            |              | 78.19 E                                     | 1        | Port Company (DPC)                                                                     |               |             |           |  |
| Method:            |          |                    |              | 08.66 N                                     | 1        | Representative:                                                                        |               | She         | et 1 of 1 |  |
| Dynamic Samp       | ling     |                    |              |                                             | RPS      |                                                                                        |               | Scale: 1:25 |           |  |
| Plant:             |          |                    |              | vation                                      | Date:    | Logger:                                                                                |               | DRAFT       |           |  |
| Premier 110  Depth | Sample / |                    | 4.18         | B mOD  Depth                                | 06/12/   | 2022 RS                                                                                | <del></del> ; |             |           |  |
| (m)                | Tests    | Field Records      | (mOD)        | (m)                                         | Legend   | Description                                                                            | Water         |             |           |  |
|                    |          |                    |              | -                                           |          | BITMAC                                                                                 |               |             | _         |  |
|                    |          |                    |              | E                                           |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | -         |  |
|                    |          |                    | 2.00         | 0.50                                        |          |                                                                                        |               |             | -         |  |
|                    |          |                    | 3.68<br>3.58 | - 0.50<br>- 0.60                            |          | MADE GROUND: Grey slightly sandy angular fine to coarse GRAVE \(\s\) s fine to coarse. | L. Sand       |             | 0.5 —     |  |
|                    |          |                    |              |                                             |          | End of trial pit at 0.60m                                                              |               |             | _         |  |
|                    |          |                    |              |                                             |          |                                                                                        |               |             | -         |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              |                                             |          |                                                                                        |               |             | 1.0       |  |
|                    |          |                    |              | <del> </del>                                |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | -         |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | -         |  |
|                    |          |                    |              | [                                           |          |                                                                                        |               |             | 1.5 —     |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              | Ė                                           |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              | [                                           |          |                                                                                        |               |             | -         |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | 2.0       |  |
|                    |          |                    |              | [                                           |          |                                                                                        |               |             |           |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              | Ē                                           |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              | <u>-</u>                                    |          |                                                                                        |               |             | 2.5       |  |
|                    |          |                    |              | [                                           |          |                                                                                        |               |             |           |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              | Ē                                           |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | 3.0       |  |
|                    |          |                    |              | Ė                                           |          |                                                                                        |               |             |           |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              |                                             |          |                                                                                        |               |             | -         |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | 3.5 —     |  |
|                    |          |                    |              | <u> </u>                                    |          |                                                                                        |               |             |           |  |
|                    |          |                    |              | <u>-</u>                                    |          |                                                                                        |               |             |           |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | -         |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | 4.0       |  |
|                    |          |                    |              | <u> </u>                                    |          |                                                                                        |               |             |           |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             |           |  |
|                    |          |                    |              | <u> </u>                                    |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             | 4.5 —     |  |
|                    |          |                    |              | <u> </u>                                    |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              | -                                           |          |                                                                                        |               |             |           |  |
|                    |          |                    |              | Ė                                           |          |                                                                                        |               |             | _         |  |
|                    |          |                    |              |                                             |          |                                                                                        |               |             |           |  |
|                    | Strikes  | <b>Depth:</b> 0.60 | 1            | narks:                                      | oction " | averaged to 0.60m                                                                      |               |             |           |  |
| Struck at (m)      | Remarks  | <b>Width:</b> 0.80 | No s         | groundwat                                   | er encou | excavated to 0.60m.<br>ntered.                                                         |               |             |           |  |
|                    |          | Length: 0.80       |              |                                             |          |                                                                                        |               |             |           |  |
|                    |          | Stability:         | Terr         | nination R                                  | eason    |                                                                                        | Last Upda     | ted         |           |  |
|                    | Stable   |                    |              | Terminated due to services present. 12/06/2 |          |                                                                                        |               |             |           |  |

|                            |                   |                         | Proi           | ect No.      | Project     | t Name:                                                                                                 |                    | Т          | rial Pit ID    |  |
|----------------------------|-------------------|-------------------------|----------------|--------------|-------------|---------------------------------------------------------------------------------------------------------|--------------------|------------|----------------|--|
|                            |                   |                         |                | 1041B        |             | anning Design GI - Lot B 3rd Party Lands                                                                |                    | '          | I I al FILID   |  |
|                            | CAU               | SEWAY<br>GEOTECH        |                |              | Client:     |                                                                                                         |                    |            | BH208          |  |
|                            |                   | GEOTECH                 | Coor           | rdinates     |             | Port Company (DPC)                                                                                      |                    |            | 511200         |  |
| Method:                    |                   |                         | 7204           | 46.87 E      | 1           | s Representative:                                                                                       |                    | CI         | neet 1 of 1    |  |
| Inspection Pit             |                   |                         |                |              | RPS         | ·                                                                                                       |                    |            | cale: 1:25     |  |
| Plant:                     |                   |                         | Ele            | Elevation    |             | Date: Logger:                                                                                           |                    |            |                |  |
| 3t Excavator               |                   |                         | 3.75           | 5 mOD        | 18/01/      | 2023                                                                                                    |                    | DRAFT      |                |  |
| Depth<br>(m)               | Sample /<br>Tests | Field Records           | Level<br>(mOD) | Depth<br>(m) | Legend      | Description                                                                                             | ,                  | Water      |                |  |
| (111)                      | lests             |                         | (IIIOD)        | - (111)      |             | MADE GROUND: Brownish yellow very gravelly very                                                         | silty fine to coar |            |                |  |
|                            |                   |                         | 3.55           | 0.20         |             | SAND. Gravel is angular fine to coarse.                                                                 |                    |            |                |  |
|                            |                   |                         | 3.33           | . 0.20       |             | MADE GROUND: Dark greyish black very gravelly ver<br>SAND with low cobble content and rare brick fragme |                    | arse       | _              |  |
|                            |                   |                         |                | -            |             | subrounded fine to coarse. Cobbles are subangular.                                                      |                    |            | -              |  |
| 0.50 - 0.50<br>0.50 - 0.50 | B2<br>ES1         |                         |                | -            |             |                                                                                                         |                    |            | 0.5 —          |  |
| 0.50                       |                   | PID = 0.20ppm           |                |              |             |                                                                                                         |                    |            |                |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | _              |  |
|                            |                   |                         | 2.85           | 0.90         |             | End of trial pit at 0.90m                                                                               |                    |            | =              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | 1.0            |  |
|                            |                   |                         |                |              |             |                                                                                                         |                    |            |                |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                |              |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | 1.5 —          |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            |                |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | _              |  |
|                            |                   |                         |                |              |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | 2.0            |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            |                |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | _              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | 2.5            |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | _              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | _              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | 3.0            |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | _              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                |              |             |                                                                                                         |                    |            | 3.5 —          |  |
|                            |                   |                         |                | Ė            |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | 4.0 —          |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | 4.U ——         |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            |                |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | 4.5 —          |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                |              |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                | -            |             |                                                                                                         |                    |            | -              |  |
|                            |                   |                         |                |              |             |                                                                                                         |                    |            |                |  |
| Wate                       | er Strikes        | <b>B</b>                | Ren            | narks:       |             |                                                                                                         |                    |            |                |  |
| Struck at (m)              | Remark            | Depth: 0.90 Width: 0.80 |                |              |             | n pit excavated to 0.90m.                                                                               |                    |            |                |  |
|                            |                   | Length: 1.80            | INO            | groundwat    | lei eiiCOU  | intered.                                                                                                |                    |            |                |  |
|                            |                   | Stability:              | Teri           | mination R   | Reason      |                                                                                                         | la                 | st Update  | d <b>-</b>     |  |
|                            |                   | Unstable                |                | ninated on o |             |                                                                                                         |                    | 12/06/2023 |                |  |
| ı                          |                   | CHISTORIE               | 1 16111        | uccu OII C   | JOINGI CLE. |                                                                                                         | '                  | , 00, 2023 | ## T 6 T 6 T 1 |  |

|                |                   |                    | Proi           | ect No.       | Proiect    | Name:                                                                                      |                 | Т          | rial Pit ID |  |  |
|----------------|-------------------|--------------------|----------------|---------------|------------|--------------------------------------------------------------------------------------------|-----------------|------------|-------------|--|--|
|                | CALIC             |                    | 1              | -1041B        | 1          | anning Design GI - Lot B 3rd Party Lands                                                   |                 |            |             |  |  |
|                | CAUS              | EWAY               |                | rdinates      | Client:    |                                                                                            |                 | -          | 3H208A      |  |  |
|                | G                 | EOTECH             |                |               | Dublin     | Port Company (DPC)                                                                         |                 |            |             |  |  |
| Method:        |                   |                    |                | 143.47 E      | Client's   | SI                                                                                         | neet 1 of 1     |            |             |  |  |
| Inspection Pit |                   |                    | /33/           | 70.59 N       | RPS        |                                                                                            |                 |            | cale: 1:25  |  |  |
| Plant:         |                   |                    |                | vation        | Date:      |                                                                                            | Logger:         | DRAFT      |             |  |  |
| 3t Excavator   |                   |                    |                | 8 mOD         | 18/01/     | 2023                                                                                       | RS              |            | DRAFI       |  |  |
| Depth<br>(m)   | Sample /<br>Tests | Field Records      | Level<br>(mOD) | Depth<br>(m)  | Legend     | Description                                                                                |                 | Water      |             |  |  |
|                |                   |                    | , ,            |               |            | MADE GROUND: Brownish yellow gravelly very silty fill Gravel is subrounded fine to coarse. | ne to coarse S/ |            | _           |  |  |
|                |                   |                    | 3.58           | 0.20          |            | MADE GROUND: Dark greyish black gravelly very silty                                        | £               |            | _           |  |  |
|                |                   |                    |                |               |            | SAND with fragments of steel. Gravel is subangular fir                                     |                 |            | _           |  |  |
|                |                   |                    | 3.38           | 0.40          |            | End of trial pit at 0.40m                                                                  |                 |            | -           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | 0.5 —       |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | _           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | _           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                |               |            |                                                                                            |                 |            | 1.0         |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | _           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | 1.5 —       |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | _           |  |  |
|                |                   |                    |                | _             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | 2.0         |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | _           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | 2.5 —       |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | 2.3         |  |  |
|                |                   |                    |                |               |            |                                                                                            |                 |            | _           |  |  |
|                |                   |                    |                | _             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                | _             |            |                                                                                            |                 |            | 3.0         |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | _           |  |  |
|                |                   |                    |                | _             |            |                                                                                            |                 |            | _           |  |  |
|                |                   |                    |                | _             |            |                                                                                            |                 |            |             |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | 3.5 —       |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | _           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            |             |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | 4.0         |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            |             |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | _           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | 4.5         |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | ]           |  |  |
|                |                   |                    |                | -             |            |                                                                                            |                 |            | -           |  |  |
|                |                   |                    |                |               |            |                                                                                            |                 |            |             |  |  |
|                | Strikes           | <b>Depth:</b> 0.40 |                | narks:        | nsnection  | n pit excavated to 0.40m.                                                                  |                 |            |             |  |  |
| Struck at (m)  | Remarks           | <b>Width:</b> 0.60 |                | groundwat     |            |                                                                                            |                 |            |             |  |  |
|                |                   | Length: 2.00       |                |               |            |                                                                                            |                 |            |             |  |  |
|                |                   | Stability:         | Teri           | mination R    | eason      |                                                                                            | La              | ast Update | d           |  |  |
|                |                   | Unstable           | Tern           | ninated at re | fusal on b | oulders / possible bedrock.                                                                |                 | 12/06/2023 | AGS         |  |  |

|                |          |                    | Droi    | ect No.                      | Droinct       | t Name:                                                                                                               |                |             | rial Pit ID |  |
|----------------|----------|--------------------|---------|------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------|----------------|-------------|-------------|--|
| - 201          |          |                    |         | 1041B                        |               | anning Design GI - Lot B 3rd Party Lands                                                                              |                | '           | IIai Fit ID |  |
|                | CAUS     | EWAY<br>EOTECH     |         |                              | Client:       |                                                                                                                       |                | ١,          | BH208B      |  |
|                | ——-G     | EOTECH             | Coor    | rdinates                     |               | Port Company (DPC)                                                                                                    |                | '           | 3112005     |  |
| Method:        |          |                    | 7204    | 46.87 E                      | Client's      | Sheet 1 of 1                                                                                                          |                |             |             |  |
| Inspection Pit |          |                    | 7337    | 67.26 N                      | RPS           | s representative.                                                                                                     |                |             | cale: 1:25  |  |
| Plant:         |          |                    | Fle     | vation                       | Date: Logger: |                                                                                                                       |                | 3cale. 1.23 |             |  |
| 3t Excavator   |          |                    |         | 3 mOD                        | 18/01/        |                                                                                                                       |                | DRAFT       |             |  |
| Depth          | Sample / | Field Records      | Level   | Depth                        | Legend        | Description                                                                                                           |                | Water       |             |  |
| (m)            | Tests    | Field Records      | (mOD)   | (m)                          | Legend        | MADE GROUND: Brownish yellow gravelly very silty fine to                                                              | n coarce SAND  | × ×         |             |  |
|                |          |                    |         |                              |               | Gravel is subangular fine to coarse.                                                                                  | o codise sand. |             | -           |  |
|                |          |                    | 3.48    | - 0.25                       |               |                                                                                                                       |                |             | -           |  |
|                |          |                    | 3.38    | 0.35                         |               | MADE GROUND: Dark greyish black very gravelly very silty<br>SAND. Gravel is subangular fine to coarse.                | fine to coarse |             | _           |  |
|                |          |                    |         |                              |               | MADE GROUND: Brown very gravelly very silty fine to coa                                                               |                |             | 0.5         |  |
|                |          |                    |         | -                            |               | low cobble content with rare brick fragments and abunda<br>fragments. Gravel is subangular fine to coarse. Cobbles ar |                |             | -           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | _           |  |
|                |          |                    | 2.93    | 0.80                         |               | End of trial pit at 0.80m                                                                                             |                | -           | -           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | 1.0         |  |
|                |          |                    |         |                              |               |                                                                                                                       |                |             | _           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             |             |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             |             |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | 1.5 —       |  |
|                |          |                    |         |                              |               |                                                                                                                       |                |             | _           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | _           |  |
|                |          |                    |         | _                            |               |                                                                                                                       |                |             | 2.0         |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | 2.0 —       |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | _           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | _           |  |
|                |          |                    |         |                              |               |                                                                                                                       |                |             | _           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | 2.5 —       |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | _           |  |
|                |          |                    |         |                              |               |                                                                                                                       |                |             |             |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | _           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | 3.0         |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | _           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         |                              |               |                                                                                                                       |                |             | 3.5 —       |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             |             |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | _           |  |
|                |          |                    |         |                              |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | 4.0         |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         | Ē                            |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             |             |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | 4.5         |  |
|                |          |                    |         | Ė                            |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         |                              |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | -           |  |
|                |          |                    |         | -                            |               |                                                                                                                       |                |             | -           |  |
|                | 0. "     |                    | 15-     | norks:                       | 1             |                                                                                                                       |                |             |             |  |
|                | Strikes  | <b>Depth:</b> 0.80 |         | <b>narks:</b><br>chine dug i | nspection     | n pit excavated to 0.80m.                                                                                             |                |             |             |  |
| Struck at (m)  | Remarks  | <b>Width:</b> 0.90 |         | groundwat                    |               |                                                                                                                       |                |             |             |  |
|                |          | Length: 1.80       |         |                              |               |                                                                                                                       |                |             |             |  |
|                |          | Stability:         | Teri    | mination R                   | eason         |                                                                                                                       | Last U         | pdate       | d           |  |
|                |          | Unstable           |         | ninated at re                |               | oncrete                                                                                                               | 12/06          |             |             |  |
| ı              | 1        | OTISIANIE          | 1 16111 | accu at It                   | asai on C     | 0.101 0.201                                                                                                           | 1 12/00        | ,, 2023     | 1:10[0]     |  |

|              |                   |                    | Proje                        | ect No.      | Project                           | Name:                                                                                                   |              | rial Pit ID |
|--------------|-------------------|--------------------|------------------------------|--------------|-----------------------------------|---------------------------------------------------------------------------------------------------------|--------------|-------------|
|              | CALIS             | EWAY               |                              | 1041B        |                                   | anning Design GI - Lot B 3rd Party Lands                                                                |              |             |
| 3            | CAUS              | EOTECH             | Coor                         | dinates      | Client:                           |                                                                                                         | E            | 3H208C      |
|              |                   |                    | 720444.57 E                  |              | Dublin                            |                                                                                                         |              |             |
| lethod:      |                   |                    |                              | 733760.47 N  |                                   | Representative:                                                                                         |              | eet 1 of 1  |
| spection Pit |                   |                    | Flox                         | ation        | RPS <b>Date:</b>                  | Si                                                                                                      | Scale: 1:25  |             |
| Excavator    |                   |                    | <b>Elevation</b><br>3.79 mOD |              | <b>Date:</b> Logger 18/01/2023 RS |                                                                                                         | DRAFT        |             |
| Depth<br>(m) | Sample /<br>Tests | Field Records      | Level<br>(mOD)               | Depth<br>(m) | Legend                            | Description                                                                                             | Water        |             |
| (,           | 10303             |                    | 3.74                         | - 0.05       |                                   | MADE GROUND: Grey sandy very silty angular fine to medium GRA                                           |              |             |
|              |                   |                    |                              |              |                                   | Sand is fine to coarse.  MADE GROUND: Brownish yellow gravelly silty fine to coarse SAND                | D.           |             |
|              |                   |                    | 3.54                         | - 0.25       |                                   | Gravel is subrounded fine to coarse.  MADE GROUND: Dark greyish black gravelly very silty fine to coars | ie           |             |
|              |                   |                    | 3.34                         | 0.45         |                                   | SAND with low cobble content. Gravel is subangular fine to coarse                                       |              |             |
|              |                   |                    |                              | -            |                                   | Cobbles are angular.  MADE GROUND: Grey gravelly very silty fine to coarse SAND with I                  |              | 0.5         |
|              |                   |                    |                              |              |                                   | cobble content and rare brick fragments. Gravel is subrounded fine coarse. Cobbles are rounded.         | e to         |             |
|              |                   |                    | 2.99                         | 0.80         |                                   | End of trial pit at 0.80m                                                                               |              |             |
|              |                   |                    |                              | -            |                                   | ,                                                                                                       |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              | 1.0 -       |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              |              |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              |              |                                   |                                                                                                         |              | 1.5         |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              |              |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              | 2.0         |
|              |                   |                    |                              |              |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              | 2.5         |
|              |                   |                    |                              |              |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              | 3.0         |
|              |                   |                    |                              |              |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              |              |                                   |                                                                                                         |              | 3.5         |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              | 4.0         |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              |              |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              | 4.5         |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              |              |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              |                   |                    |                              | -            |                                   |                                                                                                         |              |             |
|              | r Strikes         | <b>Depth:</b> 0.80 |                              | narks:       | nere-t                            | nit everyated to 0.90m                                                                                  | 1 1          |             |
| ruck at (m)  | Remarks           | <b>Width:</b> 0.70 | Nog                          | groundwat    | er encou                          |                                                                                                         |              |             |
|              |                   | Length: 2.20       |                              |              |                                   | south end of pit.                                                                                       |              |             |
|              |                   |                    |                              |              |                                   |                                                                                                         |              |             |
|              |                   | Stability:         | Tern                         | nination R   | eason                             |                                                                                                         | Last Updated | 1 E         |

|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Dro   | ject No.                       | Droinet     | Name:                                                                         |                      |             | rial Pit ID    |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|--------------------------------|-------------|-------------------------------------------------------------------------------|----------------------|-------------|----------------|--|
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |                                | 1           |                                                                               |                      | '           | riai Pit ID    |  |
|                           | CAUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EWAY                  |       | -1041B                         |             | anning Design GI - Lot B 3rd Party Lands                                      |                      |             |                |  |
|                           | ——-G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>EWAY</b><br>EOTECH | Cool  | rdinates                       | Client:     |                                                                               |                      | '           | 3H208D         |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 7204  | 123.55 E                       | 1           | Port Company (DPC)                                                            |                      |             |                |  |
| Method:<br>Inspection Pit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 7337  | 722721 00 N                    |             | s Representative:                                                             |                      | neet 1 of 1 |                |  |
| Plant:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Elo   | vation                         | Date:       | RPS                                                                           |                      | 5           | Scale: 1:25    |  |
| 3t Excavator              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | 3 mOD                          | 23/01/      | 2023                                                                          | <b>Logger:</b><br>RS |             | DRAFT          |  |
| Depth                     | Sample /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | Level | Depth                          |             |                                                                               | 11.5                 | <b>a</b>    |                |  |
| (m)                       | Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field Records         | (mOD) | (m)                            | Legend      | Description                                                                   |                      | Water       |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |                                |             | MADE GROUND: Brown very sandy very clayey ang GRAVEL. Sand is fine to coarse. | gular fine to coa    | rse         | _              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 3.58  | 0.15                           |             | End of trial pit at 0.15m                                                     |                      |             | _              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | 0.5 —          |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | _              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | [                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | 1.0            |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | _                              |             |                                                                               |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | _              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | 1.5 —          |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | Ė                              |             |                                                                               |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | [                              |             |                                                                               |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | _              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | F                              |             |                                                                               |                      |             | 2.0            |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | E                              |             |                                                                               |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |                                |             |                                                                               |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | 2.5 —          |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | 3.0            |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | Ė                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |                                |             |                                                                               |                      |             | _              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | [                              |             |                                                                               |                      |             | 3.5 —          |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | _              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |                                |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |                                |             |                                                                               |                      |             | 4.0 —          |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | Ė                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |                                |             |                                                                               |                      |             | 4.5 —          |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | <u> </u>                       |             |                                                                               |                      |             | _              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       | -                              |             |                                                                               |                      |             | -              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1     | <u> </u>                       |             |                                                                               |                      |             |                |  |
|                           | Strikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Depth:</b> 0.15    |       | <b>narks:</b><br>Thine dug in: | snection n  | it excavated to 0.15m.                                                        |                      |             |                |  |
| Struck at (m)             | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Width:</b> 0.35    | No    | groundwate                     | r encounte  | ered.                                                                         |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Length: 4.30          |       | lld not break<br>el found with |             | due close proximity of GPR detected services.<br>te.                          |                      |             |                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stability:            |       | mination R                     |             |                                                                               |                      | Last Update | d              |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unstable              | Terr  | minated at re                  | efusal on c | oncrete.                                                                      |                      | 12/06/2023  | AGS            |  |
|                           | T. Control of the Con | 1                     | 1     |                                |             |                                                                               | 1                    |             | 11 = 3 = 1 = 1 |  |

| Metho                                                              | od                     | GEOT Plant Used                                                     | Top (n       | n) Bas               |          | 22-:         | ect No. 1041B              | Project Name: 3FM Planning Design GI - Lot B 3rd Party Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS  Final Depth: 10.20 m Start Date: 07/02/2023 Driller: RW               |          | BH212  Sheet 1 of |
|--------------------------------------------------------------------|------------------------|---------------------------------------------------------------------|--------------|----------------------|----------|--------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|
| Inspection<br>Cable Perc                                           |                        | 3t Excavator<br>Dando 2500                                          | 0.00<br>2.50 | 10                   | 0.20     |              | .16.74 E<br>328.09 N       | Elevation: 2.16 mOD End Date: 10/02/2023 Logger: RS                                                                                                                                       |          | Scale: 1:4        |
| Depth<br>(m)                                                       | Sample /<br>Tests      | Field Record                                                        | s            | Casin<br>Dept<br>(m) | (m)      | Level<br>mOD | Depth<br>(m)               | Legend Description                                                                                                                                                                        | Water    | Backfill          |
| 0.00<br>0.50<br>0.50<br>0.50<br>0.00                               | B2<br>ES7              | 08-02-2023  PID = 0.10ppm  PID = 0.00ppm                            |              | 0.0                  | 0.00     | 1.76         | 0.40                       | MADE GROUND: Light brown BOULDERS with occasional cobbles and with much sand.  MADE GROUND: Light slightly gravelly slightly silty fine to coarse SAND. Gravel is rounded fine to medium. | _        |                   |
| .50<br>.50<br>.50<br>.00<br>.00                                    | B3<br>ES8<br>B4<br>ES9 | PID = 0.00ppm<br>Sea water ingress at 1<br>PID = 0.10ppm            | 85m          |                      |          |              | -<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                           | <b>Y</b> |                   |
| 2.50<br>2.50<br>2.50 - 3.00<br>2.50 - 3.00                         | B5<br>ES10<br>B1       | PID = 0.70ppm                                                       |              |                      |          | -0.34        | -<br>- 2.50<br>-<br>-<br>- | Medium dense brown fine to coarse SAND and subrounded fine to coarse GRAVEL with shell fragments.                                                                                         |          |                   |
| 3.00 - 4.00<br>3.00 - 3.45<br>3.00                                 | B6<br>SPT (C)          | N=21 (3,3/4,4,6,7) Ha<br>1410<br>PID = 0.90ppm<br>fast              | mmer SN      | 3.0                  | 0 1.50   | -1.34        | -<br>-<br>-<br>- 3.50      | Medium dense brown very gravelly slightly silty fine to coarse SAND. Gravel is subrounded fine to medium.                                                                                 | _        |                   |
| 3.50<br>3.50<br>4.00<br>4.00 - 5.00<br>4.00 - 4.45<br>4.20<br>4.50 | ES5<br>B8              | PID = 1.30ppm<br>N=18 (3,5/4,5,5,4) Ha<br>1410<br>PID = 0.50ppm     | mmer SN      | I = 4.0              | 0 2.60   |              | -                          |                                                                                                                                                                                           |          |                   |
| 5.00 - 6.00<br>5.00 - 5.45<br>5.20<br>5.50                         | B10<br>SPT (C)         | N=24 (4,5/5,6,6,7) Ha<br>1410<br>PID = 0.60ppm                      | mmer SN      | 1 = 5.0              | 0 2.00   | -2.84        | - 5.00                     | Medium dense grey fine to coarse SAND and subrounded fine to coarse GRAVEL with medium cobble content and shell fragments. Cobbles are subrounded.                                        |          |                   |
| 5.00 - 7.00<br>5.00 - 6.45<br>5.20<br>5.50                         | B12<br>SPT (C)<br>D11  | N=25 (4,5/6,5,7,7) Ha<br>1410<br>PID = 0.70ppm                      | mmer SN      | 1 = 6.0              | 0 1.80   |              |                            |                                                                                                                                                                                           |          |                   |
| 7.00 - 8.00<br>7.00 - 7.45                                         |                        | N=20 (3,3/4,4,5,7) Ha<br>1410                                       | mmer SN      | I = 7.0              | 0 2.00   |              | -                          |                                                                                                                                                                                           |          |                   |
| 7.20                                                               | D13                    | . Strikes                                                           |              | CL                   | isolii:- | . Dat-"      | le T                       | Pomarks                                                                                                                                                                                   | <u></u>  |                   |
| 1.85<br>3.00                                                       | asing to (m            | r Strikes ) Time (min) Rose to  10 1.50  Water Added From (m) To (m | 2.           | Chi<br>m (m)<br>.00  | To (     |              | me (hh:mm)<br>01:00        | Remarks  Machine dug inspection pit excavated to 1.20m.                                                                                                                                   |          |                   |
| 9.00<br>10.00                                                      | 250<br>200             |                                                                     |              |                      |          |              |                            | Termination Reason Last Up Terminated at scheduled depth. 12/06                                                                                                                           |          |                   |

|                           |                           |                           |               |                       |          |                | Proje        | ct No.             | Project   | : Name: 3FM Plan                         | nning Design GI - Lot B                                              | 3rd Party L    | ands <b>Bc</b> | rehole ID                 |
|---------------------------|---------------------------|---------------------------|---------------|-----------------------|----------|----------------|--------------|--------------------|-----------|------------------------------------------|----------------------------------------------------------------------|----------------|----------------|---------------------------|
|                           |                           | CAUSE                     | W             | AY                    |          |                | 22-1         | 041B               | Client:   | Dublin P                                 | ort Company (DPC)                                                    |                |                | BH212                     |
|                           |                           | ——GE0                     | OIE           | СН                    |          |                |              |                    | Client's  | s Rep: RPS                               |                                                                      |                |                |                           |
| Metho                     | n Pit                     | Plant Used                | or            | <b>op (m)</b><br>0.00 | 2.50     | )              |              | linates            | Final De  | <b>epth:</b> 10.20 m                     | <b>Start Date:</b> 07/02/2023                                        | Driller:       | R\M            | neet 2 of 2<br>cale: 1:40 |
| Cable Perc                | ussion                    | Dando 250                 | 00            | 2.50                  | 10.2     |                |              | 6.74 E<br>8.09 N   | Elevatio  | on: 2.16 mOD                             | End Date: 10/02/2023                                                 | Logger:        | RS             | DRAFT                     |
| Depth<br>(m)              | Sample /<br>Tests         | Field Re                  | ecords        |                       | Depth De |                | Level<br>mOD | Depth<br>(m)       | Legend    |                                          | Description                                                          | *              | Water          | Backfill                  |
| 7.50                      |                           | PID = 0.60ppm             |               |                       |          | ,              |              | -                  |           |                                          | r fine to coarse SAND and su<br>I medium cobble content an<br>Inded. |                | e to           | 7.5                       |
| .00 - 9.00<br>.00 - 8.45  | B16<br>SPT (C)<br>D15     | N=30 (4,4/6,7,8,9<br>1410 | 9) Hamn       | ner SN =              | 8.00 2.  |                | 5.84         | - 8.00<br>-<br>-   |           | Medium dense grey<br>Gravel is subrounde | very gravelly slightly silty find to medium.                         | ne to coarse S | AND.           | 8.0                       |
| .50                       |                           | PID = 0.30ppm             |               |                       |          |                |              | -<br>-<br>-        |           |                                          |                                                                      |                |                | 8.5                       |
| .00 - 10.00<br>.00 - 9.45 | B18<br>SPT (C)            | N=25 (3,4/5,5,7,8<br>1410 | 8) Hamn       | ner SN =              | 9.00 1   | 90             |              | -                  |           |                                          |                                                                      |                |                | 9.0                       |
| 1.50                      |                           | PID = 1.20ppm             |               |                       |          |                |              |                    |           |                                          |                                                                      |                |                | 9.5                       |
| .0.00 - 10.45<br>.0.20    | SPT (C)                   | N=10 (1,3/2,2,3,3<br>1410 | 3) Hamn       | ner SN =              | 10.0 1.  |                | 8.04         | 10.20              |           |                                          | End of Borehole at 10.20r                                            | n              |                | 10.0 -                    |
|                           |                           |                           |               |                       |          |                |              | -                  |           |                                          |                                                                      |                |                | 10.5                      |
|                           |                           |                           |               |                       |          |                |              | -<br>-<br>-        |           |                                          |                                                                      |                |                | 11.0 ·                    |
|                           |                           |                           |               |                       |          |                |              | -                  |           |                                          |                                                                      |                |                | 11.5                      |
|                           |                           |                           |               |                       |          |                |              | _                  |           |                                          |                                                                      |                |                | 12.0 -                    |
|                           |                           |                           |               |                       |          |                |              | -                  |           |                                          |                                                                      |                |                |                           |
|                           |                           |                           |               |                       |          |                |              | -                  |           |                                          |                                                                      |                |                | 12.5                      |
|                           |                           |                           |               |                       |          |                |              | -<br>-<br>-        |           |                                          |                                                                      |                |                | 13.0 -                    |
|                           |                           |                           |               |                       |          |                |              |                    |           |                                          |                                                                      |                |                | 13.5                      |
|                           |                           |                           |               |                       |          |                |              | -                  |           |                                          |                                                                      |                |                | 14.0 -                    |
|                           |                           |                           |               |                       |          |                |              | -                  |           |                                          |                                                                      |                |                | 14.5                      |
|                           |                           |                           |               |                       |          |                |              |                    |           |                                          |                                                                      |                |                |                           |
|                           |                           | r Strikes                 |               | -                     | Chisel   |                |              |                    | Remarks   |                                          |                                                                      |                |                |                           |
| 1.85<br>3.00              | 3.00                      | n) Time (min) Ros         | se to (m)     | 2.00                  |          | To (m)<br>2.50 |              | e (hh:mm)<br>01:00 | Machine o | dug inspection pit exc                   | avated to 1.20m.                                                     |                |                |                           |
| Casing D                  | <b>etails</b><br>Diameter | Water Add                 | ded<br>To (m) |                       |          |                |              |                    |           |                                          |                                                                      |                |                |                           |
| 9.00                      | 250<br>200                | - ()                      | · ·/          | 1                     |          |                |              |                    | Torres! : | tion Dosser                              |                                                                      | Г              | lost lim-l-1   | . I <del></del>           |
|                           |                           |                           |               |                       |          |                |              |                    |           | tion Reason                              |                                                                      |                | Last Updated   |                           |
|                           |                           |                           |               |                       |          |                |              |                    | Ierminate | d at scheduled depth                     |                                                                      |                | 12/06/2023     |                           |

|                                       |                           | CAUSEW                                   | <b>AY</b><br>ECH       |                            |                  | roject No.<br><b>2-1041B</b> | Client's                      |                                          | nning Desigi<br>ort Compan |                    | ra Party      | Lands          | В     | orehole<br>BH21   |          |
|---------------------------------------|---------------------------|------------------------------------------|------------------------|----------------------------|------------------|------------------------------|-------------------------------|------------------------------------------|----------------------------|--------------------|---------------|----------------|-------|-------------------|----------|
| Metho                                 | d                         | Plant Used                               | Top (m)                | Base (                     | m) C             | oordinates                   |                               | -                                        | Start Bata                 | 02/12/2022         | Duille        | CT.CC          | S     | heet 1 c          | <br>of 5 |
| Cable Perco<br>Rotary Dr<br>Rotary Co | illing                    | Dando 3000<br>Beretta T44<br>Beretta T44 | 0.00<br>17.70<br>20.00 | 17.7<br>20.0<br>40.0       | 7                | 20139.80 E<br>33916.90 N     | Final De                      | •                                        | Start Date:                |                    |               | GT+CC<br>DM+RS |       | Scale: 1:<br>DRAF |          |
| Depth                                 | Sample /                  | Field Records                            |                        | Casing W<br>Depth D<br>(m) |                  | vel Depth                    | Legend                        |                                          | Desc                       | ription            |               |                | Water | Backfill          | Τ        |
| (m)<br>.00 - 0.50                     | Tests<br>B17              | Trefa ficcords                           |                        | (m)                        | m) m             | OD (m)                       | Zegena<br>XXXXX               | MADE GROUND: G                           |                            | <u> </u>           | ubangular     | fine to        | ×     | Duckiiii          | ┢        |
|                                       |                           |                                          |                        |                            |                  |                              |                               | coarse GRAVEL with<br>Cobbles are angula |                            | ntent. Sand is f   | fine to coa   | rse.           |       |                   |          |
| .50                                   | ES1                       |                                          |                        |                            | 2.               | 38 0.50                      |                               | MADE GROUND: Lo                          |                            | ly gravelly fine t | o coarse S    | AND.           | 1     |                   | 0.5      |
| .50 - 1.50<br>.50                     | B18                       | PID = 5.00ppm                            |                        |                            |                  | Ē                            |                               | Gravel is subangula                      | r to subrounde             | d fine to coarse   | ١.            |                |       |                   |          |
| .00                                   | ES2                       |                                          |                        |                            |                  | -                            |                               |                                          |                            |                    |               |                |       |                   | 1.0      |
| .00<br>.20                            | D19                       | PID = 0.10ppm                            |                        |                            |                  | Ē                            |                               |                                          |                            |                    |               |                |       |                   | ı        |
| .20 - 1.65                            |                           | N=11 (2,2/2,3,3,3) Har                   | nmer SN =              | 1.20 0                     | 50               | Ē                            |                               |                                          |                            |                    |               |                |       |                   | 1.5      |
| F0                                    |                           | 0197                                     |                        |                            |                  | Ē                            |                               |                                          |                            |                    |               |                |       |                   |          |
| .50<br>.50                            | ES3                       | PID = 0.10ppm                            |                        |                            |                  | Ē                            |                               |                                          |                            |                    |               |                |       |                   |          |
| .00                                   | D20                       |                                          |                        |                            | 0.               | 88 - 2.00                    |                               | MADE GROUND: Lo                          | -                          |                    |               | •              | •     |                   | 2.0      |
| .00<br>.00 - 3.00                     | ES4<br>B21                |                                          |                        |                            |                  | Ē                            |                               | gravelly fine to coar<br>to coarse.      | rse SAND. Grav             | el is subangular   | to subrou     | nded fine      |       |                   | ı        |
| .00 - 2.45                            | SPT (S)                   | N=10 (1,1/2,2,3,3) Har                   | nmer SN =              | 2.00 1                     | 00               | Ē                            |                               |                                          |                            |                    |               |                |       |                   | 2.5      |
| .00                                   |                           | 0197<br>PID = 0.10ppm                    |                        |                            |                  | Ė                            |                               |                                          |                            |                    |               |                |       |                   | 1        |
| .50                                   | ES5                       |                                          |                        |                            |                  | -                            |                               |                                          |                            |                    |               |                |       |                   | 3.0      |
| .50<br>.00                            | D22                       | PID = 0.10ppm                            |                        |                            |                  | Ė                            |                               |                                          |                            |                    |               |                |       |                   | 1        |
| 3.00                                  | ES6                       |                                          |                        |                            |                  | Ē                            |                               |                                          |                            |                    |               |                |       |                   | 3.5      |
| .00 - 3.45                            | SPT (S)                   | N=19 (2,3/4,4,5,6) Har<br>0197           | nmer SN =              | 3.00 1                     |                  | .82 3.70                     |                               |                                          |                            |                    |               |                |       |                   | 3.5      |
| .00                                   |                           | PID = 0.20ppm                            |                        |                            | -0               | .62   3.70                   |                               | MADE GROUND: De<br>to coarse GRAVEL v    |                            |                    |               |                |       |                   | ı        |
| 3.50                                  | ES7                       |                                          |                        |                            |                  | -                            |                               | coarse. Cobbles are                      |                            | ibble content. 3   | banu is iiiie | : 10           |       |                   | 4.0      |
| .70 - 4.50<br>.00                     | B23<br>D24                |                                          |                        |                            |                  | Ē                            |                               |                                          |                            |                    |               |                |       |                   | 1        |
| .00                                   | ES8                       | N 26/60/42 42 ===                        |                        | 4.00                       | 10               | -                            |                               |                                          |                            |                    |               |                |       |                   | 4.5      |
| 1.00 - 4.45                           | SPI (C)                   | N=36 (6,9/12,10,7,7) H<br>SN = 0197      | lammer                 | 4.00 2                     | 10               |                              |                               |                                          |                            |                    |               |                |       |                   | ı        |
| .00                                   |                           | PID = 0.30ppm                            |                        |                            |                  |                              |                               |                                          |                            |                    |               |                |       |                   | 5.0      |
| 1.50                                  | ES9                       | Strong seepage at 4.30                   | )m                     |                            |                  | Ē                            |                               |                                          |                            |                    |               |                |       |                   | ı        |
| 1.50                                  |                           | PID = 0.30ppm                            |                        |                            |                  | Ē                            |                               |                                          |                            |                    |               |                |       |                   | ı        |
| 5.00<br>5.00                          | D25<br>ES10               |                                          |                        |                            |                  | Ē                            |                               |                                          |                            |                    |               |                |       |                   | 5.5      |
| 5.00 - 5.45                           |                           | N=40 (4,7/9,9,10,12) H                   | lammer                 | 5.00 3                     | 30               | Ē                            |                               |                                          |                            |                    |               |                |       |                   | ı        |
| 5.00                                  |                           | SN = 0197<br>PID = 0.30ppm               |                        |                            |                  | -                            |                               |                                          |                            |                    |               |                |       |                   | 6.0      |
| 5.50                                  | ES11                      | - 0.30ррш                                |                        |                            |                  | Ē                            |                               |                                          |                            |                    |               |                |       |                   | ı        |
| 5.50 - 6.50<br>5.50                   | B26                       | PID = 0.20ppm                            |                        |                            |                  | Ē                            |                               |                                          |                            |                    |               |                |       |                   | 6.5      |
| 5.00                                  | ES12                      | - 0.20ррпі                               |                        |                            |                  | 02 6 00                      |                               |                                          |                            |                    |               |                |       |                   | ı        |
| 5.00<br>5.50                          | D27                       | PID = 0.30ppm                            |                        |                            | -3               | .92 6.80                     | XXX                           | Firm grey SILT.                          |                            |                    |               |                |       |                   | 7.0      |
| 5.50<br>5.50                          | ES13                      |                                          |                        |                            |                  | .22 7.10                     |                               | Grey sandy SILT. Sar                     | nd is fine to coa          | irse.              |               |                | 1     |                   | •        |
| 5.50 - 6.95                           | SPT (C)                   | N=17 (4,5/7,6,2,2) Har                   | nmer SN =              | 6.50 3                     | 40               | Ė                            | $\times \times \times$        |                                          |                            |                    |               |                |       |                   | 1        |
| 5.50                                  |                           | 0197<br>PID = 0.10ppm                    |                        |                            |                  | Ē                            | XXXX                          |                                          |                            |                    |               |                |       |                   | 7.5      |
| 5.80 - 7.10                           | B28                       |                                          |                        |                            |                  | Ė                            | $\times \times \times \times$ |                                          |                            |                    |               |                |       |                   | 1        |
| '.00<br>'.10 - 8.00                   | ES14<br>B29               |                                          |                        |                            |                  | <u> </u>                     | × × × ×                       |                                          |                            |                    |               |                |       |                   | 8.0      |
| 7.50                                  | ES15                      |                                          |                        |                            |                  | -                            | × × × ×                       | 1                                        |                            |                    |               |                |       |                   | 1        |
| 3.00<br>3.00                          | D30<br>ES16               |                                          |                        |                            |                  | Ē                            | $\times \times \times \times$ |                                          |                            |                    |               |                |       |                   | 8.5      |
| 3.00 - 8.45                           |                           | N=10 (2,2/2,3,3,2) Har                   | nmer SN =              | 8.00 1                     | 70 <sub>-5</sub> | .82 8.70                     | ××××                          | Madium dansa a                           | u voru cando el:           | abthy clayers and  | angular t     |                | -     |                   | 1        |
| 3.70 - 10.00                          | B31                       | 0197                                     |                        |                            |                  | -                            |                               | Medium dense grey<br>subrounded fine to  |                            |                    |               |                |       |                   |          |
| 20.00                                 |                           |                                          |                        |                            |                  | F                            |                               |                                          |                            |                    |               |                |       |                   | 9.0      |
|                                       |                           |                                          |                        |                            |                  | }                            |                               |                                          |                            |                    |               |                | 1     |                   | 1        |
| ,                                     |                           | r Strikes                                |                        |                            | ling De          | _                            | Remarks                       |                                          |                            |                    |               |                |       |                   | _        |
| ruck at (m) Ca<br>4.30                | sing to (m<br>4.30        | 1) Time (min) Rose to (1) 20 2.10        | m) From (<br>4.70      |                            | To (m)<br>5.10   | Time (hh:mm)<br>01:00        | Hand dug                      | inspection pit excava                    | ted to 1.20m               |                    |               |                |       |                   |          |
|                                       | -                         |                                          | 5.90                   | )                          | 6.80             | 01:00                        |                               |                                          |                            |                    |               |                |       |                   |          |
|                                       |                           |                                          | 17.6                   | J                          | 17.70            | 01:00                        |                               |                                          |                            |                    |               |                |       |                   |          |
| Casing De                             | ataile                    | Water Added                              |                        |                            |                  |                              |                               |                                          |                            |                    |               |                |       |                   |          |
|                                       | e <b>taiis</b><br>iam (mm |                                          |                        |                            |                  |                              |                               |                                          |                            |                    |               |                |       |                   |          |
| 17.70<br>36.00                        | 200<br>150                | 8.00 12.50                               |                        |                            |                  |                              | _                             |                                          |                            |                    |               |                |       |                   | _        |
| 33.30                                 | 200                       |                                          | Core                   | Barre                      | F                | ush Type                     | Termina                       | tion Reason                              |                            |                    |               | Last Up        |       | d                 | Į        |
| 1                                     |                           |                                          | c                      | K6L                        | - 1              | Water                        | Terminate                     | ed at scheduled depth                    | ١.                         |                    |               | 12/06,         | /2023 | 17,1              | لم       |

|                                         |                    | CAUSEW                                    | /AY                  |                                        |                     | ect No.<br>.041B                      | Project Name: 3FM Planning Design GI - Lot B 3rd Party  Client: Dublin Port Company (DPC)                                  | Borehole ID BH215                 |
|-----------------------------------------|--------------------|-------------------------------------------|----------------------|----------------------------------------|---------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Metho:                                  |                    | Plant Used Dando 3000                     |                      | Base (m)<br>17.70                      | Coord               | dinates                               | Client's Rep:         RPS           Final Depth:         40.00 m         Start Date:         02/12/2022         Driller:   | GT+CC Sheet 2 of 5<br>Scale: 1:50 |
| Rotary Dri<br>Rotary Co                 | -                  | Beretta T44<br>Beretta T44                | 17.70<br>20.00       | 20.00<br>40.00                         |                     | 39.80 E<br>16.90 N                    | Elevation: 2.88 mOD End Date: 06/12/2022 Logger:                                                                           | DM+RS DRAFT                       |
| Depth<br>(m)                            | Sample /<br>Tests  | Field Records                             | 1                    | Casing Water<br>Depth Depth<br>(m) (m) | Level<br>mOD        | Depth<br>(m)                          | Legend Description                                                                                                         | te Backfill                       |
| 9.50<br>9.50 - 9.95                     | D32<br>SPT (C)     | N=27 (4,5/6,6,7,8) Han<br>0197            | mmer SN =            | 9.50 2.90                              |                     |                                       |                                                                                                                            | 10.0                              |
| 11.00<br>11.00 - 11.45<br>11.20 - 12.00 |                    | N=15 (2,2/3,4,4,4) Han<br>0197            | mmer SN =            | 11.0 3.70                              | -8.32               | 11.20                                 | Medium dense brown silty fine SAND.                                                                                        | 11.0                              |
| 2 50 - 12 95                            | SPT (C)            | N=17 (2,3/3,4,5,5) Han                    | mmer SN =            | 12 5 7 60                              | -9.62               | 12.50                                 |                                                                                                                            | 12.0                              |
| 12.70 - 13.20                           |                    | 0197                                      | ci JI <b>V</b> -     | 12.5 7.00                              | 3.02                | 12.30                                 | Medium dense brown gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse.                        | 12.3                              |
| 3.20 - 14.00                            | B36                |                                           |                      |                                        | -10.32              | 13.20                                 | Dense locally medium dense brown sandy slightly clayey sub<br>to subrounded fine to coarse GRAVEL. Sand is fine to coarse. |                                   |
| 4.00<br>4.00 - 14.45<br>4.50 - 15.50    |                    | N=32 (3,4/6,8,9,9) Han<br>0197            | nmer SN =            | 14.0 4.10                              |                     |                                       |                                                                                                                            | 14.0                              |
| 15.50<br>15.50 - 15.95<br>16.00 - 17.00 |                    | N=25 (2,3/5,5,7,8) Han<br>0197            | mmer SN =            | 15.5 6.60                              |                     |                                       |                                                                                                                            | 15.0<br>15.5                      |
| .7.00<br>7.00 - 17.45                   | D41<br>SPT (C)     | N=32 (3,4/5,7,9,11) Ha<br>= 0197          | ammer SN             | 17.0 8.10                              |                     |                                       |                                                                                                                            | 17.0                              |
| 7.70 - 17.76                            | SPT (C)            | 50 (25 for 25mm/50 fo<br>Hammer SN = 0208 | or 30mm)             | 17.7 9.80                              | -14.82              | 17.70                                 | /Very stiff brown sandy CLAY. (Driller's Description).                                                                     | 18.0                              |
|                                         | Wate               | r Strikes                                 |                      | Chisellin                              | g Details           | <u> </u>                              | Remarks                                                                                                                    |                                   |
| 4.30 Casing De                          | sing to (m<br>4.30 | Time (min)   Rose to (note                | 4.70<br>5.90<br>17.6 | m) To<br>) 5.<br>) 6.                  | (m) Tim<br>10<br>80 | ne (hh:mm)<br>01:00<br>01:00<br>01:00 | Hand dug inspection pit excavated to 1.20m                                                                                 |                                   |
| 17.70<br>36.00                          | 200<br>150         | 8.00 12.50                                |                      | Barrel                                 | Flush               | Туре                                  | Termination Reason                                                                                                         | Last Updated                      |
|                                         |                    |                                           |                      | K6L                                    | Wa                  |                                       | Terminated at scheduled depth.                                                                                             | 12/06/2023 <b>AG</b>              |

| Metho                                                | _                                          | Plant                             | EOT               | EC            | Н           | Base (m)                               |              | 041B         | Client:<br>Client's Rep |                                    | ort Compar     | y (DPC)             |             |          |       | BH21!                 |                      |
|------------------------------------------------------|--------------------------------------------|-----------------------------------|-------------------|---------------|-------------|----------------------------------------|--------------|--------------|-------------------------|------------------------------------|----------------|---------------------|-------------|----------|-------|-----------------------|----------------------|
| Cable Percu<br>Rotary Dri                            | ission                                     | Dando<br>Beretta                  | 3000              | 0.            | 00          | 17.70<br>20.00                         |              | 9.80 E       | Final Depth:            | 40.00 m                            | Start Date:    | 02/12/2022          | Driller:    | GT+CC    |       | neet 3 o<br>Scale: 1: |                      |
| Rotary Co                                            | -                                          | Beretta                           |                   |               | .00         | 40.00                                  |              | .6.90 N      | Elevation:              | 2.88 mOD                           | End Date:      | 06/12/2022          | Logger:     | DM+RS    |       | DRAF                  | Τ                    |
| Depth<br>(m)                                         | Sample /<br>Tests                          | Fie                               | eld Record        | s             |             | Casing Water<br>Depth Depth<br>(m) (m) | Level<br>mOD | Depth<br>(m) | Legend                  |                                    | Desc           | ription             |             |          | Water | Backfill              |                      |
| 9.50 - 19.64                                         | SPT (C)                                    | 50 (25 for 62<br>Hammer SN        |                   | or 78n        | nm)         |                                        | -17.12       | 20.00        | P.V.V.V.                | n brown slightly<br>ibrounded fine |                | · SILT. Sand is fin | e to coarse | . Gravel |       |                       | 19.0<br>19.5<br>20.0 |
|                                                      |                                            |                                   | 50                |               |             |                                        |              |              | S S                     | isrounded fine                     | to mediani.    |                     |             |          |       |                       | 20.5<br>21.0         |
| 1.50<br>1.50<br>1.50<br>1.50 - 21.95<br>2.00 - 22.30 |                                            |                                   | 70                |               | _           |                                        |              |              |                         |                                    |                |                     |             |          |       |                       | 21.5<br>22.0<br>22.5 |
| 2.80 - 23.00                                         | СЗ                                         |                                   |                   |               |             |                                        |              |              | × × ×<br>× × ×<br>× × × |                                    |                |                     |             |          |       |                       |                      |
| 3.00<br>3.00<br>3.00 - 24.50<br>3.00 - 23.45         | SPT(S) N<br>(2,2/3,2                       |                                   | 60                |               |             |                                        |              | (6.00)       |                         |                                    |                |                     |             |          |       |                       | 23.5                 |
| 4.50<br>4.50<br>4.50 - 24.95                         | D44<br>SPT(S) N<br>(3,3/2,3<br>Hamme       |                                   | 45                |               | -           |                                        |              |              |                         |                                    |                |                     |             |          |       |                       | 24.5<br>25.0<br>25.5 |
|                                                      | D45<br>C5<br>SPT(S) N<br>(2,3/3,3<br>Hamme |                                   | 50                |               |             |                                        | -23.12       | 26.00        | Firm                    | n brown slightly                   | sandy CLAY. Sa | and is fine.        |             |          |       |                       | 26.0<br>26.5<br>27.0 |
| 7.50<br>7.50                                         | D46                                        |                                   | TCR SCI           | P ROD         | -<br>FI     |                                        |              |              |                         |                                    |                |                     |             |          | _     |                       | 27.5                 |
|                                                      |                                            | Strikes                           |                   | R             | FI<br>Remai | rks                                    |              | <u> </u>     |                         |                                    |                |                     |             |          |       | <u> </u>              |                      |
| Casing De                                            | 4.30 etails am (mm                         | ) Time (min) 20  Water ) From (m) | 2.10  Added To (m | ( <u>m)</u> + |             |                                        | tion pit ex  | cavated to   | o 1.20m                 |                                    |                |                     |             |          |       |                       |                      |
| 17.70<br>36.00                                       | 200<br>150                                 | 8.00                              | 12.50             | _             | Core        | Barrel                                 | Flush        | Туре         | Termination             | Reason                             |                |                     |             | Last Up  | date  | d T                   | <b>-</b>             |
|                                                      |                                            |                                   |                   |               | SI          | K6L                                    | Wat          | ter          | Terminated at s         | cheduled depth                     | 1.             |                     |             | 12/06/   | 2023  | Λ                     | ቭ                    |

| •                                                        | C                                             | AUS                                | E    | <b>VV</b> | A          | <b>Y</b> |                        |                            |              | ect No.                               | Project<br>Client:<br>Client's | [                                     |                                        | nning Desig<br>Port Compar | n GI - Lot B 3<br>ny (DPC)                                                  | rd Party    | Lands             | В     | orehole II           |
|----------------------------------------------------------|-----------------------------------------------|------------------------------------|------|-----------|------------|----------|------------------------|----------------------------|--------------|---------------------------------------|--------------------------------|---------------------------------------|----------------------------------------|----------------------------|-----------------------------------------------------------------------------|-------------|-------------------|-------|----------------------|
| Metho<br>Cable Percu                                     |                                               | Plant U                            |      | ١         | <b>Top</b> |          | Base<br>17.            |                            | Coor         | dinates                               | Final De                       | epth: 4                               | 10.00 m                                | Start Date:                | 02/12/2022                                                                  | Driller:    | GT+CC             |       | Sheet 4 of 5         |
| Rotary Dri<br>Rotary Co                                  | lling                                         | Beretta<br>Beretta                 | T44  |           | 17.<br>20. | 70       | 20.<br>40.             | 00                         |              | 39.80 E<br>16.90 N                    | Elevatio                       |                                       | 88 mOD                                 | End Date:                  | 06/12/2022                                                                  | Logger      | : DM+RS           |       | Scale: 1:50<br>DRAFT |
| Depth<br>(m)                                             | Samples /                                     | Field Records                      | TCR  | SCR       | RQD        | FI       | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m)      | Level<br>mOD | Depth<br>(m)                          | Legend                         | '                                     |                                        | Des                        | cription                                                                    |             |                   | Water | Backfill             |
| 27.50 - 27.95<br>29.00                                   | SPT(S) N:<br>(2,2/3,3,<br>Hammer              |                                    | 25   |           |            |          |                        |                            |              |                                       |                                | Firm brow                             | n slightly                             | sandy CLAY. S              | and is fine.                                                                |             |                   |       | 28.5<br>28.5<br>29.0 |
| 29.00                                                    | D47<br>SPT(S) N:<br>(2,2/3,3,<br>Hammer       |                                    | 45   |           |            |          |                        |                            |              |                                       |                                |                                       |                                        |                            |                                                                             |             |                   |       | 29.5<br>30.0         |
| 30.50<br>30.50<br>30.50 - 32.00<br>30.50 - 30.95         | D48<br>C6<br>SPT(S) N:<br>(2,3/3,3,<br>Hammer |                                    | 65   |           |            |          |                        |                            |              |                                       |                                |                                       |                                        |                            |                                                                             |             |                   |       | 30.5<br>31.0         |
| 31.10 - 31.40<br>31.40 - 31.60<br>32.00<br>32.00 - 32.45 | C7<br>C8<br>SPT(C) N                          |                                    |      |           |            |          |                        |                            |              | (10.00)                               |                                |                                       |                                        |                            |                                                                             |             |                   |       | 31.5<br>32.0         |
| 2.00                                                     | (3,2/3,3,                                     |                                    | 47   |           |            | NI       |                        |                            |              |                                       |                                |                                       |                                        |                            |                                                                             |             |                   |       | 32.5<br>33.0         |
| 33.50<br>33.50 - 33.95                                   | (3,2/3,2,                                     |                                    | 65   |           |            |          |                        |                            |              |                                       |                                |                                       |                                        |                            |                                                                             |             |                   |       | 33.5<br>34.0<br>34.9 |
| 35.00<br>35.00 - 35.14<br>36.00 - 36.85                  | 55mm/5                                        |                                    | 40   | 20        | 0          |          |                        |                            | -33.12       | 36.00                                 |                                | occasiona                             | l white ca<br>d: slightly              | lcite veins of u           | dark grey LIMES<br>IP to 15mm thic<br>Igth, slight disco                    | k. Slightly | h                 |       | 35.5<br>35.5         |
| 86.50<br>86.50 - 36.50                                   |                                               | 0 (25 for<br>for 0mm)<br>SN = 0208 |      |           |            |          |                        |                            |              |                                       |                                | 2. 40-50 d<br>undulating<br>surfaces. | h some lig<br>legree fra<br>g, rough v | ght brown disc             | spaced (110/44)<br>olouration on fr<br>Om, 38.70m, 39.<br>In discolouration | acture sur  | faces.<br>89.80m, |       | 36.5<br>37.0         |
|                                                          | Water                                         | Strikes                            | TCR  | SCR       | RQD        |          | Chis                   | elling                     | g Detail     | s                                     | Remarks                        |                                       |                                        |                            |                                                                             |             |                   |       |                      |
| Casing De                                                | sing to (m)<br>4.30                           |                                    | Add: | .10       |            |          | m)<br>)                | To (r<br>5.1<br>6.8<br>17. | m) Tir<br>.0 | ne (hh:mm)<br>01:00<br>01:00<br>01:00 |                                |                                       | pit excava                             | ited to 1.20m              |                                                                             |             |                   |       |                      |
| 17.70<br>36.00                                           | 200<br>150                                    | 8.00                               |      | 2.50      |            |          | Barr<br>K6L            | el                         |              | <b>Type</b>                           |                                | tion Reaso                            |                                        | ì.                         |                                                                             |             | 12/06             |       |                      |

| Metho                                      | <del>/</del> –      | AUS<br>Plant U                        | GEC           | TI   | ECI      | Н                             | Base                   | (m)                       | 22-1         | ot No. 041B                          | Client's            |                                                                                                                                                                                                | ort Compai                                                                             |                                                                                               |                                                                    |                               |       | BH21      | 5            |
|--------------------------------------------|---------------------|---------------------------------------|---------------|------|----------|-------------------------------|------------------------|---------------------------|--------------|--------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|-------|-----------|--------------|
| Cable Percu<br>Rotary Dri<br>Rotary Co     | ission<br>Iling     | Dando<br>Beretta<br>Beretta           | 3000<br>a T44 | )    | 0.<br>17 | 00<br>.70<br>.00              | 17.<br>20.<br>40.      | 70<br>00                  | 72013        | 9.80 E<br>6.90 N                     | Final De            |                                                                                                                                                                                                |                                                                                        | 02/12/2022                                                                                    |                                                                    | GT+CC<br>DM+RS                |       | Scale: 1: | 50           |
| Depth<br>(m)                               | Samples /           | Field Records                         | TCR           | SCR  | RQD      | FI                            | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m)     | Level<br>mOD | Depth<br>(m)                         | Legend              |                                                                                                                                                                                                | Des                                                                                    | cription                                                                                      |                                                                    |                               | Water | Backfill  |              |
| 7.60 - 37.80<br>8.00<br>8.80 - 39.00       |                     |                                       | 70<br>90      | 65   | 10       |                               |                        |                           |              | (4.00)                               |                     | Strong thinly to thic occasional white ca weathered: slightly Discontinuities:  1. 5-15 degree fract rough with some lig  2. 40-50 degree fract undulating, rough with some high continuities. | lcite veins of u<br>reduced strer<br>cures medium<br>ght brown disc<br>ctures at 38.50 | up to 15mm thickness, slight disco<br>spaced (110/44)<br>colouration on fr<br>0m, 38.70m, 39. | k. Slightly<br>louration.<br>5/950), un<br>acture sur<br>75m and 3 | dulating,<br>faces.<br>9.80m, |       |           | 37.5<br>38.0 |
| 9.00 - 39.20<br>9.50<br>9.50 - 39.70       |                     |                                       |               |      |          | 7                             |                        |                           |              |                                      |                     | surfaces.                                                                                                                                                                                      |                                                                                        |                                                                                               |                                                                    |                               |       |           | 39.0<br>39.5 |
|                                            | C13                 |                                       | 97            | 90   | 50       |                               |                        |                           | 27.12        | 40.00                                |                     |                                                                                                                                                                                                |                                                                                        |                                                                                               |                                                                    |                               |       |           |              |
| 0.00                                       |                     |                                       |               |      |          |                               |                        |                           | -37.12       | 40.00                                |                     |                                                                                                                                                                                                | End of Bore                                                                            | hole at 40.00m                                                                                |                                                                    |                               |       |           | 40.0         |
|                                            |                     |                                       |               |      |          |                               |                        |                           |              |                                      |                     |                                                                                                                                                                                                |                                                                                        |                                                                                               |                                                                    |                               |       |           | 41.0<br>41.5 |
|                                            |                     |                                       |               |      |          |                               |                        |                           |              |                                      |                     |                                                                                                                                                                                                |                                                                                        |                                                                                               |                                                                    |                               |       |           | 42.0<br>42.5 |
|                                            |                     |                                       |               |      |          |                               |                        |                           |              |                                      |                     |                                                                                                                                                                                                |                                                                                        |                                                                                               |                                                                    |                               |       |           | 43.0         |
|                                            |                     |                                       |               |      |          |                               |                        |                           |              |                                      |                     |                                                                                                                                                                                                |                                                                                        |                                                                                               |                                                                    |                               |       |           | 43.5         |
|                                            |                     |                                       |               |      |          |                               |                        |                           |              |                                      |                     |                                                                                                                                                                                                |                                                                                        |                                                                                               |                                                                    |                               |       |           | 44.0         |
|                                            |                     |                                       |               |      |          |                               |                        |                           |              |                                      |                     |                                                                                                                                                                                                |                                                                                        |                                                                                               |                                                                    |                               |       |           | 45.0         |
|                                            |                     |                                       |               |      |          |                               |                        |                           |              |                                      |                     |                                                                                                                                                                                                |                                                                                        |                                                                                               |                                                                    |                               |       |           | 45.5<br>46.0 |
|                                            |                     |                                       | TCR           | SCR  | RQD      | FI                            |                        |                           |              | -                                    |                     |                                                                                                                                                                                                |                                                                                        |                                                                                               |                                                                    |                               |       |           |              |
| Luck at (m) Case 4.30  Casing De To (m) Di | sing to (m)<br>4.30 | Strikes Time (min) 20  Water From (m) | Add           | 2.10 |          | rom (<br>4.70<br>5.90<br>17.6 | (m)<br>)               | To (<br>5.1<br>6.8<br>17. | .0 (         | e (hh:mm)<br>01:00<br>01:00<br>01:00 | Remarks<br>Hand dug | inspection pit excava                                                                                                                                                                          | ted to 1.20m                                                                           |                                                                                               |                                                                    |                               |       |           |              |
| 17.70<br>36.00                             | 200<br>150          | 8.00                                  |               | 2.50 |          |                               | Barr                   | el                        | Flush Wat    |                                      |                     | iion Reason d at scheduled depth                                                                                                                                                               |                                                                                        |                                                                                               |                                                                    | <b>Last Up</b>                |       |           |              |

|                                                      |                           | GEOTE                                                            | ЕСН                 |                        |                       | 22-1         | ect No.<br>.041B    | Project Nan<br>Client:<br>Client's Rep | Dublin P                            | nning Desig<br>ort Compar              | n GI - Lot B 3                                                          | rd Party    | Lands          | В     | BH21            |     |
|------------------------------------------------------|---------------------------|------------------------------------------------------------------|---------------------|------------------------|-----------------------|--------------|---------------------|----------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------------------------------------------|-------------|----------------|-------|-----------------|-----|
| Metho<br>Cable Percu                                 |                           | Plant Used Dando 3000                                            | <b>Top (m)</b> 0.00 | Base<br>17.            |                       | Coord        | dinates             | Final Depth:                           | 40.50 m                             | Start Date:                            | 02/12/2022                                                              | Driller:    | CC+GT          |       | heet 1 c        |     |
| Rotary Dri<br>Rotary Co                              | lling                     | Beretta T44<br>Beretta T44                                       | 17.50<br>21.00      | 21.                    | .00                   |              | 48.19 E<br>96.11 N  | Elevation:                             | 2.98 mOD                            | End Date:                              | 12/12/2022                                                              | Logger:     | RS+DM          |       | Scale: 1:  DRAF |     |
| Depth<br>(m)                                         | Sample /<br>Tests         | Field Records                                                    |                     | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)        | Legend                                 |                                     | Desc                                   | cription                                                                |             |                | Water | Backfill        |     |
| 0.00 - 0.60<br>0.50<br>0.60 - 1.50                   | B11<br>ES1<br>B12         | PID = 0.00ppm                                                    |                     |                        |                       | 2.38         | 0.60                | coar<br>Cobl                           | se GRAVEL with<br>bles are angula   | n low cobble cor.<br>rey gravelly silt | ndy angular to su<br>content. Sand is f<br>by fine to coarse<br>medium. | ine to coa  | rse.           |       |                 | 0.5 |
| 00<br>00<br>50                                       | ES3                       | PID = 0.00ppm                                                    |                     |                        |                       |              |                     |                                        |                                     |                                        |                                                                         |             |                | •     |                 | 1.5 |
| 2.00<br>2.00<br>2.00 - 3.00<br>2.00 - 2.45           |                           | N=9 (1,2/2,2,2,3) Hamr<br>0197                                   | mer SN =            | 2.00                   | 1.10                  | 0.98         | 2.00                | TY ( No. 25) + 1                       | e grey gravelly<br>ounded fine to   |                                        | arse SAND. Grav                                                         | el is subar | ngular to      |       |                 | 2.0 |
| .00<br>.50<br>.50<br>.00<br>.00 - 4.00<br>.00 - 3.45 | ES6<br>B15                | PID = 0.20ppm  PID = 0.40ppm  N=10 (1,2/3,2,2,3) Ham             | nmer SN =           | 3.00                   | 2.50                  | -0.02        | 3.00                | Loos                                   | e grey silty fine                   | SAND.                                  |                                                                         |             |                |       |                 | 3.0 |
| .00<br>.50<br>.50<br>.00<br>.00                      | ES7<br>D16<br>ES8         | 0197<br>PID = 0.90ppm<br>PID = 0.00ppm<br>N=11 (1,2/2,3,3,3) Ham |                     |                        |                       |              |                     |                                        |                                     |                                        |                                                                         |             |                |       |                 | 4.0 |
| .00<br>.50<br>.50 - 5.50<br>.50<br>.00               | ES9<br>B17<br>D18<br>ES10 | 0197<br>PID = 0.00ppm<br>PID = 0.10ppm                           |                     |                        |                       |              |                     |                                        |                                     |                                        |                                                                         |             |                |       |                 | 5.0 |
| .00 - 5.45<br>.00<br>.80 - 6.50                      | SPT (S)                   | N=11 (2,2/3,2,3,3) Ham<br>0197<br>PID = 0.00ppm                  | nmer SN =           | 5.00                   | 1.70                  | -2.82        | 5.80                | Frim                                   | grey sandy SIL                      | T. Sand is fine t                      | to coarse.                                                              |             |                |       |                 | 6.0 |
| 5.50 - 6.95<br>7.00                                  | U28<br>D20                | Ublow=8 100% Recover                                             | ry                  | 6.50                   | 5.30                  |              |                     |                                        |                                     |                                        |                                                                         |             |                |       |                 | 7.0 |
| .50 - 8.30                                           | B21                       |                                                                  |                     |                        |                       | -4.52        | 7.50                | ××××<br>××××<br>× ××× Loos             | e grey very gra<br>ounded fine to   |                                        | to coarse SAND.                                                         | Gravel is   |                |       |                 | 7.5 |
| .00<br>.00 - 8.45<br>.30 - 8.90                      | D22<br>SPT (S)<br>B23     | N=8 (1,0/1,2,2,3) Hamr<br>0197                                   | mer SN =            | 8.00                   | 1.60                  | -5.32        | 8.30                |                                        | e grey sandy su<br>is fine to coars |                                        | ubrounded fine t                                                        | o coarse G  | GRAVEL.        |       |                 | 8.0 |
| .90 - 10.00                                          | B24                       |                                                                  |                     |                        |                       | -5.92        | 8.90                | X X X Loos                             | e becoming me                       | edium dense b                          | rownish grey silt                                                       | y fine SAN  | ID.            |       |                 | 9.0 |
|                                                      |                           | r Strikes                                                        | m) =                |                        |                       | Details      |                     | Remarks                                |                                     |                                        |                                                                         |             |                |       |                 |     |
| Casing De                                            | 13.00<br>etails<br>am (mm |                                                                  | n) From (           |                        | To (                  |              | 01:00               | Hand dug inspec                        | tion pit excava                     | ted to 1.20m                           |                                                                         |             |                |       |                 |     |
| 17.50<br>36.00                                       | 200<br>150                | 1.00 40.50                                                       |                     | Barr                   | el                    | Flush        | <b>Type</b><br>iter | Termination R                          |                                     |                                        |                                                                         |             | <b>Last Up</b> |       |                 |     |

|                                         |                       | CAUSEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ЕСН                 |                               | 2                 | roject No.<br>2-1041B    | Project Name: 3FM Planning Design GI - Lot B 3rd Party Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS | Borehole ID<br>BH216       |
|-----------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|-------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|
| Method<br>Cable Percu                   |                       | Plant Used Dando 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Top (m)</b> 0.00 | Base (<br>17.5                |                   | oordinates               | Final Depth: 40.50 m Start Date: 02/12/2022 Driller: CC+GT                                                         | Sheet 2 of 5               |
| Rotary Dril<br>Rotary Co                | lling                 | Beretta T44<br>Beretta T44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50<br>21.00      | 21.0<br>40.5                  | 72                | 20148.19 E<br>33896.11 N | Elevation: 2.98 mOD End Date: 12/12/2022 Logger: RS+DM                                                             | Scale: 1:50  DRAFT         |
| Depth<br>(m)                            | Sample /<br>Tests     | Field Records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | Casing W<br>Depth Di<br>(m) ( | pth m(            |                          | Legend Description                                                                                                 | Backfill                   |
| 9.50 - 9.95                             | SPT (S)               | N=13 (2,2/3,3,3,4) Ham<br>0197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nmer SN =           | 9.50 3.                       | 10                |                          |                                                                                                                    | 9.5                        |
|                                         | D25<br>B26<br>SPT (S) | N=16 (2,3/3,4,4,5) Ham<br>0197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nmer SN =           | 11.0 4.                       | 30                |                          |                                                                                                                    | 11.0 -                     |
| 12.50                                   | D27                   | N=16 (1,3/4,4,4,4) Ham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mor SN =            | 12 5 5                        | -9.               | 52 12.50                 | Medium dense grey silty fine SAND.                                                                                 | 12.5 ·                     |
| 2.90 - 14.00                            |                       | 0197<br>Strong seepage at 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 12.5 5.                       | -9.               | 92 12.90                 | Medium dense brownish grey very sandy slightly sitly subangular fine to coarse GRAVEL. Sand is fine to coarse.     | 13.0 -                     |
| .4.00<br>.4.00 - 14.45<br>.4.50 - 15.50 |                       | N=25 (4,5/5,6,7,7) Ham<br>0197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nmer SN =           | 14.0 2.                       | 20                |                          |                                                                                                                    | 14.0 <b>-</b><br>14.5      |
| 15.50<br>15.50 - 15.95<br>16.00 - 17.00 |                       | N=33 (3,6/7,8,8,10) Ha<br>= 0197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mmer SN             | 15.5 2.                       | 60 <sub>-12</sub> | .72 15.70                | Gravels and Cobbles (Drillers Description).                                                                        | 15.0 -<br>15.5 ·<br>16.0 - |
| 17.00<br>17.00 - 17.45                  | D34<br>SPT (C)        | N=48 (5,5/8,11,15,14)  <br>SN = 0197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hammer              | 17.0 3.                       | 00                |                          |                                                                                                                    | 17.0 -<br>17.5 ·           |
| 18.50 - 18.95                           | SPT (C)               | N=43 (8,8/10,10,11,12)<br>SN = 0208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hammer              |                               |                   |                          |                                                                                                                    | 18.5                       |
|                                         |                       | r Strikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                               | ling De           | tails                    | Remarks                                                                                                            |                            |
| Casing De To (m) Dia 17.50              | tails<br>am (mm       | Name   Name | n) From (<br>17.40  |                               | Го (m)<br>17.50   | Time (hh:mm)<br>01:00    | Hand dug inspection pit excavated to 1.20m                                                                         |                            |
| 36.00                                   | 150                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Core                | Barrel                        | FI                | ush Type                 | Termination Reason Last Up                                                                                         |                            |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                   | K6L                           |                   | Water                    | Terminated at scheduled depth. 12/06,                                                                              | /2023 <b>AGS</b>           |

|                                         |                                                                    | AUS                                                |         |        |            |            |                        |                       | Proje          | 041B             | Project<br>Client:<br>Client's |                                              | nning Desig                       |                                      | rd Party                 | Lands     |       | orehole<br>BH21                      |                                                |
|-----------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|---------|--------|------------|------------|------------------------|-----------------------|----------------|------------------|--------------------------------|----------------------------------------------|-----------------------------------|--------------------------------------|--------------------------|-----------|-------|--------------------------------------|------------------------------------------------|
| Metho<br>Cable Percu                    |                                                                    | Plant U<br>Dando                                   |         |        | <b>Top</b> |            | <b>Base</b> 17.5       |                       | Coord          | inates           | Final De                       | <b>epth:</b> 40.50 m                         | Start Date:                       | 02/12/2022                           | Driller:                 | CC+GT     |       | heet 3 c<br>Scale: 1:                |                                                |
| Rotary Dri<br>Rotary Co                 | - 1                                                                | Beretta<br>Beretta                                 |         |        | 17.<br>21. |            | 21.0<br>40.5           |                       | 72014<br>73389 | 8.19 E<br>6.11 N | Elevatio                       | on: 2.98 mOD                                 | End Date:                         | 12/12/2022                           | Logger                   | RS+DM     |       | DRAF                                 |                                                |
| Depth<br>(m)                            | Sample /<br>Tests                                                  | Fie                                                | eld Red | cords  |            |            | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD   | Depth<br>(m)     | Legend                         |                                              | Des                               | cription                             |                          |           | Water | Backfill                             |                                                |
| 20.00 - 20.12                           | 1.45   SPT(C) N=10   (1,2/2,2,3,3)   Hammer SN = 0208              |                                                    |         |        |            |            |                        |                       | -16.52         | 19.50            |                                | Very stiff brown san                         | dy CLAY (Drill                    | ers Description).                    |                          |           | -     |                                      | 19.0 ————————————————————————————————————      |
| 21.00 - 21.45<br>21.00 - 21.45          | SPT(C) N<br>(1,2/2,2                                               | 2,2,3,3)<br>mer SN = 0208<br>45                    |         |        |            |            |                        |                       | -18.02         | 21.00            |                                | Firm dark brown sli<br>coarse. Gravel is sul | ghtly sandy sli<br>oangular to su | ghtly gravelly Cl<br>brounded fine t | .AY. Sand i:<br>o medium | s fine to | -     |                                      | 21.0 —                                         |
| 22.50<br>22.50 - 22.95<br>22.50 - 22.95 | SPT(C) N<br>(2,2/3,3                                               | 2<br>PT(C) N=10<br>2,2/3,3,2,2)<br>ammer SN = 0208 |         |        |            |            |                        |                       |                | (4.50)           |                                |                                              |                                   |                                      |                          |           |       |                                      | 22.5 — 23.0 — 23.5 — 23.5 —                    |
| 24.00<br>24.00 - 24.45                  | (3,2/2,3                                                           | (2,2/3,3,2,2)<br>Hammer SN = 0208                  |         |        |            |            |                        |                       |                |                  |                                |                                              |                                   |                                      |                          |           |       |                                      | 24.0 —<br>24.0 —<br>24.5 —<br>24.5 —<br>25.0 — |
| 25.50<br>25.50 - 25.95                  | (1,2/3,3                                                           | 50 50                                              |         |        |            |            |                        |                       | -22.52         | 25.50            |                                | Firm dark brown sa                           | ndy CLAY. Sand                    | d is fine to medi                    | um.                      |           | _     |                                      | 25.5 —<br>26.0 —<br>26.5 —                     |
| 27.00<br>27.00 - 27.45                  | 27.45 SPT(C) N=10 (2,2/2,3,2,3) Hammer SN = 0208 65 TCR SCR RQD FI |                                                    |         |        |            |            |                        |                       |                |                  |                                |                                              |                                   |                                      |                          | _         |       | 27.0 —<br>27.0 —<br>27.5 —<br>27.5 — |                                                |
|                                         | Water                                                              | Strikes                                            | TCR     | SCR    |            | FI<br>emai | rks                    |                       |                |                  |                                |                                              |                                   |                                      |                          |           |       |                                      |                                                |
|                                         | asing to (m<br>13.00<br>etails<br>iam (mm)                         | ) Time (min) 20  Water From (m)                    | Adde To | ed (m) |            |            |                        | pect                  | ion pit exc    | cavated to       | 1.20m                          |                                              |                                   |                                      |                          |           |       |                                      |                                                |
| 17.50<br>36.00                          | 200<br>150                                                         | 1.00                                               |         | 0.50   |            |            | Barre                  | el                    | Flush          |                  |                                | tion Reason                                  |                                   |                                      |                          | Last Up   |       |                                      | Į,                                             |
|                                         |                                                                    |                                                    |         |        |            | SI         | K6L                    |                       | Wat            | er               | ierminate                      | d at scheduled depth                         |                                   |                                      |                          | 12/06,    | 2023  | A                                    | <u> </u>                                       |

| CAUSEWAY GEOTECH  Method Plant Used Top (m) Base (m Cable Percussion Dando 3000 0.00 17.50 |                               |                                  |               |      |          |                |                        |                       | 22-1         | ct No.<br><b>041</b> B                                   | Project<br>Client:<br>Client's |                                                                                                     | nning Desig                        |                            | ord Party   | Lands          |       | orehole<br>BH216      | 6                    |
|--------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|---------------|------|----------|----------------|------------------------|-----------------------|--------------|----------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|-------------|----------------|-------|-----------------------|----------------------|
| Cable Percu<br>Rotary Dri                                                                  | ission<br>Iling               | Dando<br>Beretta                 | 3000<br>a T44 |      | 0.<br>17 | 00<br>.50      | 17.<br>21.             | 50<br>00              |              | linates<br>8.19 E                                        | Final De                       | <b>epth:</b> 40.50 m                                                                                | Start Date:                        | 02/12/2022                 | Driller:    | CC+GT          |       | heet 4 o<br>Scale: 1: |                      |
| Rotary Co                                                                                  | ring                          | Beretta                          | 1 T44         |      | 21       | .00            | 40.                    |                       |              | 6.11 N                                                   | Elevatio                       | 2.98 mOD                                                                                            | End Date:                          | 12/12/2022                 | Logger:     | RS+DM          |       | DRAF                  | Γ                    |
| Depth<br>(m)                                                                               | Samples                       | / Field Records                  | TCR           | SCR  | RQD      | FI             | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)                                             | Legend                         | Firm dark brown sa                                                                                  |                                    | cription                   |             |                | Water | Backfill              |                      |
| 3.50<br>3.50 - 28.95                                                                       | (2,2/2,3                      |                                  | 25            |      |          |                |                        |                       |              |                                                          |                                | Tilli daik biowii sa                                                                                | ing CLAI. Jair                     | a is line to mean          | uii.        |                |       |                       | 28.5<br>29.0<br>29.5 |
| 0.00<br>0.00 - 30.45                                                                       | SPT(C) N<br>(2,2/2,3<br>Hamme |                                  | 30            |      |          |                |                        |                       |              |                                                          |                                |                                                                                                     |                                    |                            |             |                |       |                       | 30.0<br>30.5<br>31.0 |
| 1.50<br>1.50 - 31.95                                                                       | (3,2/2,2                      |                                  | 47            |      |          | NI             |                        |                       |              | [<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>] |                                |                                                                                                     |                                    |                            |             |                |       |                       | 31.5<br>32.0<br>32.5 |
| 3.00<br>3.00 - 33.45                                                                       | SPT(C) N<br>(2,2/3,3<br>Hamme |                                  | 40            |      |          |                |                        |                       |              |                                                          |                                |                                                                                                     |                                    |                            |             |                |       |                       | 33.0<br>33.5<br>34.0 |
| 1.50<br>1.50 - 34.95                                                                       | (8,8/10,                      | N=42<br>10,12,10)<br>r SN = 0208 | 90            |      |          |                |                        |                       |              |                                                          |                                |                                                                                                     |                                    |                            |             |                |       |                       | 34.5<br>35.0         |
| 5.00<br>6.00 - 36.12                                                                       | 48mm/5                        |                                  | 70            | 60   | 0        |                |                        |                       | -33.02       | 36.00                                                    |                                | Strong dark grey th occasional white ca slight weakening, si Discontinuities:  1. 5-10 degree joint | licite veins up<br>light discolour | to 10mm thick. 9<br>ation. | Slightly we | athered:       |       |                       | 36.0<br>36.5<br>37.0 |
|                                                                                            | \M/ator                       | Strikes                          | TCR           | SCR  | RQD      | FI             | Chic                   | ellin                 | g Details    |                                                          | Remarks                        |                                                                                                     | -                                  |                            |             |                |       |                       |                      |
| 13.00 Casing De                                                                            | sing to (m<br>13.00           | ) Time (min)<br>20<br>Water      | Add           | 60   |          | rom (<br>17.40 | m)                     | To (                  | m) Tim       | e (hh:mm)<br>01:00                                       |                                | inspection pit excava                                                                               | ited to 1.20m                      |                            |             |                |       |                       |                      |
| 36.00                                                                                      | 150                           | 1.00                             | 40            | J.JU |          |                | Barr<br>K6L            | el                    | Flush<br>Wa  |                                                          |                                | tion Reason                                                                                         | n.                                 |                            |             | <b>Last Up</b> |       |                       | त                    |

| CAUSEWAY —GEOTECH  Method Plant Used Top (m) Base        |                             |                                        |               |                      |          |                         |                        |                       | 22-1         | ect No.<br>.041B    | Client's              |                                                                                                      | ort Compa                        |                            | TU PAILY    | Lands     |       | orehole<br>BH21 | .6                   |
|----------------------------------------------------------|-----------------------------|----------------------------------------|---------------|----------------------|----------|-------------------------|------------------------|-----------------------|--------------|---------------------|-----------------------|------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|-------------|-----------|-------|-----------------|----------------------|
| Cable Pero<br>Rotary D<br>Rotary C                       | cussion<br>rilling          | Plant U<br>Dando<br>Beretta<br>Beretta | 3000<br>a T44 | )                    | 0.<br>17 | (m)<br>00<br>.50<br>.00 | 17.<br>21.             | .50                   | 72014        | dinates<br>48.19 E  | Final De              |                                                                                                      |                                  | 02/12/2022                 |             | CC+GT     |       | Sheet 5 o       | :50                  |
|                                                          | oring                       | beretta                                | 1 144         |                      | 21       | .00                     |                        |                       |              | 96.11 N             | Elevatio              | 1: 2.98 mOD                                                                                          | End Date:                        | 12/12/2022                 | Logger      | : RS+DM   |       | DRAF            | ·T                   |
| Depth<br>(m)                                             |                             | / Field Records                        | TCR           | SCR                  | RQD      | FI                      | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)        | Legend                |                                                                                                      |                                  | cription                   |             |           | Water | Backfill        | ┸                    |
| 17.30 - 37.50<br>17.50<br>18.50 - 38.60<br>18.60 - 38.80 | O C5                        |                                        | 70            | 60                   | 15       |                         |                        |                       |              |                     |                       | Strong dark grey thi occasional white ca slight weakening, sl Discontinuities:  1. 5-10 degree joint | lcite veins up<br>ight discolour | to 10mm thick. §<br>ation. | Slightly we | eathered: |       |                 | 37.5<br>38.0<br>38.5 |
| 9.00                                                     |                             |                                        |               |                      |          |                         |                        |                       |              | (4.50)              |                       |                                                                                                      |                                  |                            |             |           |       |                 | 39.0<br>39.!         |
| 39.80 - 40.00<br>10.00 - 40.20                           |                             |                                        | 55            | 50                   | 40       | 4                       |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 40.0                 |
| 10.50                                                    |                             |                                        |               |                      |          |                         |                        |                       | -37.52       | 40.50               |                       |                                                                                                      | End of Bore                      | hole at 40.50m             |             |           |       |                 | 40.5                 |
|                                                          |                             |                                        |               |                      |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 41.                  |
|                                                          |                             |                                        |               |                      |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 41.                  |
|                                                          |                             |                                        |               |                      |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 42.                  |
|                                                          |                             |                                        |               |                      |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 42.5                 |
|                                                          |                             |                                        |               |                      |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 43.                  |
|                                                          |                             |                                        |               |                      |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 44.                  |
|                                                          |                             |                                        |               |                      |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 44.                  |
|                                                          |                             |                                        |               |                      |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 45.                  |
|                                                          |                             |                                        |               |                      |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 45.                  |
|                                                          |                             |                                        |               |                      |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 | 46.0                 |
|                                                          | 14/                         | Chuil                                  | TCR           | SCR                  | RQD      |                         | Cr.                    |                       | ~ D-+ ''     |                     | Darres 1              |                                                                                                      |                                  |                            |             |           |       |                 | $\perp$              |
| ruck at (m) C<br>13.00                                   |                             | Time (min)                             |               | e to (r<br>1.60      |          |                         | m)                     | To (                  |              | ne (hh:mm)<br>01:00 | Remarks<br>Hand dug i | nspection pit excava                                                                                 | ted to 1.20m                     |                            |             |           |       |                 |                      |
| Casing D To (m) D 17.50                                  | Details<br>Diam (mm)<br>200 | Water ) From (m) 1.00                  | To            | <b>ed</b> 0 (m) 0.50 |          |                         |                        |                       |              |                     |                       |                                                                                                      |                                  |                            |             |           |       |                 |                      |
| 36.00                                                    | 150                         | 1.00                                   | -             | 5.50                 | -        | Core                    | Barı                   | rel                   | Flush        | Туре                | Terminat              | on Reason                                                                                            |                                  |                            |             | Last Up   | date  | ed <b>T</b>     | <del>-</del>         |

| 8                           |                   | ALICENA                                        | /^>/                   |                        |                       |         | ct No.           |                         | : Name: 3FM Plai                                              |                   |                   | rd Party    | Lands     | В     | orehole           |          |
|-----------------------------|-------------------|------------------------------------------------|------------------------|------------------------|-----------------------|---------|------------------|-------------------------|---------------------------------------------------------------|-------------------|-------------------|-------------|-----------|-------|-------------------|----------|
|                             |                   | CAUSEN                                         | ECH                    |                        |                       | 22-1    | 041B             | Client:                 |                                                               | ort Compar        | ny (DPC)          |             |           |       | BH21              | 7        |
| Metho                       |                   | Plant Used                                     | Top (m)                |                        |                       | Coord   | inates           | Final De                |                                                               | Start Date:       | 02/12/2022        | Drillor     | CC+GT     | 9     | Sheet 1 o         | of 5     |
| Rotary Dri<br>Rotary Co     | illing            | Dando 3000<br>Beretta T44<br>Beretta T44       | 0.00<br>16.20<br>20.00 | 16.2<br>20.0<br>41.0   | 00                    |         | 2.56 E<br>9.53 N | Elevatio                | •                                                             |                   | 08/12/2022        |             | RS+CMc    |       | Scale: 1:<br>DRAF |          |
| Depth                       | Sample /          |                                                |                        | Casing                 | Water                 | Level   | Depth            |                         | 2.30 11100                                                    | ļ                 |                   | LOGGEI.     | NOTCIVIC  |       | 1                 | <u>'</u> |
| (m)                         | Tests<br>B8       | Field Records                                  | ·                      | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | mOD     | (m)              | Legend                  | MADE GROUND: G                                                |                   | ody angular to si | ıhangıılar  | fine to   | Water | Backfill          |          |
| .30                         | В                 | PID = 0.30ppm                                  |                        |                        |                       |         | Ē                |                         | coarse GRAVEL with                                            | low cobble c      |                   |             |           |       |                   |          |
| 40 - 1.50<br>50             | В9                | PID = 0.10ppm                                  |                        |                        |                       | 2.56    | 0.40             |                         | Cobbles are angular<br>MADE GROUND: Gr<br>subangular to subro | ey slightly gra   |                   | rse SAND. ( | Gravel is |       |                   | 0.5      |
| .00                         |                   | PID = 0.00ppm                                  |                        |                        |                       |         |                  |                         |                                                               |                   |                   |             |           |       |                   | 1.0      |
| .50                         |                   | PID = 0.10ppm                                  |                        |                        |                       |         |                  |                         |                                                               |                   |                   |             |           |       |                   | 1.5      |
| .00                         | D11               |                                                |                        |                        |                       | 0.96    | 2.00             | × × ×                   | Loose grey slightly g                                         | gravelly silty fi | ne to coarse SAN  | ID. Gravel  | is        |       |                   | 2.0      |
| .00 - 3.00<br>.00 - 2.45    |                   | N=8 (1,2/2,2,2,2) Ham<br>0197<br>PID = 0.20ppm | mer SN =               | 2.00                   | 0.90                  |         |                  | x                       | subrounded fine.                                              | , ,               |                   |             |           |       |                   | 2.5      |
| .50                         | ES1               |                                                |                        |                        |                       |         | -                | ×××<br>×××              |                                                               |                   |                   |             |           |       |                   |          |
| .50<br>.00                  | D12               | PID = 0.20ppm                                  |                        |                        |                       |         | E                | * × ×                   |                                                               |                   |                   |             |           |       |                   | 3.0      |
| .00<br>.00 - 3.45           |                   | N=9 (1,1/2,2,2,3) Ham<br>0197                  | mer SN =               | 3.00                   | 1.70                  |         |                  | x x x<br>x x x<br>x x x |                                                               |                   |                   |             |           |       |                   | 3.5      |
| 50<br>50 - 4.50<br>50<br>00 | ES3<br>B13<br>D14 | PID = 4.00ppm                                  |                        |                        |                       |         |                  | x x x<br>x x<br>x x     |                                                               |                   |                   |             |           |       |                   | 4.0      |
| 00<br>00 - 4.45             | ES4               | N=6 (1,1/1,2,2,1) Ham<br>0197                  | mer SN =               | 4.00 2                 | 2.10                  | -1.64   | 4.60             | x                       | Soft grey slightly gra                                        | avally sandy C    | AV Cand is fine   | to cooree   | Craval is |       |                   | 4.5      |
| .00<br>.50                  | B5                | PID = 0.10ppm                                  |                        |                        |                       |         | Ē                |                         | subrounded fine to                                            |                   | LAY. Sand is time | to coarse.  | Gravei is |       |                   |          |
| .50<br>.60 - 5.50           | B15               | PID = 0.10ppm                                  |                        |                        |                       |         |                  |                         |                                                               |                   |                   |             |           |       |                   | 5.0      |
| .00<br>.00 - 5.45           | ES6<br>U27        | Ublow=11 100% Reco                             | very                   | 5.00 4                 | 1.40                  |         |                  |                         |                                                               |                   |                   |             |           |       |                   | 5.5      |
| .00<br>.50                  | D16               | PID = 0.00ppm                                  |                        |                        |                       |         | Ē                |                         |                                                               |                   |                   |             |           |       |                   | ı        |
| .50<br>.50                  | ES7               | PID = 0.10ppm                                  |                        |                        |                       |         |                  |                         |                                                               |                   |                   |             |           |       |                   | 6.0      |
| .00 - 7.00<br>.50           | B17<br>D18        |                                                |                        |                        |                       |         |                  |                         |                                                               |                   |                   |             |           |       |                   | 6.5      |
|                             |                   |                                                |                        |                        |                       |         |                  |                         |                                                               |                   |                   |             |           |       |                   | 7.0      |
|                             |                   |                                                |                        |                        |                       |         | -                |                         |                                                               |                   |                   |             |           |       |                   | 0        |
| .50 - 8.50                  | B19               |                                                |                        |                        |                       |         | <u> </u>         |                         |                                                               |                   |                   |             |           |       |                   | 7.5      |
|                             |                   | Water strike at 7.65m                          |                        |                        |                       |         | Ė                |                         |                                                               |                   |                   |             |           | •     |                   | ı        |
| .00<br>.00 - 8.45           | D20<br>SPT (S)    | N=7 (1,1/1,1,2,3) Ham                          | mer SNI –              | 8 00 2                 | 60                    |         | E                |                         |                                                               |                   |                   |             |           |       |                   | 8.0      |
| 0.73                        | 5. 1 (3)          | 0197                                           | 314 -                  |                        |                       |         | Ē                |                         |                                                               |                   |                   |             |           |       |                   |          |
|                             |                   |                                                |                        |                        |                       | -5.54   | 8.50             | ××××                    | Stiff grey sandy SILT                                         | . Sand is fine t  | o coarse.         |             |           |       |                   | 8.5      |
| .00 - 10.00                 | B21               |                                                |                        |                        |                       |         |                  | *                       |                                                               |                   |                   |             |           |       |                   | 9.0      |
|                             | Mate              | r Strikes                                      |                        | Chian                  | llin~                 | Dota:I- |                  | Remarks                 |                                                               |                   |                   |             |           |       |                   | L        |
|                             |                   | Time (min) Rose to (                           |                        | (m)                    | To (m                 |         | e (hh:mm)        |                         | inspection pit excava                                         | ted to 1.20m      |                   |             |           |       |                   |          |
| 7.65                        |                   |                                                | 14.6<br>16.1           |                        | 14.90<br>16.20        | - 1     | 01:00<br>01:00   |                         |                                                               |                   |                   |             |           |       |                   |          |
|                             | iam (mm           |                                                |                        |                        |                       |         |                  |                         |                                                               |                   |                   |             |           |       |                   |          |
| 20.00<br>39.00              | 200<br>150        | 2.00 41.00                                     |                        | Barre                  | el                    | Flush   | Type             | Terminat                | tion Reason                                                   |                   |                   |             | Last Up   | date  | ed 💻              | <b>—</b> |
|                             |                   |                                                | 5016                   | . Duile                | .                     | . 14311 | . , , , ,        | ·C·····ia               |                                                               |                   |                   |             | Lastop    | uull  |                   |          |

|                                |                   | CAUSEV                                 | ГЕСН           |                        |                       | 22-1         | ect No.<br>.041B   | Project Name: 3FM Planning Design GI - Lot B 3rd Party Lands  Client: Dublin Port Company (DPC)  Client's Rep: RPS | Borehole ID<br>BH217             |
|--------------------------------|-------------------|----------------------------------------|----------------|------------------------|-----------------------|--------------|--------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Metho<br>Cable Percu           |                   | Plant Used Dando 3000                  | <b>Top (m)</b> |                        | <b>e (m)</b><br>.20   | Coord        | dinates            | Final Depth: 41.00 m Start Date: 02/12/2022 Driller: CC+GT                                                         | Sheet 2 of 5<br>Scale: 1:50      |
| Rotary Dri<br>Rotary Co        | lling             | Beretta T44<br>Beretta T44             | 16.20<br>20.00 | 20                     | .00<br>.00            |              | 52.56 E<br>09.53 N | Elevation: 2.96 mOD End Date: 08/12/2022 Logger: RS+CMc                                                            | DRAFT                            |
| Depth<br>(m)                   | Sample /<br>Tests | Field Recor                            | ds             | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)       |                                                                                                                    | Backfill                         |
| 9.50<br>9.50 - 9.95            | D22<br>SPT (C)    | N=16 (2,2/3,4,4,5) H<br>0197           | ammer SN =     | 9.50                   | 4.10                  |              |                    | X                                                                                                                  | 9.5                              |
| 10.60 - 11.50                  | B23               |                                        |                |                        |                       | -7.64        | 10.60              | X X X X X X X Medium dense grey silty fine SAND.                                                                   | 10.5 -                           |
| 11.00                          | D24               |                                        |                |                        |                       |              |                    | * * * * * * * * * * * * * * * * * * *                                                                              | 11.0 -<br>11.5 -                 |
| .2.50<br>.2.50 - 12.95         | D25<br>SPT (C)    | N=19 (2,3/4,4,5,6) H<br>0197           | ammer SN =     | 12.5                   | 3.10                  |              |                    |                                                                                                                    | 12.5                             |
|                                | B28               | 013/                                   |                |                        |                       | -10.14       | 13.10              | X X X X X X X X X X X X X X X X X X X                                                                              | 13.0 -                           |
| .3.10 - 13.50                  | B26               |                                        |                |                        |                       |              |                    | Medium dense brownish grey fine to coarse SAND and fine to coarse GRAVEL with low cobble content.                  |                                  |
|                                |                   |                                        |                |                        |                       | -10.54       | 13.50              | Dense brownish grey sandy slightly silty subangular fine to medium GRAVEL. Sand is fine to coarse.                 | 13.5                             |
| 4.00                           | D29               | N 27 /2 6 /7 0 40 44                   |                |                        | 42.0                  |              |                    |                                                                                                                    | 14.0 -                           |
|                                |                   | N=37 (3,6/7,9,10,11)<br>SN = 0197      | Hammer         | 14.0                   | 13.0                  |              |                    |                                                                                                                    |                                  |
| 14.50 - 15.50<br>15.50 - 15.95 |                   | N=32 (2,4/6,8,8,10) I<br>= 0197        | Hammer SN      | 15.5                   | 1.90                  |              |                    | /Brown silty fine to coarse SAND and subrounded fine to coarse                                                     | 14.5<br>15.0 -<br>15.5           |
| 16.20<br>16.20 - 16.42         | D31<br>SPT (C)    | 50 (25 for 65mm/50<br>Hammer SN = 0197 | for 160mm)     | 16.2                   | 2.40                  | -13.24       | 16.20              | GRAVEL. (Driller's description)                                                                                    | 16.5<br>17.0 -<br>17.5<br>18.0 - |
|                                | Water             | r Strikes                              |                | Chis                   | ellin                 | g Details    | <br>               | Remarks                                                                                                            |                                  |
| Casing De                      | etails            | Water Added From (m) To (n)            | 14.6           | (m)<br>i0              | To 14 16              | (m) Tim      | 01:00<br>01:00     | Hand dug inspection pit excavated to 1.20m                                                                         |                                  |
| 20.00<br>39.00                 | 200<br>150        | 2.00 41.0                              |                | Barı                   | rel                   | Flush        | Туре               | Termination Reason Last Upda                                                                                       | ited                             |
|                                |                   |                                        | 9              | SK6L                   |                       | Wa           | ter                | Terminated at scheduled depth. 12/06/20                                                                            | 23 AGS                           |

|                                                      |                               | AUS                                     |            |       |            |               |                        |                       | Proje-<br><b>22-1</b> | 041B             | Project Na<br>Client:<br>Client's Re |                                                           | nning Desig<br>ort Compar |                    | rd Party     | Lands          |                | oreholo               | .7                       |
|------------------------------------------------------|-------------------------------|-----------------------------------------|------------|-------|------------|---------------|------------------------|-----------------------|-----------------------|------------------|--------------------------------------|-----------------------------------------------------------|---------------------------|--------------------|--------------|----------------|----------------|-----------------------|--------------------------|
| Method<br>Cable Percu                                | ssion                         | Plant U                                 | 3000       | )     | 0.0        | 00            | <b>Base</b> 16.2       | 20                    |                       | inates           | Final Depth:                         | 41.00 m                                                   | Start Date:               | 02/12/2022         | Driller:     | CC+GT          |                | Sheet 3 o<br>Scale: 1 |                          |
| Rotary Dril<br>Rotary Co                             | - 1                           | Beretta<br>Beretta                      |            |       | 16.<br>20. | .00           | 20.0<br>41.0           |                       | 72015<br>73390        | 2.56 E<br>9.53 N | Elevation:                           | 2.96 mOD                                                  | End Date:                 | 08/12/2022         | Logger:      | RS+CMc         |                | DRAF                  | T                        |
| Depth<br>(m)                                         | Sample /<br>Tests             | Fie                                     | ld Re      | cords |            |               | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD          | Depth<br>(m)     | Legend                               | '                                                         | Desc                      | ription            |              | 1              | Water          | Backfill              |                          |
| 19.50 - 19.95 SPT (C) N=10 (2,2/2,3,3,2) Har<br>0208 |                               |                                         |            |       |            | SN =          | 19.5                   | 7.65                  | -16.54                | 19.50            | Firr                                 | n brown slightly                                          | sandy slightly            | gravelly CLAY. (E  | Priller's de | scription)     | _              |                       | 19.0 -<br>19.5<br>20.0 - |
|                                                      |                               |                                         | 0          |       |            | NR            |                        |                       |                       | (2.00)           |                                      |                                                           |                           |                    |              |                |                |                       | 20.5                     |
| 1.50<br>1.50 - 21.95                                 | (2,2/3,2                      |                                         | 60         | 0     | 0          | AZCL<br>N/A   |                        |                       | -18.54                | (1.50)           | fine                                 | dium dense darl<br>e to coarse SANE<br>dium of various    | ). Gravel is sub          |                    |              |                |                |                       | 21.5<br>22.0 -           |
| 3.00<br>3.00 - 23.45                                 | SPT(C) N<br>(2,3/3,2<br>Hamme |                                         | 33         | 0     |            | AZCL          |                        |                       | -20.04                | 23.00            |                                      | f dark brown slig<br>rse. Gravel is fin                   |                           | fine to            | _            |                | 23.0 ·<br>23.5 |                       |                          |
| 4.50<br>4.50 - 24.95                                 | SPT(C) N<br>(3,2/2,2          |                                         |            |       |            | N/A           |                        |                       |                       | (3.00)           |                                      |                                                           |                           |                    |              |                |                |                       | 24.0 ·<br>24.5           |
| 6.00                                                 | Tianinie                      | 1 3N - 0206                             | 33         | 0     | 0          | AZCL<br>N/A   |                        |                       | -23.04                | 26.00            |                                      |                                                           |                           |                    |              |                |                |                       | 25.0 ·<br>25.5           |
|                                                      | SPT(C) N<br>(4,3/3,4<br>Hamme |                                         | 50         | 0     | 0          | AZCL<br>N/A   |                        |                       | -23.04                | (1.50)           | to 0                                 | f dark greyish br<br>coarse. Gravel is<br>dium of various | predominantly             |                    |              |                |                |                       | 26.5<br>27.0 ·           |
| 27.50<br>27.50 - 27.95                               | (3,4/3,2                      |                                         | TCR        | SCR   |            |               |                        |                       | -24.54                | 27.50            | × Ver                                | y stiff slightly sa                                       | ndy slightly sili         | ry CLAY. Sand is f | ine.         |                | _              |                       | 27.5                     |
| 7.65 Casing De                                       | sing to (m                    | Strikes Time (min)  Water From (m) 2.00 | <b>Add</b> |       |            | emai<br>and d |                        | pect                  | ion pit exc           | cavated to       | 1.20m                                |                                                           |                           |                    |              |                |                |                       |                          |
| 39.00                                                | 150                           | 2.00                                    | 4.         | 1.00  |            |               | <b>Barre</b><br>K6L    | el                    | Flush Wat             |                  | <b>Termination</b> Terminated at     | Reason<br>scheduled depth                                 | ı.                        |                    |              | <b>Last Up</b> |                |                       | <b>(</b>                 |

|                                                  |                                |                                          | GEC         | OTE               | ECI      | Η                       |                        |                       | 22-1     | ect No.            | Project<br>Client:<br>Client's        |                                                                         | Planning Design Port Compa       |                                         | Brd Party  | Lands           |          | orehole<br>BH21 | 7                        |
|--------------------------------------------------|--------------------------------|------------------------------------------|-------------|-------------------|----------|-------------------------|------------------------|-----------------------|----------|--------------------|---------------------------------------|-------------------------------------------------------------------------|----------------------------------|-----------------------------------------|------------|-----------------|----------|-----------------|--------------------------|
| Method<br>Cable Percu<br>Rotary Dri<br>Rotary Co | ssion<br>Iling                 | Plant L<br>Dando :<br>Beretta<br>Beretta | 3000<br>T44 | )                 | 0.<br>16 |                         | 16.<br>20.<br>41.      | 20<br>00              | 7201     | 52.56 E<br>09.53 N | Final De                              |                                                                         | m Start Date:  DD End Date:      |                                         |            | CC+GT<br>RS+CMc |          | Scale: 1: DRAF  | :50                      |
| Depth                                            | Samples                        | / Field Records                          | TCR         | SCR               | RQD      | FI                      | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level    | Depth              | Legend                                |                                                                         |                                  | cription                                |            |                 | Water    | Backfill        | _                        |
| (m)                                              |                                |                                          |             |                   |          |                         | (m)                    | (m)                   | mOD      | (m)                | ×                                     | Very stiff slightly                                                     |                                  |                                         | fine.      |                 | *        |                 | 28.0                     |
| 29.00                                            |                                |                                          | 33          | 0                 | 0        | AZCL<br>N/A             |                        |                       |          |                    | X                                     |                                                                         |                                  |                                         |            |                 |          |                 | 28.5 -                   |
|                                                  | SPT(C) N<br>(3,4/2,3<br>Hamme  |                                          | 27          | 0                 | 0        | AZCL                    |                        |                       |          |                    | X X X X X X X X X X X X X X X X X X X |                                                                         |                                  |                                         |            |                 |          |                 | 29.5 -<br>30.0 —         |
| 30.50<br>30.50 - 30.95                           | SPT(C) N<br>(2,3/3,3<br>Hamme  |                                          |             |                   |          | N/A                     |                        |                       |          |                    | X X X X X X X X X X X X X X X X X X X |                                                                         |                                  |                                         |            |                 |          |                 | 30.5                     |
| 32.00                                            |                                |                                          | 37          | 0                 | 0        |                         |                        |                       |          |                    | X                                     |                                                                         |                                  |                                         |            |                 |          |                 | 31.5                     |
|                                                  | SPT(C) N<br>(3,3/3,3<br>Hamme  |                                          | 32          | 0                 | 0        |                         |                        |                       |          | (9.00)             | X X X X X X X X X X X X X X X X X X X |                                                                         |                                  |                                         |            |                 |          |                 | 32.0 <del>-</del> 32.5 · |
| 33.50<br>33.50 - 33.95                           | (2,4/3,3                       |                                          | 51          | 0                 | 0        | AZCL                    |                        |                       |          |                    |                                       |                                                                         |                                  |                                         |            |                 |          |                 | 33.5 · 34.0 - 34.5 ·     |
| 35.00<br>35.00 - 35.45                           | SPT(C) N<br>(3,3/3,4<br>Hamme  |                                          | 87          | 0                 | 0        |                         |                        |                       |          |                    | X X X X X X X X X X X X X X X X X X X |                                                                         |                                  |                                         |            |                 |          |                 | 35.0 —<br>35.5 —         |
| 36.50<br>36.50 - 36.70                           |                                | 0 (10,15/50<br>m) Hammer<br>08           | Ten         | SCR               | Pon      | FI                      |                        |                       | -33.54   | 36.50              |                                       | Very dense dark<br>subangular fine<br>medium cobble<br>subangular of da | to coarse GRAVE content. Sand is | L of dark grey lin<br>fine to coarse. C | nestone wi | th              |          |                 | 36.5 ·                   |
|                                                  |                                | Strikes                                  | <b>'</b>    |                   |          |                         |                        | ellin                 | g Detail | s                  | Remarks                               |                                                                         |                                  |                                         |            |                 | <u> </u> |                 |                          |
| ruck at (m) Cas<br>7.65                          | ing to (m                      | ) Time (min)                             | Rose        | e to (n           |          | rom (<br>14.60<br>16.10 | 0                      | To (<br>14.<br>16.    | 90       | 01:00<br>01:00     | Hand dug                              | inspection pit exc                                                      | avated to 1.20m                  |                                         |            |                 |          |                 |                          |
| Casing Dec To (m) Dia 20.00 39.00                | tails<br>am (mm)<br>200<br>150 | Water<br>From (m)<br>2.00                | To          | ed<br>(m)<br>1.00 |          | Core                    | Barr                   | el                    | Flush    | Туре               | Terminat                              | ion Reason                                                              |                                  |                                         |            | Last Up         | date     | ed 🗷            |                          |
|                                                  |                                |                                          |             |                   |          |                         | K6L                    | -1                    |          | ater               |                                       | d at scheduled de                                                       | pth.                             |                                         |            | 12/06/          |          |                 | GS                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C                         | AUS                                    | E             | <b>W</b>          | A        | <b>Y</b>                |                        |                       |              | ct No.<br>041B              | Project<br>Client:<br>Client's |                                                                                                                       | nning Desig                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rd Party                                  | Lands                       | В     | orehole                |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|---------------|-------------------|----------|-------------------------|------------------------|-----------------------|--------------|-----------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|-------|------------------------|-----------------------|
| Methodological Cable Perconnection Rotary Department of the Rotary Control Cable Perconnection Rotary | cussion<br>rilling        | Plant I<br>Dando<br>Beretta<br>Beretta | 3000<br>a T44 | )                 | 0.<br>16 | (m)<br>00<br>.20<br>.00 | 16.<br>20.<br>41.      | .20                   | 72015        | 2.56 E                      | Final De                       | •                                                                                                                     |                                                                             | 02/12/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | CC+GT                       |       | Sheet 5 o<br>Scale: 1: | 50                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                        |               |                   |          |                         |                        |                       |              | 9.53 N                      | Elevatio                       | n: 2.96 mOD                                                                                                           |                                                                             | 08/12/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logger:                                   | RS+CMc                      |       | DRAF                   | _                     |
| Depth<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Samples                   | / Field Records                        | 100           | SCR<br>0          | RQD<br>0 | FI<br>ANY/24<br>N/A     | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)                | Legend                         | Very dense dark bro<br>subangular fine to c<br>medium cobble con                                                      | ownish grey sli<br>coarse GRAVEI<br>ntent. Sand is f                        | L of dark grey lim<br>fine to coarse. Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nestone wi                                | th                          | Water | Backfill               | 37.5 -                |
| 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                                        | 45            | 30                | 30       | AZCL                    |                        |                       |              | (2.55)                      |                                | subangular of dark                                                                                                    | grey limeston                                                               | e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                             |       |                        | 38.0 <b>-</b><br>38.5 |
| 9.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                                        |               |                   |          | N/A                     |                        |                       | -36.09       | 39.05                       |                                | Medium strong, loc<br>bedded grey to dar<br>veins (up to 10mm<br>strength, locally rec                                | k grey LIMESTo<br>thick). Modera<br>duced strength                          | ONE with occasion on the comment of | onal white<br>: slightly re<br>spacing, p | calcite<br>educed<br>oatchy | _     |                        | 39.0 -<br>39.5        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                        | 96            | 64                | 46       | -8-                     |                        |                       |              | (1.95)                      |                                | brown discolourations ome fracture surfations.  Discontinuities:  1. 5-20 degree bedonner prodominant                 | ices.<br>ding fractures,                                                    | closely spaced (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15/150/23                                 | 30),                        |       |                        | 40.0 <b>-</b><br>40.5 |
| 11.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                        |               |                   |          |                         |                        |                       | -38.04       | 41.00                       |                                | planar, predominan<br>fracture surfaces, g<br>2. 80-90 degree joir<br>undulating, rough, J<br>39.50-39.60m: Weathered | ravelly clay inf<br>nts from 39.05<br>patchy brown<br>d to light brown slig | ill on some fract<br>-39.50m and 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ure surfac                                | es.                         |       |                        | 41.0 -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                        |               |                   |          |                         |                        |                       |              |                             |                                |                                                                                                                       |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                             |       |                        | 42.0 -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                        |               |                   |          |                         |                        |                       |              |                             |                                |                                                                                                                       |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                             |       |                        | 42.5<br>43.0 -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                        |               |                   |          |                         |                        |                       |              |                             |                                |                                                                                                                       |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                             |       |                        | 43.5<br>44.0 -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                        |               |                   |          |                         |                        |                       |              |                             |                                |                                                                                                                       |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                             |       |                        | 44.5<br>45.0 -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                        |               |                   |          |                         |                        |                       |              |                             |                                |                                                                                                                       |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                             |       |                        | 45.5                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                        | TCR           | SCR               | RQD      | FI                      |                        |                       |              |                             |                                |                                                                                                                       |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                             | -     |                        | 46.0 -                |
| ruck at (m) C<br>7.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | Strikes Time (min)                     | Rose          | e to (r           |          | rom (<br>14.6<br>16.1   | m)<br>0                | To (<br>14.<br>16.    | 90 (         | e (hh:mm)<br>01:00<br>01:00 | Remarks<br>Hand dug            | inspection pit excava                                                                                                 | ted to 1.20m                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                             |       |                        |                       |
| Casing D<br>To (m) D<br>20.00<br>39.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Details Diam (mm) 200 150 | Water ) From (m) 2.00                  | To            | ed<br>(m)<br>1.00 |          | Core                    | Barr                   | el                    | Flush        | Type                        | Terminat                       | ion Reason                                                                                                            |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | Last Up                     | ndat• | ed 💌                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                        |               |                   |          |                         | K6L                    |                       | Wat          |                             |                                | d at scheduled depth                                                                                                  | ı.                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | 12/06/                      |       |                        | G                     |



## APPENDIX C CORE PHOTOGRAPHS





BH215 Box 1 (20.00-21.50m)



BH215 Box 2 (21.50-23.00m)



BH215 Box 3 (23.00-24.50m)



BH215 Box 4 (24.50-26.00m)



BH215 Box 5 (26.00-27.50m)





BH215 Box 6 (27.50-29.00m)



BH215 Box 7 (29.00-30.50m)



BH215 Box 8 (30.50-32.00m)



BH215 Box 9 (32.00-33.50m)



BH215 Box 10 (33.50-35.00m)





BH215 Box 11 (35.00-36.50m)



BH215 Box 12 (36.50-38.00m)



BH215 Box 13 (38.00-39.50m)



BH215 Box 14 (39.50-40.00m)





BH216 Box 1 (21.00-22.50m)



BH216 Box 2 (22.50-24.00m)



BH216 Box 3 (24.00-25.50m)



BH216 Box 4 (25.50-27.00m)



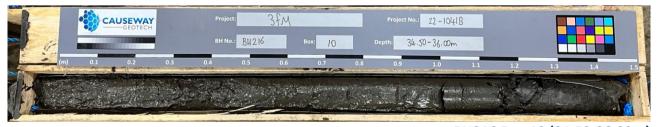
BH216 Box 5 (27.00-28.50m)





BH216 Box 6 (28.50-30.00m)




BH216 Box 7 (30.00-31.50m)



BH216 Box 8 (31.50-33.00m)



BH216 Box 9 (33.00-34.50m)



BH216 Box 10 (34.50-36.00m)





BH216 Box 11 (36.00-37.50m)



BH216 Box 12 (37.50-39.00m)



BH216 Box 13 (39.00-40.50m)





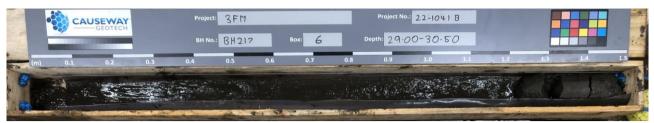
BH217 Box 1 (21.50-23.00m)



BH217 Box 2 (23.00-24.50m)



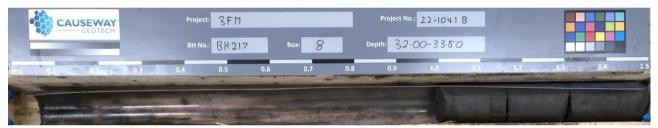
BH217 Box 3 (24.50-26.00m)




BH217 Box 4 (26.00-27.50m)



BH217 Box 5 (27.50-29.00m)






BH217 Box 6 (29.00-30.50m)



BH217 Box 7 (30.50-32.00m)



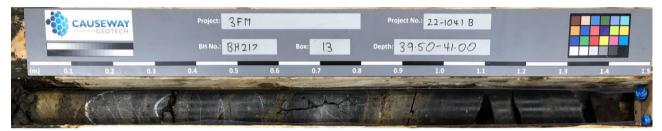
BH217 Box 8 (32.00-33.50m)



BH217 Box 9 (33.50-35.00m)



BH217 Box 10 (35.00-36.50m)






BH217 Box 11 (36.50-38.00m)



BH217 Box 12 (38.00-39.50m)



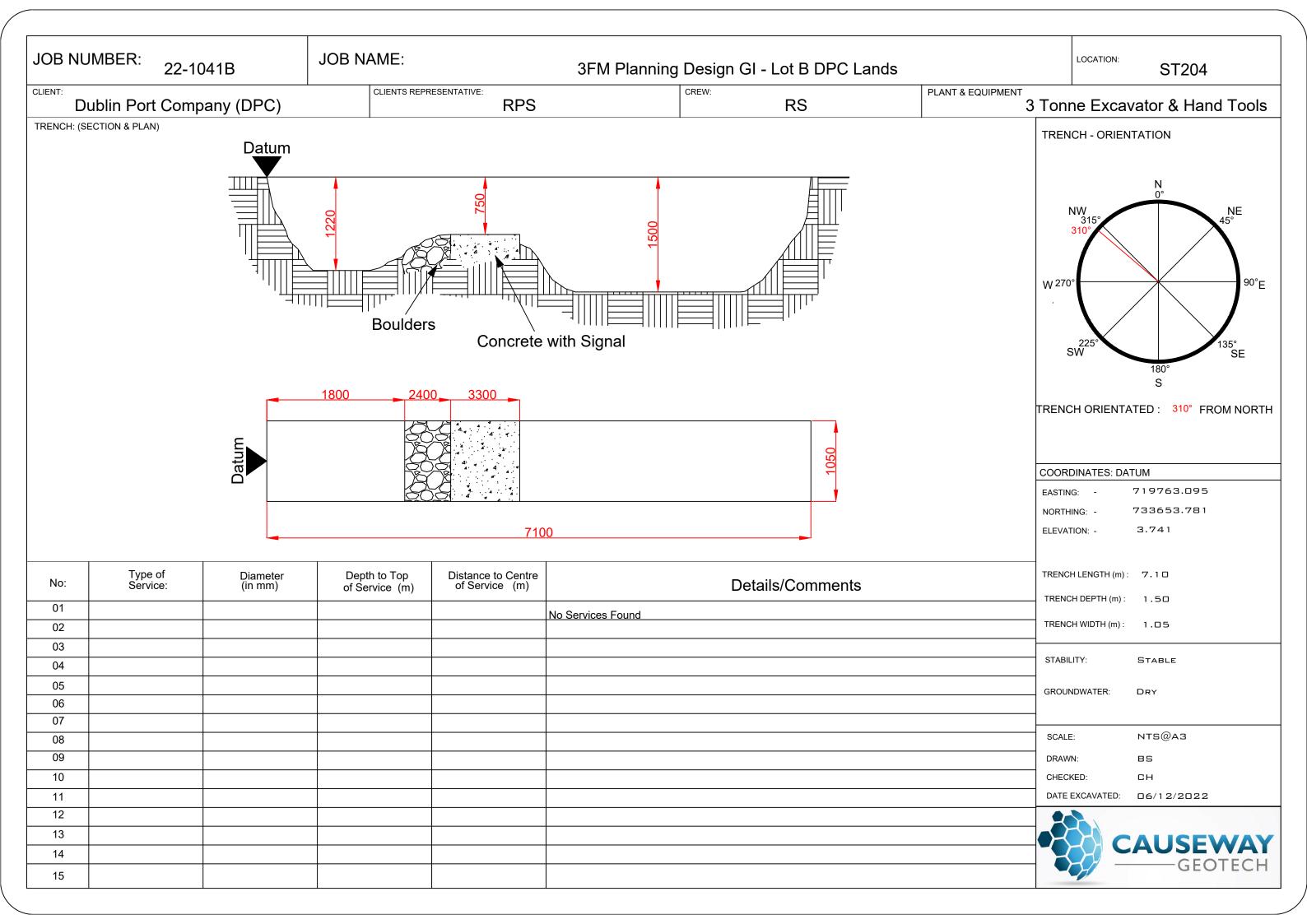
BH217 Box 13 (39.50-41.00m)





## APPENDIX D SLIT TRENCH LOGS AND DRAWINGS




|                            |            |                    | Proi     | ect No.     | Droinct  | t Name:                                                      |                | Trial Pit ID  |
|----------------------------|------------|--------------------|----------|-------------|----------|--------------------------------------------------------------|----------------|---------------|
|                            |            |                    |          | 1041B       |          | anning Design GI - Lot B 3rd Party Lands                     |                | III ai Fit ID |
|                            | CAU        | SEWAY<br>GEOTECH   |          |             | Client:  |                                                              |                | ST203         |
|                            |            | GEOTECH            | Coor     | dinates     | 1        | Port Company (DPC)                                           |                | 31203         |
| Method:                    |            |                    | 7197     | 61.75 E     | 1        | s Representative:                                            |                | heet 1 of 1   |
| Slit Trenching             |            |                    | 7335     | 79.51 N     | RPS      |                                                              |                | Scale: 1:25   |
| Plant:                     |            |                    | Ele      | vation      | Date:    | Logger                                                       |                | ocaic. 1.25   |
| 3t Excavator               |            |                    |          | 0 mOD       | 05/12/   |                                                              |                | FINAL         |
| Depth                      | Sample /   | Field Records      | Level    | Depth       | Legend   | Description                                                  | Water          |               |
| (m)                        | Tests      | rieiu kecorus      | (mOD)    | (m)         | Legenu   | BITMAC                                                       | e <sub>a</sub> |               |
|                            |            |                    | 3.50     | 0.10        |          | MADE GROUND: Grey sandy very silty angular fine to coarse GF | RAVEL.         | -             |
|                            |            |                    |          | -           |          | Sand is fine to coarse.                                      |                | _             |
|                            |            |                    |          | ŀ           |          |                                                              |                |               |
| 0.50 - 0.20                | ES1        |                    | 3.15     | 0.45        |          | MADE GROUND: Brown sandy clayey subangular fine to coarse    | GRAVEL.        | 0.5 —         |
| 0.50 - 0.50                | B2         |                    |          | -           |          | Sand is fine to coarse.  Terram at 0.45m                     |                | _             |
| 0.50                       |            | PID = 0.70ppm      |          | [           |          | Tollan at 6. form                                            |                | -             |
|                            |            |                    |          | -           |          |                                                              |                |               |
| 1.00 1.00                  | B4         |                    |          | -           |          |                                                              |                | -             |
| 1.00 - 1.00<br>1.00 - 1.00 | B4<br>ES3  |                    | 2.50     | 1.10        |          |                                                              |                | 1.0           |
| 1.00                       |            | PID = 1.10ppm      | 2.30     | 1.10        |          | End of trial pit at 1.10m                                    |                |               |
|                            |            |                    |          | <u>-</u>    |          |                                                              |                | -             |
|                            |            |                    |          | -           |          |                                                              |                | -             |
|                            |            |                    |          | <u>-</u>    |          |                                                              |                | 1.5           |
|                            |            |                    |          | Ē           |          |                                                              |                |               |
|                            |            |                    |          | -           |          |                                                              |                | _             |
|                            |            |                    |          | -           |          |                                                              |                | -             |
|                            |            |                    |          | F           |          |                                                              |                | 2.0 —         |
|                            |            |                    |          | -           |          |                                                              |                | -             |
|                            |            |                    |          | -           |          |                                                              |                |               |
|                            |            |                    |          | [           |          |                                                              |                |               |
|                            |            |                    |          | <u>-</u>    |          |                                                              |                | 2.5 —         |
|                            |            |                    |          | E           |          |                                                              |                | -             |
|                            |            |                    |          | -           |          |                                                              |                | -             |
|                            |            |                    |          | -           |          |                                                              |                |               |
|                            |            |                    |          | _           |          |                                                              |                | 3.0           |
|                            |            |                    |          | -           |          |                                                              |                | _             |
|                            |            |                    |          | -           |          |                                                              |                | -             |
|                            |            |                    |          | [           |          |                                                              |                | -             |
|                            |            |                    |          | -           |          |                                                              |                |               |
|                            |            |                    |          | E           |          |                                                              |                | 3.5 —         |
|                            |            |                    |          | <u> </u>    |          |                                                              |                | 4             |
|                            |            |                    |          | Ė           |          |                                                              |                | -             |
|                            |            |                    |          | -           |          |                                                              |                | -             |
|                            |            |                    |          | -           |          |                                                              |                | 4.0           |
|                            |            |                    |          | [           |          |                                                              |                |               |
|                            |            |                    |          | -           |          |                                                              |                |               |
|                            |            |                    |          | <u> </u>    |          |                                                              |                | -             |
|                            |            |                    |          | -           |          |                                                              |                | 4.5 —         |
|                            |            |                    |          | <u> </u>    |          |                                                              |                | -             |
|                            |            |                    |          | -           |          |                                                              |                |               |
|                            |            |                    |          | ļ-<br>-     |          |                                                              |                |               |
|                            | 1          |                    |          | -           | -        |                                                              |                |               |
| Wate                       | er Strikes | <b>Depth:</b> 1.10 | l l      | narks:      | 1        | 1                                                            |                |               |
| Struck at (m)              | Remark     | Width: 0.50        | No §     | groundwat   | er encou | ntered.                                                      |                |               |
|                            |            | Length: 8.35       |          |             |          |                                                              |                |               |
|                            |            |                    | <b>-</b> | ninetie - P |          |                                                              | l act III      | <u>-</u>      |
|                            |            | Stability:         |          | nination R  |          |                                                              | Last Update    |               |
|                            |            | Unstable           | Serv     | ices expose | d.       |                                                              | 19/04/2023     |               |

JOB NUMBER: JOB NAME: LOCATION: 3FM Planning Design GI - Lot B DPC Lands 22-1041B ST203 CREW: CLIENT: CLIENTS REPRESENTATIVE: PLANT & EQUIPMENT **Dublin Port Company (DPC) RPS** RS 3 Tonne Excavator & Hand Tools TRENCH: (SECTION & PLAN) TRENCH - ORIENTATION Datum 90°E W 270 SW 225 Concrete 180° S TRENCH ORIENTATED: 290° FROM NORTH 8350 COORDINATES: DATUM EASTING: 719761.75 NORTHING: 733579.51 ELEVATION: 3.60 Type of Service: Distance to Centre of Service (m) Diameter (in mm) TRENCH LENGTH (m): 8.35 Depth to Top **Details/Comments** No: of Service (m) TRENCH DEPTH (m): 1.10 01 250 0.55 3.45 250mm Asbestos Pipe <u>Jnknown</u> TRENCH WIDTH (m): 0.50 02 0.72 5.00 <u>Jnknown</u> 100 100mm Grey Flexi 03 0.60 175 6.10 175mm Grey PVC Pipe <u>Jnknown</u> STABILITY: UNSTABLE 04 <u>Unknown</u> 150 0.55 6.40 150mm Grey PVC Pipe 05 100 0.55 6.55 <u>Jnknown</u> 100mm Red PVC Pipe GROUNDWATER: DRY 06 <u>Jnknown</u> 100 0.55 6.70 - 6.83 2x100mm Grey PVC Pipe 07 NTS@A3 SCALE: 80 09 DRAWN: BS 10 СН DATE EXCAVATED: 05/12/2022 11 12

13 14 15



|                  |                      |                     | Proi          | ect No.                    | Droject   | Name:                                                                                                |            | Trial Pit ID |
|------------------|----------------------|---------------------|---------------|----------------------------|-----------|------------------------------------------------------------------------------------------------------|------------|--------------|
| - 80A            |                      |                     |               | 1041B                      | 1 -       | anning Design GI - Lot B 3rd Party Lands                                                             |            | IIIai Fit ID |
|                  | CAU                  | SEWAY<br>GEOTECH    |               |                            | Client:   | arrilling Design of Lot b Sta Farty Lands                                                            |            | ST204        |
|                  |                      | GEOTECH             | Coor          | dinates                    | 1         | Port Company (DPC)                                                                                   |            | 31204        |
| Method:          |                      |                     | 7197          | 63.10 E                    | 1         | Representative:                                                                                      |            | Sheet 1 of 1 |
| Slit Trenching   | Į.                   |                     | 7336          | 53.78 N                    | RPS       |                                                                                                      |            | Scale: 1:25  |
| Plant:           | ,                    |                     | Ele           | vation                     | Date:     | Logger:                                                                                              |            | ocaic. 1.25  |
| 3T Excavator     |                      |                     |               | 4 mOD                      | 05/12/    |                                                                                                      |            | FINAL        |
| Depth            | Sample /             | Field Records       | Level         | Depth                      | Legend    | Description                                                                                          | Water      |              |
| (m)              | Tests                |                     | (mOD)<br>3.67 | (m)<br>0.07                | 0         | BITMAC                                                                                               | 3          |              |
|                  |                      |                     | 2.54          |                            |           | MADE GROUND: Grey slightly sandy angular fine to coarse GRAVE is fine to coarse.                     | L. Sand    | _            |
|                  |                      |                     | 3.54          | 0.20                       |           | MADE GROUND: Firm light brown slightly sandy gravelly CLAY wit                                       |            |              |
|                  |                      |                     |               | -                          |           | cobble content. Gravel is subangular to subrounded fine to coarse Cobbles are subrounded of granite. | Э.         |              |
| 0.50             | B4                   |                     |               | Ė                          |           | Ç                                                                                                    |            | 0.5          |
| 0.50<br>0.50     | ES1                  | PID = 0.60ppm       |               | -                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | _            |
|                  |                      |                     |               | Ē                          |           |                                                                                                      |            |              |
| 1.00             | B5                   |                     |               | -                          |           |                                                                                                      |            | 1.0          |
| 1.00<br>1.00     | ES2                  | PID = 0.00ppm       |               | <u> </u>                   |           |                                                                                                      |            | -            |
| 1.00             |                      | υ – σ.σομριπ        |               | -                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               | <del> </del>               |           |                                                                                                      |            | -            |
| 1.50             | B6                   |                     | 2.24          | 1.50                       |           |                                                                                                      |            | 1.5 —        |
| 1.50             | ES3                  | DID 0.40            |               | -                          |           | End of trial pit at 1.50m                                                                            |            | _            |
| 1.50             |                      | PID = 0.40ppm       |               | Ē                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               | _                          |           |                                                                                                      |            | 2.0          |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | _            |
|                  |                      |                     |               | Ė                          |           |                                                                                                      |            | _            |
|                  |                      |                     |               | [                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | 25           |
|                  |                      |                     |               | [                          |           |                                                                                                      |            | 2.5 —        |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | _            |
|                  |                      |                     |               | [                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | 3.0 —        |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | _            |
|                  |                      |                     |               | [                          |           |                                                                                                      |            | _            |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               | Ē                          |           |                                                                                                      |            | 3.5 —        |
|                  |                      |                     |               | <del> </del>               |           |                                                                                                      |            | -            |
|                  |                      |                     |               | [                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               | <del> </del>               |           |                                                                                                      |            |              |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | 4.0 —        |
|                  |                      |                     |               | <del> </del>               |           |                                                                                                      |            | _            |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               | -                          |           |                                                                                                      |            | -            |
|                  |                      |                     |               |                            |           |                                                                                                      |            | 4.5 —        |
|                  |                      |                     |               | -                          |           |                                                                                                      |            |              |
|                  |                      |                     |               | <u> </u>                   |           |                                                                                                      |            | -            |
|                  |                      |                     |               | <u> </u>                   |           |                                                                                                      |            | -            |
|                  | au Chuilean          |                     | Don           | narks:                     |           |                                                                                                      |            |              |
| Struck at (m)    | er Strikes<br>Remark | <b>Depth:</b> 1.50  | 1             | <b>narкs:</b><br>groundwat | ter encou | ntered.                                                                                              |            |              |
| 25. 25. 40 (111) | ,                    | <b>Width:</b> 10.50 |               |                            |           |                                                                                                      |            |              |
|                  |                      | <b>Length:</b> 7.10 |               |                            |           |                                                                                                      |            |              |
|                  |                      | Stability:          | Terr          | nination R                 | Reason    |                                                                                                      | Last Updat |              |
|                  |                      | Stable              | Serv          | ices expose                | d.        |                                                                                                      | 19/04/202  | 3 AGS        |





## APPENDIX E SLIT TRENCH PHOTOGRAPHS





**ST203** 



ST203







**ST203** 



ST203







ST203



ST203





**ST203** 



ST203







ST203



ST203







ST204







ST204







ST204







ST204





ST204







**ST204** 







ST204





ST204





ST204

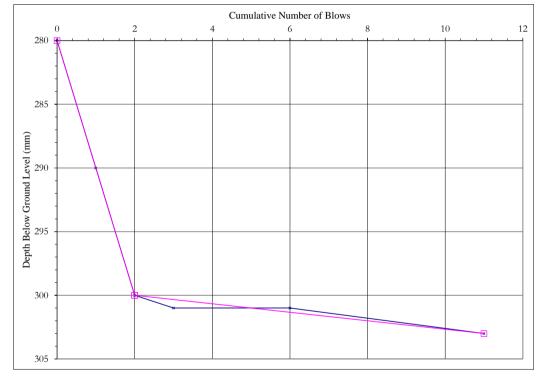




# APPENDIX F INDIRECT IN-SITU CBR TESTS



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC202 |
|---------------|-----------|
| Depth bgl (m) | 0.28      |

| Date Tested | 15/12/2022   |
|-------------|--------------|
| Weather     | Dry + Cloudy |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation:  $log10(CBR) = 2.48 - 1.057 \times log10(mm/blow)$  iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 280                               | 10          | 26         |
| 300                               |             |            |
| 300                               |             |            |
| 303                               | 0.3         | >100       |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
| -                                 |             |            |

CBR Min: 26
Range Max: >100

The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure None

Observations and comments Terminated on refusal

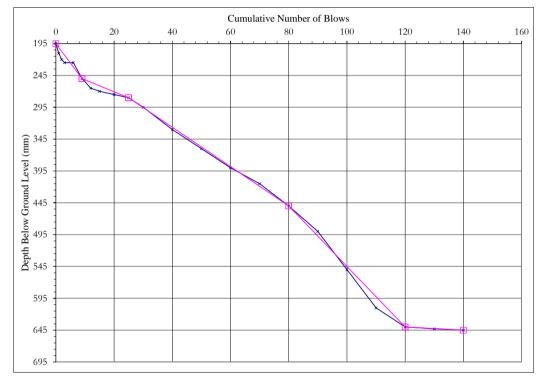
Approved Name and Appointment

Darren O'Mahony Director Jam O duo 1.



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC203 |
|---------------|-----------|
| Depth bgl (m) | 0.20      |

| Date Tested | 15/12/2022   |
|-------------|--------------|
| Weather     | Dry + Cloudy |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 195                               | 6.1         | 45         |
| 250                               |             |            |
| 250                               |             |            |
| 280                               | 1.9         | >100       |
| 200                               |             |            |
| 280                               | 2.1         | 02         |
| 450                               | 3.1         | 92         |
|                                   |             |            |
| 450                               | 4.8         | 58         |
| 640                               | 1.0         | 50         |
| 640                               |             |            |
| 640<br>645                        | 0.3         | >100       |
| 043                               |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 45   |
|-------|-----------|
| Range | Max: >100 |

The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure

None

Observations and comments Terminated on refusal

Darren O'Mahony
Director

April 2023



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |



| Test Number   | 3FM-RC204 |
|---------------|-----------|
| Depth bgl (m) | 0.19      |

| Date Tested | 15/12/2022   |
|-------------|--------------|
| Weather     | Dry + Cloudy |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation:  $log10(CBR) = 2.48 - 1.057 \times log10(mm/blow)$  iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 185                               | 15          | 17         |
| 200                               |             |            |
| 200                               |             |            |
| 255                               | 4.6         | 60         |
| 255                               |             |            |
| 255                               | 2.4         | >100       |
| 315                               | 2.4         | >100       |
|                                   |             |            |
| 315                               | 1.3         | >100       |
| 323                               |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 17   |
|-------|-----------|
| Range | Max: >100 |

| Deviation(s) from standard<br>procedure | None |
|-----------------------------------------|------|
|-----------------------------------------|------|

| Observations and comments | Terminated on refusal |
|---------------------------|-----------------------|
|---------------------------|-----------------------|

| Approved Name and Appointment |             |            |
|-------------------------------|-------------|------------|
| Darren O'Mahony<br>Director   | Jam O duay. | April 2023 |



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |



| Test Number   | 3FM-RC205 |
|---------------|-----------|
| Depth bgl (m) | 0.23      |

| Date Tested | 15/12/2022   |
|-------------|--------------|
| Weather     | Dry + Cloudy |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 230<br>310                        | 8.9         | 30         |
|                                   |             |            |
| 310<br>460                        | 3.3         | 85         |
| 460<br>625                        | 2.5         | >100       |
|                                   |             |            |
| 625<br>960                        | 6.7         | 40         |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 30   |
|-------|-----------|
| Range | Max: >100 |

The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

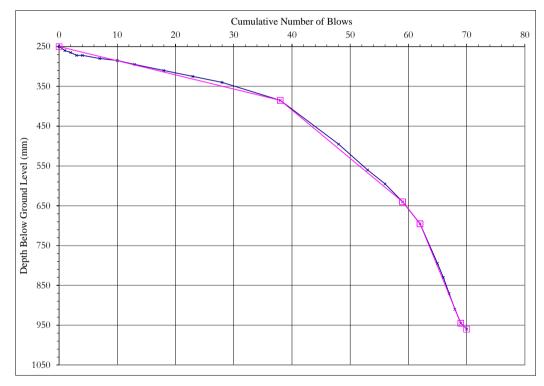
| Deviation(s) from standard procedure | None |
|--------------------------------------|------|
|--------------------------------------|------|

Observations and comments



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC206 |
|---------------|-----------|
| Depth bgl (m) | 0.25      |

| Date Tested | 15/12/2022   |
|-------------|--------------|
| Weather     | Dry + Cloudy |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 250                               | 3.6         | 79         |
| 385                               |             |            |
| 385                               | 12          | 22         |
| 640                               | 12          | 22         |
|                                   |             |            |
| 640                               | 18          | 14         |
| 695                               |             |            |
| 695                               | 36          | 6.9        |
| 945                               | 36          | 6.9        |
|                                   |             |            |
| 945                               | 15          | 17         |
| 960                               |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 6.9 |
|-------|----------|
| Range | Max: 79  |

The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

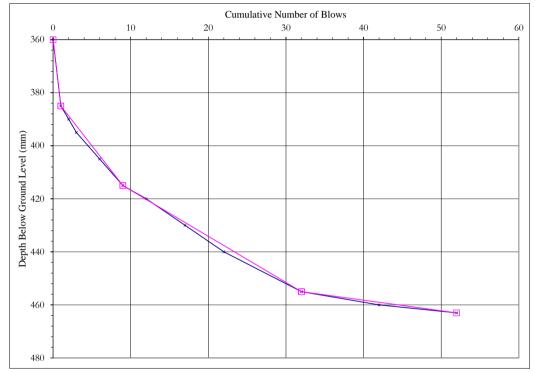
| Deviation(s) from standard procedure | None |
|--------------------------------------|------|
|--------------------------------------|------|

Observations and comments



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC207 |
|---------------|-----------|
| Depth bgl (m) | 0.36      |

| Date Tested | 14/12/2022 |  |
|-------------|------------|--|
| Weather     | Dry + Cold |  |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 360                               | 25          | 10         |
| 385                               |             |            |
| 385                               | 3.8         | 75         |
| 415                               | 3.0         | 73         |
| 415                               |             |            |
| 455                               | 1.7         | >100       |
|                                   |             |            |
| 455<br>463                        | 0.4         | >100       |
| 403                               |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 10   |
|-------|-----------|
| Range | Max: >100 |

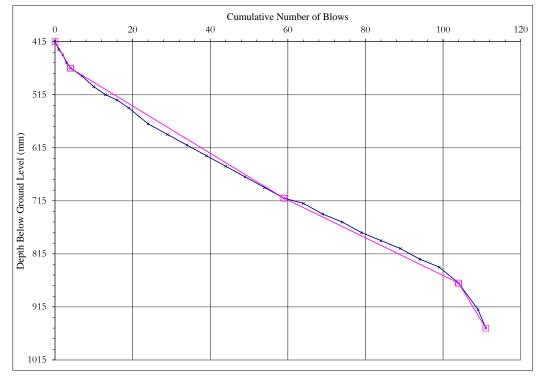
| Deviation(s) from standard procedure | None |
|--------------------------------------|------|
|--------------------------------------|------|

| Observations and comments | Terminated on refusal |
|---------------------------|-----------------------|
|---------------------------|-----------------------|

| Approved Name and Appointment |               |            |
|-------------------------------|---------------|------------|
| Darren O'Mahony<br>Director   | Jan O' d'Hoy. | April 2023 |



| Project Number | 22-1041B               |  |
|----------------|------------------------|--|
| Project Name   | 3FM Planning Design GI |  |
| Site Location  | Dublin Port South      |  |




| Test Number   | 3FM-RC209 |  |
|---------------|-----------|--|
| Depth bgl (m) | 0.42      |  |

| Date Tested | 14/12/2022   |  |
|-------------|--------------|--|
| Weather     | Dry + Cloudy |  |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation:  $log10(CBR) = 2.48 - 1.057 \times log10(mm/blow)$  iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 415<br>465                        | 13          | 21         |
| 465                               |             |            |
| 465<br>710                        | 4.5         | 62         |
| 710<br>870                        | 3.6         | 79         |
| 870<br>955                        | 12          | 22         |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 21 |
|-------|---------|
| Range | Max: 79 |

The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure

None

Observations and comments

Approved Name and Appointment

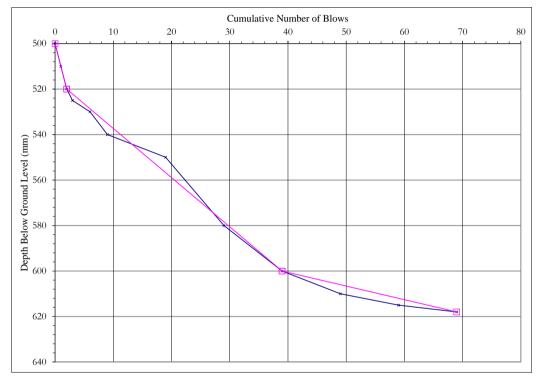
Darren O'Mahony Director Jam O Uray.

January 2023



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC211 |
|---------------|-----------|
| Depth bgl (m) | 0.50      |

| Date Tested | 14/12/2022   |  |
|-------------|--------------|--|
| Weather     | Dry + Cloudy |  |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

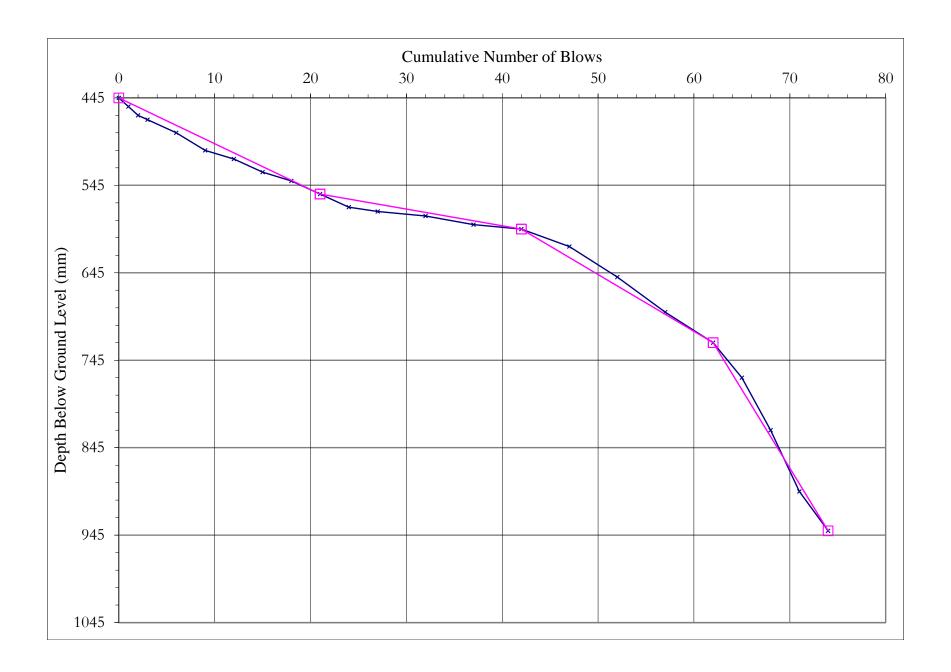
CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |  |
|---------------------|-----------------------------------------------|--|
| Cored TM            | MADE GROUND                                   |  |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 500                               | 10          | 26         |
| 520                               |             |            |
| 520                               |             |            |
| 600                               | 2.2         | >100       |
|                                   |             |            |
| 600<br>618                        | 0.6         | >100       |
| 618                               |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 26   |
|-------|-----------|
| Range | Max: >100 |


The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard None

Observations and comments Terminated on refusal





| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |



| Test Number   | 3FM-RC213 |  |
|---------------|-----------|--|
| Depth bgl (m) | 0.34      |  |

| Date Tested | 14/12/2022   |  |
|-------------|--------------|--|
| Weather     | Dry + Cloudy |  |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |  |
|---------------------|-----------------------------------------------|--|
| Cored TM            | MADE GROUND                                   |  |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 335                               | 6.3         | 44         |
| 360                               |             |            |
| 360                               |             |            |
| 450                               | 3           | 95         |
| - 100                             |             |            |
| 450                               | 4.7         | 59         |
| 530                               | 1.7         | 37         |
| 530                               |             |            |
| 545                               | 1.5         | >100       |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 44   |
|-------|-----------|
| Range | Max: >100 |

| Deviation(s) from standard procedure |
|--------------------------------------|
|--------------------------------------|

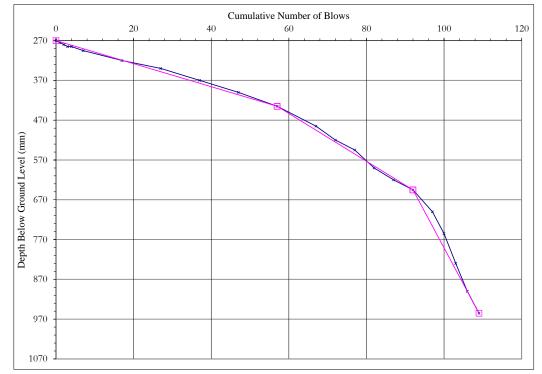
| Observations and comments | Terminated on refusal |
|---------------------------|-----------------------|
|---------------------------|-----------------------|

| Approved Name and Appointment |               |            |
|-------------------------------|---------------|------------|
| Darren O'Mahony<br>Director   | Jam & Dero J. | April 2023 |



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC214 |
|---------------|-----------|
| Depth bgl (m) | 0.27      |

| Date Tested | 14/12/2022   |
|-------------|--------------|
| Weather     | Dry + Cloudy |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 270                               | 2.9         | 98         |
| 435                               |             |            |
| 435<br>645                        | 6           | 45         |
|                                   |             |            |
| 645<br>955                        | 18          | 14         |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR<br>Range | Min: 14 | The incitu          |
|--------------|---------|---------------------|
|              | Max: 98 | The insitu<br>varia |

The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

| Deviation(s) from standard procedure | None |
|--------------------------------------|------|
|--------------------------------------|------|

Observations and comments

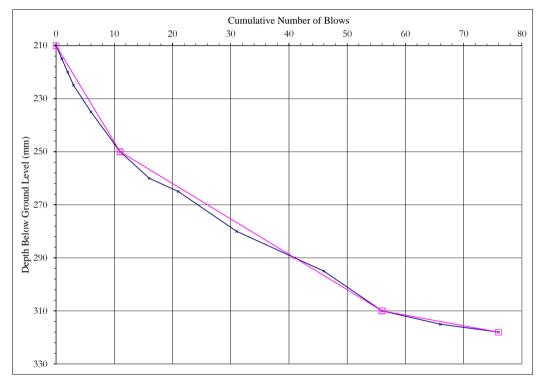
Approved Name and Appointment

Darren O'Mahony Director Jam O duo 1.

January 2023



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC215 |
|---------------|-----------|
| Depth bgl (m) | 0.21      |

| Date Tested | 14/12/2022   |
|-------------|--------------|
| Weather     | Dry + Cloudy |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation:  $log10(CBR) = 2.48 - 1.057 \times log10(mm/blow)$  iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 210<br>250                        | 3.6         | 77         |
| 230                               |             |            |
| 250                               | 1.3         | >100       |
| 310                               |             |            |
| 310<br>318                        | 0.4         | >100       |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

Min: 77 **CBR** Range Max: >100

The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard None procedure

Observations and comments Terminated on refusal

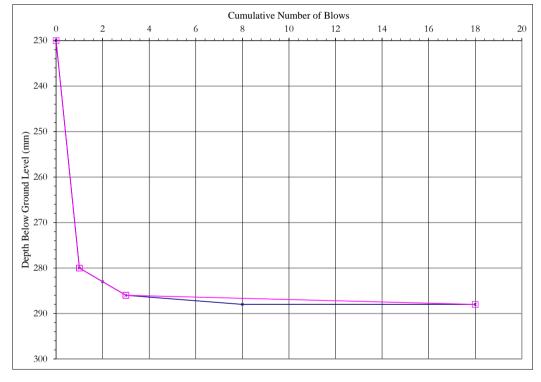
**Approved Name and Appointment** Darren O'Mahony

Director

Jam O duoy.



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC216 |
|---------------|-----------|
| Depth bgl (m) | 0.23      |

| Date Tested | 14/12/2022   |
|-------------|--------------|
| Weather     | Dry + Cloudy |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation:  $log10(CBR) = 2.48 - 1.057 \times log10(mm/blow)$  iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 230                               | 50          | 4.8        |
| 280                               | 30          | 1.0        |
|                                   |             |            |
| 280                               | 3           | 95         |
| 286                               |             |            |
| 286<br>288                        | 0.1         | >100       |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 4.8  |
|-------|-----------|
| Range | Max: >100 |

The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure None

Observations and comments

Terminated on refusal



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |



| Test Number   | 3FM-RC217 |
|---------------|-----------|
| Depth bgl (m) | 0.21      |

| Date Tested | 14/12/2022   |  |
|-------------|--------------|--|
| Weather     | Dry + Cloudy |  |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 210                               | 5           | 55         |
| 250                               |             |            |
| 250                               | 1.9         | >100       |
| 375                               |             |            |
| 375<br>660                        | 3.6         | 79         |
|                                   |             |            |
| 930                               | 12          | 22         |
| 750                               |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 22   |
|-------|-----------|
| Range | Max: >100 |

| Deviation(s) from standard<br>procedure | None |
|-----------------------------------------|------|
|-----------------------------------------|------|

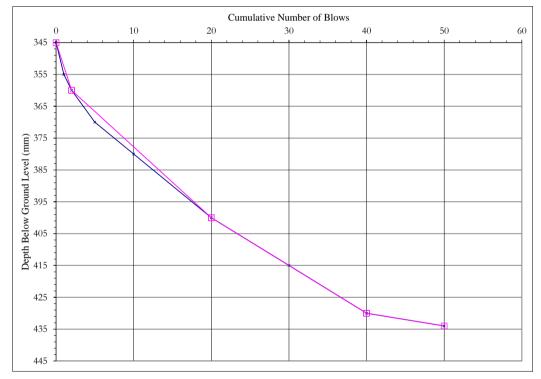
| Observations and comments |
|---------------------------|
|---------------------------|

| Approved Name and Appointment |            |              |
|-------------------------------|------------|--------------|
| Darren O'Mahony<br>Director   | Jan O duo. | January 2023 |



| Project Number | 22-1041B               |  |
|----------------|------------------------|--|
| Project Name   | 3FM Planning Design GI |  |
| Site Location  | Dublin Port South      |  |




| Test Number   | 3FM-RC218 |  |
|---------------|-----------|--|
| Depth bgl (m) | 0.35      |  |

| Date Tested | 14/12/2022   |  |
|-------------|--------------|--|
| Weather     | Dry + Cloudy |  |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4.

CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 345<br>360                        | 7.5         | 36         |
|                                   |             |            |
| 360<br>400                        | 2.2         | >100       |
| 400                               |             |            |
| 430                               | 1.5         | >100       |
|                                   |             |            |
| 430<br>434                        | 0.4         | >100       |
| _                                 |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 36   |
|-------|-----------|
| Range | Max: >100 |

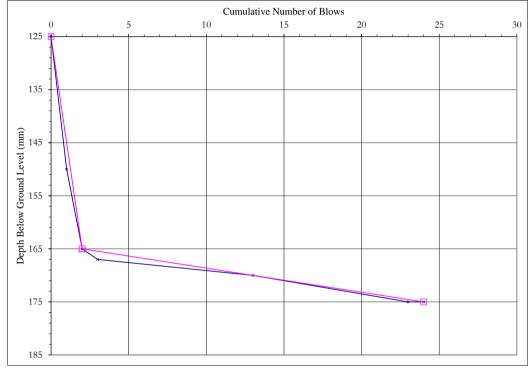
| Deviation(s) from standard procedure | None |
|--------------------------------------|------|
|--------------------------------------|------|

| Observations and comments | Terminated on refusal |
|---------------------------|-----------------------|
|---------------------------|-----------------------|

| Approved Name and Appointment |             |            |
|-------------------------------|-------------|------------|
| Darren O'Mahony<br>Director   | Jam O duay. | April 2023 |



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC219 |
|---------------|-----------|
| Depth bgl (m) | 0.13      |

| Date Tested | 15/12/2022   |
|-------------|--------------|
| Weather     | Dry + Cloudy |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation:  $log10(CBR) = 2.48 - 1.057 \times log10(mm/blow)$  iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 125<br>165                        | 20          | 13         |
| 165                               | 0.7         | 100        |
| 175                               | 0.5         | >100       |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

CBR Min: 13
Range Max: >100

The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure None

Observations and comments

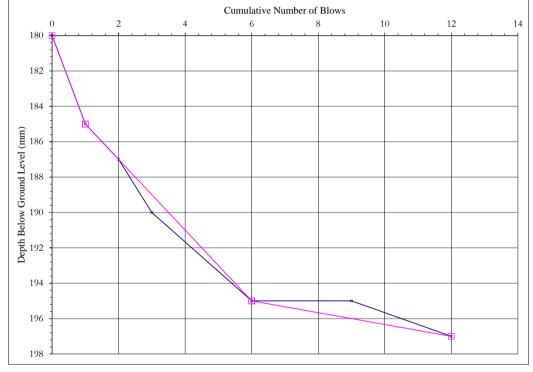
Terminated on refusal

Approved Name and Appointment

Darren O'Mahony Director Jam O UMO 7.



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC220 |
|---------------|-----------|
| Depth bgl (m) | 0.18      |

| Date Tested | 15/12/2022   |
|-------------|--------------|
| Weather     | Dry + Cloudy |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation:  $log10(CBR) = 2.48 - 1.057 \times log10(mm/blow)$  iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |
|---------------------|-----------------------------------------------|
| Cored TM            | MADE GROUND                                   |



| top /<br>base of<br>layer<br>(mm) | mm/<br>blow | CBR<br>(%) |
|-----------------------------------|-------------|------------|
| 180<br>185                        | 5           | 55         |
| 103                               |             |            |
| 185<br>195                        | 2           | >100       |
|                                   |             |            |
| 195<br>197                        | 0.3         | >100       |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |
|                                   |             |            |

| CBR   | Min: 55   |
|-------|-----------|
| Range | Max: >100 |

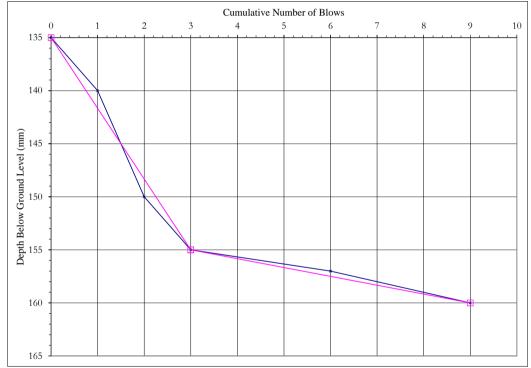
| Deviation(s) from standard procedure | None |
|--------------------------------------|------|
|--------------------------------------|------|

| Observations and comments | Terminated on refusal |
|---------------------------|-----------------------|
|---------------------------|-----------------------|

| Approved Name and Appointment |              |            |
|-------------------------------|--------------|------------|
| Darren O'Mahony<br>Director   | Jam O UNO 7. | April 2023 |



| Project Number | 22-1041B               |
|----------------|------------------------|
| Project Name   | 3FM Planning Design GI |
| Site Location  | Dublin Port South      |




| Test Number   | 3FM-RC221 |
|---------------|-----------|
| Depth bgl (m) | 0.14      |

| Date Tested | 15/12/2022   |  |
|-------------|--------------|--|
| Weather     | Dry + Cloudy |  |

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation:  $log10(CBR) = 2.48 - 1.057 \times log10(mm/blow)$  iaw IAN 73/06 Rev 1 2009.

| Surface preparation | Description of surface material at test depth |  |
|---------------------|-----------------------------------------------|--|
| Cored TM            | MADE GROUND                                   |  |



| top /<br>base o<br>layer<br>(mm | of 1 | mm/<br>blow | CBR<br>(%) |
|---------------------------------|------|-------------|------------|
| 135<br>155                      |      | 6.7         | 41         |
| 155                             |      | 0.8         | >100       |
| 160                             |      | 0.0         | - 100      |
|                                 |      |             |            |
|                                 |      |             |            |
|                                 |      |             |            |
|                                 |      |             |            |
|                                 |      |             |            |
|                                 |      |             |            |
|                                 |      |             |            |
|                                 |      |             |            |
|                                 |      |             |            |
|                                 |      |             |            |

CBR Min: 41
Range Max: >100

The selection of layers is based on visual interpretation of the data.

The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure None

Observations and comments Terminated on refusal

Approved Name and Appointment

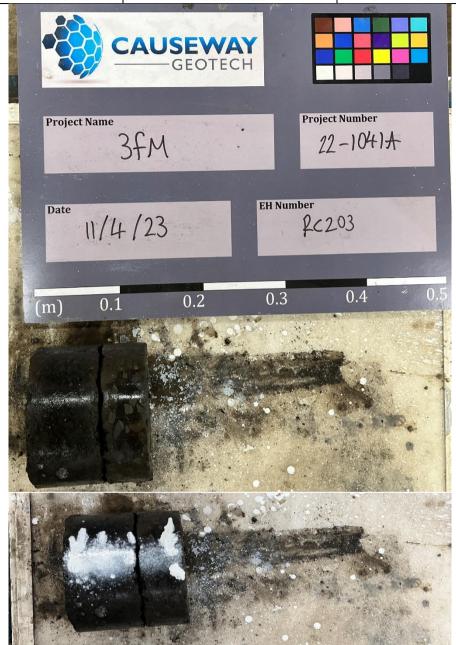
Darren O'Mahony Director Jam O duo 1.






# APPENDIX G PAVEMENT CORE LOGS AND PHOTOGRAPHS




| RC202     |           |         |
|-----------|-----------|---------|
| Easting   | Elevation |         |
| 719729.81 | 733544.64 | 3.34m0D |



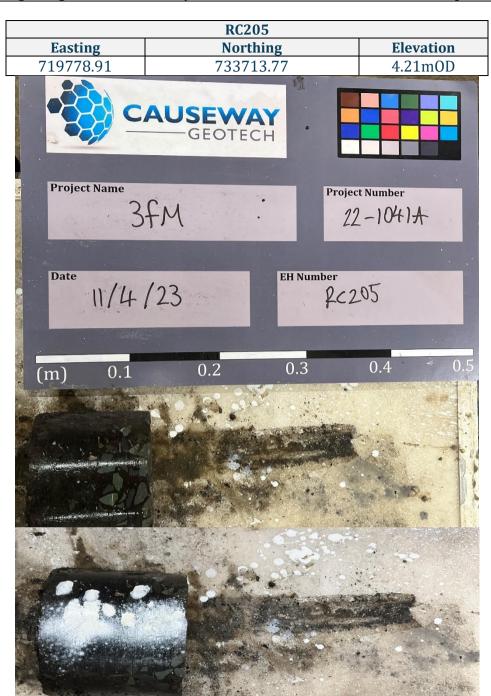
| Layer | Depth    | Thickness (mm) | Description                                                                                             | PAK Spray<br>Discoloration |
|-------|----------|----------------|---------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.1    | 100            | Strong grey BITMAC. 70-80% aggregate of subangular to subrounded fine to medium gravel. No small voids. | Faint Yellow               |
| 2     | 0.1-0.16 | 60             | Strong black BITMAC. 30-40% aggregate of angular to subangular fine gravel. 1-5% small voids.           | Faint Yellow               |




| RC203     |           |           |  |  |
|-----------|-----------|-----------|--|--|
| Easting   | Northing  | Elevation |  |  |
| 719746.73 | 733589.36 | 3.42mOD   |  |  |



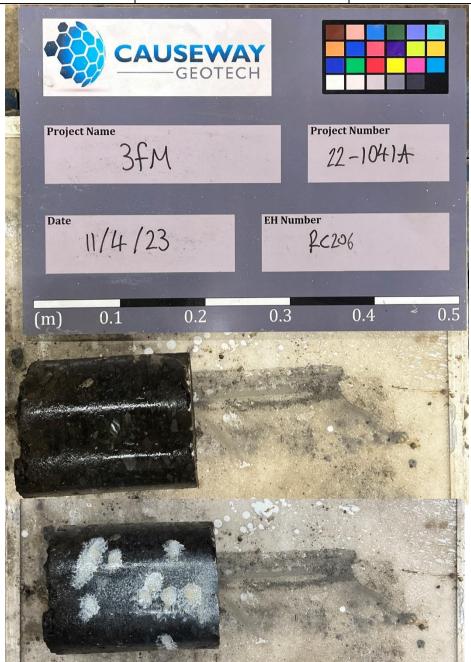
| Layer | Depth           | Thickness (mm) | Description                                                                                                  | PAK Spray<br>Discoloration |
|-------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.083         | 83             | Strong black BITMAC. 30-40% aggregate of subangular to subrounded fine to medium gravel. No small voids.     | White                      |
| 2     | 0.083-<br>0.125 | 42             | Strong dark grey BITMAC. 40-50% aggregate of subangular to subrounded fine to medium gravel. No small voids. | White                      |




| RC204                      |           |         |  |  |
|----------------------------|-----------|---------|--|--|
| Easting Northing Elevation |           |         |  |  |
| 719765.61                  | 733656.45 | 3.72mOD |  |  |



| Layer | Depth   | Thickness (mm) | Description                                                                                                  | PAK Spray<br>Discoloration |
|-------|---------|----------------|--------------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.105 | 105            | Strong dark grey BITMAC. 60-70% aggregate of subangular to subrounded fine to medium gravel. No small voids. | Faint Yellow               |






| Layer | Depth     | Thickness (mm) | Description                                                                                                       | PAK Spray<br>Discoloration |
|-------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.06    | 60             | Strong black BITMAC. 40-50% aggregate of subangular to subrounded fine to medium gravel. No small voids.          | Faint Yellow               |
| 2     | 0.06-0.11 | 50             | Strong greenish dark grey BITMAC. 70-80% aggregate of angular to subangular fine to medium gravel. No small voids | Faint Yellow               |



| RC206     |           |           |  |  |
|-----------|-----------|-----------|--|--|
| Easting   | Northing  | Elevation |  |  |
| 719814.45 | 733753.69 | 4.74m0D   |  |  |
|           |           |           |  |  |



| Layer | Depth     | Thickness (mm) | Description                                                                                              | PAK Spray<br>Discoloration |
|-------|-----------|----------------|----------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0.0-0.195 | 195            | Strong black BITMAC. 50-60% aggregate of subangular to subrounded fine to medium gravel. No small voids. | Faint Yellow               |



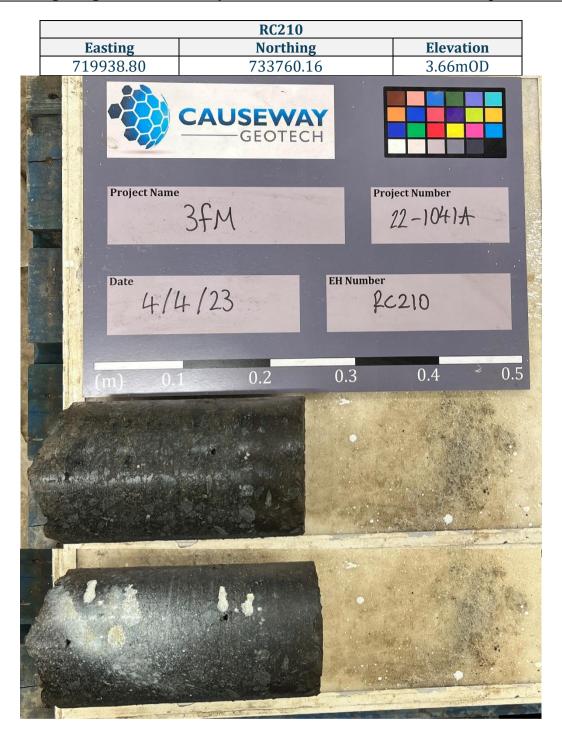
| RC207     |           |           |  |  |
|-----------|-----------|-----------|--|--|
| Easting   | Northing  | Elevation |  |  |
| 719759.12 | 733795.43 | 3.61m0D   |  |  |



| Layer | Depth     | Thickness | Description                                | PAK Spray<br>Discoloration |
|-------|-----------|-----------|--------------------------------------------|----------------------------|
|       |           | (mm)      |                                            | Discoloration              |
|       |           |           | Strong dark grey BITMAC. 60-70%            |                            |
| 1     | 0-0.18    | 180       | aggregate of subangular to subrounded      | Faint Yellow               |
|       |           |           | fine to medium gravel. 5-10% small voids.  |                            |
|       |           |           | Strong dark grey BITMAC. 70-80%            | Faint Yellow               |
| 2     | 0.18-0.22 | 42        | aggregate of angular to subangular fine to |                            |
|       |           |           | medium gravel. No small voids.             |                            |
|       |           |           | Strong grey BITMAC. 80-90% aggregate       | Faint Yellow               |
| 3     | 0.22-0.25 | 30        | of subangular to subrounded fine gravel.   |                            |
|       |           |           | No small voids                             |                            |
|       |           |           | Strong dark grey BITMAC. 60-70%            | Faint Yellow               |
| 4     | 0.25-0.28 | 30        | aggregate of subangular to subrounded      |                            |
|       |           |           | fine to medium gravel. 5-10% small voids.  |                            |






| Layer | Depth      | Thickness | Description                                                                                                           | PAK Spray     |
|-------|------------|-----------|-----------------------------------------------------------------------------------------------------------------------|---------------|
|       |            | (mm)      |                                                                                                                       | Discoloration |
| 1     | 0-0.11     | 110       | Strong brownish grey CONCRETE. 50-60% aggregate of subangular to subrounded fine to medium gravel. 5-10% small voids. | Faint Yellow  |
| 2     | 0.11-0.295 | 185       | Strong dark grey BITMAC. 65-75% aggregate of angular to subangular fine to medium gravel. 5-10% small voids.          | Faint Yellow  |





| Layer | Depth     | Thickness | Description                                                                                                   | PAK Spray     |
|-------|-----------|-----------|---------------------------------------------------------------------------------------------------------------|---------------|
|       |           | (mm)      |                                                                                                               | Discoloration |
| 1     | 0-0.12    | 120       | Strong dark grey BITMAC. 40-50% aggregate of subangular to subrounded fine to coarse gravel. 1-5% small voids | White         |
| 2     | 0.12-0.40 | 280       | Strong black BITMAC. 50-60% aggregate of subangular to subrounded fine to medium gravel. No small voids       | White         |





| Layer | Depth    | Thickness | Description                           | PAK Spray     |
|-------|----------|-----------|---------------------------------------|---------------|
|       | (mm)     |           |                                       | Discoloration |
|       |          |           | Strong dark grey BITMAC. 50-60%       |               |
| 1     | 0-0.20   | 200       | aggregate of angular to subangular    | Faint Yellow  |
|       |          |           | fine to medium gravel. No small voids |               |
|       |          |           | Strong black BITMAC. 40-50%           |               |
| 2     | 0.2-0.24 | 40        | aggregate of angular to subangular    | Faint Yellow  |
|       |          |           | fine gravel. No small voids           |               |



|              | RC211                                                |           |
|--------------|------------------------------------------------------|-----------|
| Easting      | Northing                                             | Elevation |
| 719996.63    | 733740.92                                            | 3.76mOD   |
|              | USEWAY<br>GEOTECH                                    |           |
| Project Name | Project N                                            |           |
| 3f1          | 4 22-                                                | 10414     |
|              |                                                      |           |
| Date         | EH Number                                            |           |
| 4/4/2        | 3 PC21                                               |           |
|              |                                                      |           |
|              |                                                      |           |
| (m) 0.1      | 0.2 0.3                                              | 0.4 0.5   |
|              |                                                      |           |
|              |                                                      |           |
|              |                                                      |           |
|              | A company of the second                              |           |
| 24.00        |                                                      |           |
|              | <b>"大人"</b> ,"大人","大人","大人","大人","大人","大人","大人","大人" |           |
|              |                                                      |           |
|              |                                                      |           |
|              |                                                      |           |
| 11           |                                                      |           |
|              |                                                      |           |
|              |                                                      |           |
|              |                                                      |           |
|              |                                                      |           |
|              |                                                      | - A C     |
|              |                                                      |           |

| Layer | Depth     | Thickness | Description                                                                                                       | PAK Spray     |
|-------|-----------|-----------|-------------------------------------------------------------------------------------------------------------------|---------------|
|       |           | (mm)      |                                                                                                                   | Discoloration |
| 1     | 0-0.19    | 190       | Strong brownish grey CONCRETE. 60-70% aggregate of subangular to subrounded fine to coarse gravel. No small voids | Faint Yellow  |
| 2     | 0.19-0.45 | 260       | Strong black BITMAC. 40-50% aggregate of angular to subangular fine to medium gravel. 1-5% small voids            | Faint Yellow  |



| RC212     |           |           |  |  |
|-----------|-----------|-----------|--|--|
| Easting   | Northing  | Elevation |  |  |
| 720070.85 | 733726.06 | 4.17m0D   |  |  |
|           |           | 7         |  |  |



| Layer | Depth               | Thickness (mm) | Description                                                                                                           | PAK Spray<br>Discoloration |
|-------|---------------------|----------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.095             | 95             | Strong greyish brown CONCRETE. 60-70% aggregate of subangular to subrounded fine to coarse gravel. 5-10% small voids. | White                      |
| 2     | 0.095-<br>0.24      | 145            | Strong light brown CONCRETE. 40-50% aggregate of subangular to subrounded fine gravel. No small voids.                | White                      |
| 3     | 0.24-0.30           | 60             | Strong grey BITMAC. 70-80% aggregate of subangular to subrounded fine gravel. 5-10% small voids                       | White                      |
| 4     | 4 0.30-<br>0.355 55 |                | Strong dark grey BITMAC. 60-70% aggregate of subangular to subrounded fine to medium gravel. 5-10% small voids.       | Faint Yellow               |



| RC213     |           |           |
|-----------|-----------|-----------|
| Easting   | Northing  | Elevation |
| 720252.55 | 733655.23 | 3.69m0D   |



| Layer | Depth     | Thickness | Description                             | PAK Spray     |
|-------|-----------|-----------|-----------------------------------------|---------------|
|       |           | (mm)      |                                         | Discoloration |
|       |           |           | Strong dark grey BITMAC. 60-70%         |               |
| 1     | 0-0.12    | 120       | aggregate of subrounded to rounded fine | Faint Yellow  |
|       |           |           | to coarse gravel. 10-15% small voids.   |               |
|       |           |           | Strong greenish grey BITMAC. 75-85%     |               |
| 2     | 0.12-0.21 | 90        | aggregate of subangular to subrounded   | White         |
|       |           |           | fine to medium gravel. No small voids.  |               |
| 0.21- |           |           | Strong dark grey BITMAC. 40-50%         |               |
| 3     |           | 35        | aggregate of subangular to subrounded   | White         |
|       | 0.245     |           | fine gravel. 5-10% small voids.         |               |



| RC214     |           |           |
|-----------|-----------|-----------|
| Easting   | Northing  | Elevation |
| 720282.25 | 733636.08 | 3.66m0D   |



| Layer | Depth     | Thickness | Description                            | PAK Spray     |
|-------|-----------|-----------|----------------------------------------|---------------|
|       | (mm)      |           |                                        | Discoloration |
|       |           |           | Strong dark grey BITMAC. 50-60%        |               |
| 1     | 0-0.11    | 110       | aggregate of subrounded to rounded     | Faint Yellow  |
|       |           |           | fine to coarse gravel. No small voids. |               |
|       |           |           | Strong greenish grey BITMAC. 70-       |               |
| 2     | 0.11-0.21 | 100       | 80% aggregate of subangular to         | Faint Yellow  |
| 2     | 0.11-0.21 | 100       | subrounded fine to medium gravel. 5-   | railit Tellow |
|       |           |           | 10% small voids.                       |               |



| RC215     |           |           |
|-----------|-----------|-----------|
| Easting   | Northing  | Elevation |
| 720336.54 | 733619.47 | 3.71mOD   |



| Layer | Depth   | Thickness (mm) | Description                                                                                                                    | PAK Spray<br>Discoloration |
|-------|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.064 | 64             | Strong greenish dark grey BITMAC.<br>65-75% aggregate of subangular to<br>subrounded fine to medium gravel. No<br>small voids. | White                      |



| RC216     |                    |                         |  |
|-----------|--------------------|-------------------------|--|
| Easting   | Northing           | Elevation               |  |
| 720372.52 | 733637.04          | 3.55mOD                 |  |
|           | AUSEWAY<br>GEOTECH |                         |  |
| Date      | FM Number          | Project Number 22-1041A |  |
| (m) 0.1   | 0.2 0.3            | 0.4                     |  |
| (m) 0.1   | 0.2                |                         |  |
|           |                    |                         |  |
|           |                    |                         |  |

| Layer | Depth  | Thickness (mm) | Description                           | PAK Spray<br>Discoloration |
|-------|--------|----------------|---------------------------------------|----------------------------|
|       |        |                | Strong black BITMAC. 50-60%           |                            |
| 1     | 0-0.18 | 180            | aggregate of subrounded to rounded    | White                      |
|       |        |                | fine to medium gravel. No small voids |                            |



| RC217     |           |           |  |
|-----------|-----------|-----------|--|
| Easting   | Northing  | Elevation |  |
| 720348.29 | 733579.95 | 3.79m0D   |  |





| Layer | Depth     | Thickness (mm) | Description                                                                                            | PAK Spray<br>Discoloration |
|-------|-----------|----------------|--------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.03    | 30             | Stong black BITMAC. 40-50% aggregate of subangular to subrounded fine to medium gravel. No small voids | White                      |
| 2     | 0.03-0.17 | 140            | Strong dark grey BITMAC. 70-80% aggregate of angular to subangular fine gravel. No small voids         | White                      |



|              | RC218     |                               |
|--------------|-----------|-------------------------------|
| Easting      | Northing  | Elevation                     |
| 720334.62    | 733479.82 | 4.00mOD                       |
| Project Name | AUSEWAY   |                               |
|              | EH Number | 22-1041 <del>4</del><br>22-18 |
| (m) 0.1      | 0.2 0.3   | 0.4 0.5                       |
|              |           |                               |
|              |           |                               |

| Layer | Depth     | Thickness | Description                            | PAK Spray     |
|-------|-----------|-----------|----------------------------------------|---------------|
|       | (mm)      | (mm)      |                                        | Discoloration |
|       |           |           | Strong black BITMAC. 30-40%            |               |
| 1     | 0-0.174   | 174       | aggregate of angular to subangular     | White         |
|       |           |           | fine to medium gravel. No small voids  |               |
|       |           |           | Strong grey BITMAC. 70-80%             |               |
| 2     | 0.174-    | 46        | aggregate of subangular to             | White         |
| 2     | 0.22      | 40        | subrounded fine to medium gravel. No   | vviiite       |
|       |           |           | small voids                            |               |
|       |           |           | Strong dark grey BITMAC. 60-70%        |               |
| 3     | 0.22-0.25 | 30        | aggrgate of subangular to subrounded   | White         |
|       |           |           | fine to medium gravel. No small voids. |               |





| Layer | Depth<br>(mm) | Thickness (mm) | Description                                                                                          | PAK Spray<br>Discoloration |
|-------|---------------|----------------|------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | 0-0.061       | 61             | Strong dark grey BITMAC. 70-80% aggregate of subangular to subrounded fine gravel. 0-5% small voids. | White                      |



|                       | RC220                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Easting               | Northing             | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 719202.08             | 733370.74            | 3.86m0D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C/                    | AUSEWAY<br>— GEOTECH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Name          |                      | Project Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                     | FM                   | 22-10414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date                  | EH No                | umber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4/41                  | 23                   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 0.2 0.3              | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (m) 0.1               | 0.2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ( £3.5%)              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 10.00                | A. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | 6.0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | Corp. 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4600                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>以外的</b>            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| And the second second |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lawrence !            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 20.84                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                      | A Paris de la Company de la Co |
|                       | Const. March         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                      | manufacture (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Layer | Depth   | Thickness | Description                                                                                                   | PAK Spray     |
|-------|---------|-----------|---------------------------------------------------------------------------------------------------------------|---------------|
|       |         | (mm)      |                                                                                                               | Discoloration |
| 1     | 0-0.095 | 95        | Strong dark grey BITMAC. 65-75% aggregate of subangular to subrounded fine to medium gravel. 1-5% small voids | White         |



| 3FM Planning Design GI Lot B 3rd Party Lands | Report No.: 22-1041B |
|----------------------------------------------|----------------------|
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |
|                                              |                      |

